CN113248693A - 基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料及其制备方法和应用 - Google Patents

基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料及其制备方法和应用 Download PDF

Info

Publication number
CN113248693A
CN113248693A CN202110571621.5A CN202110571621A CN113248693A CN 113248693 A CN113248693 A CN 113248693A CN 202110571621 A CN202110571621 A CN 202110571621A CN 113248693 A CN113248693 A CN 113248693A
Authority
CN
China
Prior art keywords
wide
benzodithiazole
donor material
polymer donor
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110571621.5A
Other languages
English (en)
Other versions
CN113248693B (zh
Inventor
彭强
徐小鹏
段玉伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Publication of CN113248693A publication Critical patent/CN113248693A/zh
Application granted granted Critical
Publication of CN113248693B publication Critical patent/CN113248693B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/149Side-chains having heteroaromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料及其制备方法和应用,属于有机光电技术领域,本发明通过使用垂直于聚合物主链的苯并[1,2‑d:4,5‑d′]二噻唑为受体单元,与一系列给体单元共聚,获得一批高性能的宽带隙聚合物给体材料;本发明将其应用于制备成聚合物有机太阳能电池,在不做深入优化的情况下,即可获得0.85V的的开路电压,25.86mA cm‑2的短路电流密度,67.4%的填充因子以及14.86%的光电转换效率。这类宽带隙聚合物给体材料具有结晶性好,吸收和迁移率高的特点,在有机太阳能电池中具有实际的应用价值。

Description

基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料及其制 备方法和应用
技术领域
本发明涉及有机光电技术领域,具体涉及到一种基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料及其制备方法和应用。
背景技术
化石能源的日益枯竭及其使用引起的环境污染使得人类的可持续面临巨大挑战。可再生能源的开发利用也就成为亟待解决的问题。因此,人们越来越重视新能源的开发和利用。太阳能具有分布广泛、取之不尽、用之不竭和清洁无污染等特点,开发前景广阔。在全球电气化高速发展的当今社会,利用太阳能电池将太阳能转化为电能使用,是非常具有潜力的利用方式。聚合物太阳能电池是新一代直接利用将太阳能转化为电能的光伏器件之一。目前占主导地位的太阳能利用技术主要是基于无机半导体材料的太阳能电池,但其高昂的材料制备成本、高能耗的器件加工工艺却限制了其进一步的应用。
近年来,聚合物太阳能电池引起了人们的广泛关注。相对于无机太阳能电池,聚合物太阳能电池有如下优点:质量轻、柔韧性好,不仅可以利用低成本的溶液法卷对卷喷涂和打印等技术对其进行大规模生产,而且易携带,能耗低,环境污染少。经过多年的发展,聚合物太阳能电池的光电转化效率已经突破18%,与商业化的硅电池相当,显示了其巨大的应用前景。目前,高性能的宽带隙聚合物给体材料十分欠缺,聚合物的吸收强度、结晶性和载流子迁移率较低等不足。开发新型太阳能电池聚合物给体材料,提高吸收强度、结晶性和载流子迁移率有望进一步提升有机太阳能电池的光电转换效率。
发明内容
针对上述的不足或缺陷,本发明的目的是提供一种基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料及其制备方法和应用,可有效解决现有宽带隙聚合物给体材料中存在的吸收强度低、结晶性差和载流子迁移率低的问题。
为达上述目的,本发明采取如下的技术方案:
本发明提供一种基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料,其结构通式如式I所示:
Figure BDA0003082775640000021
进一步地,上述宽带隙聚合物给体材料的结构通式Ⅰ中R为一维侧链或二维侧链;R1为氢原子、C1-C20直链烷基或C1-C20支链烷基;Ar为给电子结构单元;其中,一维侧链为C1-C20直链烷基、C1-C20支链烷基、羰基或酯基,二维侧链为烷基取代的噻吩基、烷氧基取代的噻吩基、烷硫基取代的噻吩基、烷基取代的苯基、烷氧基取代的苯基或烷硫基取代的苯基。
进一步地,二维侧链中噻吩基和苯基上环上的一个或多个氢原子可卤素原子取代。
进一步地,Ar的结构通式如式Ⅱ、Ⅲ或Ⅳ所示:
Figure BDA0003082775640000031
其中,R2为一维侧链或二维侧链;其中,一维侧链为C1-C20直链烷基、C1-C20支链烷基、羰基或酯基,二维侧链为烷基取代的噻吩基、烷氧基取代的噻吩基、烷硫基取代的噻吩基、烷基取代的苯基、烷氧基取代的苯基或烷硫基取代的苯基。
进一步地,二维侧链中噻吩基和苯基上环上的一个或多个氢原子可卤素原子取代。
进一步地,上述宽带隙聚合物给体材料的结构通式Ⅰ中n的范围为1-100。
进一步地,式Ⅰ中的R优先选用C1-C12支链烷基,R1优先选用H。
进一步地,Ar优先选择式Ⅱ中的结构,式Ⅱ中的R2基团优先选择卤化的烷基噻吩基。
本发明还提供上述基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料的制备方法,其合成通式如下:
Figure BDA0003082775640000032
将M1、M2和溶剂加入反应容器中,于惰性气体保护下加入催化剂和配体,95℃~120℃反应至聚合结束,冷却至室温,对反应产物进行分离纯化,制得宽带隙聚合物给体材料。
进一步地,M1、M2、催化剂和配体的摩尔比为1:1~3:0.01~0.04:0.02~0.12,优选为1:1:0.02:0.08。
进一步地,M1的结构通式中R为一维侧链或二维侧链;R1为氢原子、C1-C20直链烷基或C1-C20支链烷基;Ar为给电子结构单元;其中,一维侧链为C1-C20直链烷基、C1-C20支链烷基、羰基或酯基,二维侧链为烷基取代的噻吩基、烷氧基取代的噻吩基、烷硫基取代的噻吩基、烷基取代的苯基、烷氧基取代的苯基或烷硫基取代的苯基。
进一步地,二维侧链中噻吩基和苯基上环上的一个或多个氢原子可卤素原子取代。
进一步地,M2的结构通式中R3为C1-C4的直链烷基;M2的结构通式中Ar为给电子结构单元,结构通式如式Ⅱ、Ⅲ或Ⅳ所示:
Figure BDA0003082775640000041
其中,R2为一维侧链或二维侧链;其中,一维侧链为C1-C20直链烷基、C1-C20支链烷基、羰基或酯基,二维侧链为烷基取代的噻吩基、烷氧基取代的噻吩基、烷硫基取代的噻吩基、烷基取代的苯基、烷氧基取代的苯基或烷硫基取代的苯基。
进一步地,二维侧链中噻吩基和苯基上环上的一个或多个氢原子可卤素原子取代。
进一步地,催化剂为钯催化剂,具体为三(二亚苄基茚丙酮)二钯等。
进一步地,配体为膦配体,具体为三(邻甲苯基)膦等。
进一步地,反应温度为110℃,反应时间为5~12小时。
进一步地,溶剂为常规有机溶剂,如甲苯和二甲苯等。
本发明还提供上述基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料在有机太阳能电池中应用。
综上所述,本发明具有以下优点:
1、本发明提供一种基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料,并且将其应用于制备高性能的非富勒烯聚合物有机太阳能电池中。现有技术中,苯并[1,2-d:4,5-d′]二噻唑沿着主链方向伸展且骨架上没有可溶性烷基链,需要在噻吩桥上引入长烷基支链保证足够的溶解性,在一定程度上增加了空间位阻。与之相比,本发明通过使苯并[1,2-d:4,5-d′]二噻唑受体单元垂直于聚合物主链,并引入可溶性烷基链,消除(或减少)了噻吩桥上的烷基,优化了聚合物“推-拉”电子结构和能级、降低了空间位阻、提升了材料的结晶性;
2、本发明提供一种基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料,通过给受体单元的合理搭配(如式Ⅱ、Ⅲ、Ⅳ所示的具有不同给电子能力的给体单元的选择,以及在苯并二噻唑缺电子单元的R基上引入二维侧链噻吩基、苯基二维侧链等),调节聚合物的“推-拉”电子结构和分子内电荷转移能力,提高聚合物的吸收;
3、本发明提供一种基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料,4.通过侧链优化(涉及到受体单元R、噻吩上侧链R1以及给体单元侧链R2的筛选),可以与当前的高性能非富勒烯受体材料(如:IT-4F、Y6等)形成良好的吸收互补和能级匹配,提高光子捕获能力和激子解离效率,获得较高的光电转换效率;
4、本发明提供一种基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料的制备方法具有原材料简单易得、操作简单和生产成本低的特点。
附图说明
图1为本发明的基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料在氯仿溶液中的紫外-可见吸收光谱;
图2为本发明的基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料在薄膜状态下的紫外-可见吸收光谱。
图3为应用本发明的基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料所制备的聚合物有机太阳能电池的电流密度-电压(J-V)曲线图。
具体实施方式
以下通过具体实施例进一步对本发明进行说明。
实施例1
一种含噻吩π桥的基于苯并二噻唑缺电子单元的单体BBT-Br,合成路线如下:
Figure BDA0003082775640000061
化合物3的合成:将2,5-二氨基-1,4-苯二硫酚二盐酸盐(2.50g,10.2mmol)和邻二氯苯(20mL)加入到100mL的圆底烧瓶中,冰水浴冷却至0℃,氩气保护下,依次加入三甲基硅多磷酸盐(3.5mL,27.5mmol)和化合物3(5.44g,23.5mmol),滴加完毕,加热至150℃,反应24小时,冷却至室温,用二氯甲烷萃取,有机相用无水硫酸镁干燥,抽滤,用旋蒸除去二氯甲烷溶剂,粗产品用柱层析色谱分离提纯(硅胶,洗脱剂:石油醚/二氯甲烷=1/1,v/v),得无色浅黄色油状液体2.47g,产率46%。1H NMR(400MHz,CDCl3,δ/ppm):8.38(s,2H,ArH),3.07-3.05(d,J=6.8Hz,4H,CH2),2.01-1.95(m,2H,CH),1.37-1.25(m,32H,CH2),0.89-0.84(m,J=3.2Hz,12H,CH3).13C NMR(100MHz,CDCl3,δ/ppm):172.78,150.87,134.06,114.53,39.25,39.08,33.40,33.08,31.79,29.53,28.67,26.44,22.91,22.62,14.077.HRMScalcd.for:C32H52N2S2,528.3572;found[M+H]+:529.3623。
化合物4的合成:将化合物3(3.0g,5.68mmol)加入到100mL的圆底烧瓶中,加入无水二氯甲烷30mL,冰浴冷却至0℃,滴加含有1mL溴素的无水二氯甲烷20mL,滴加完毕,室温反应过夜,加入饱和亚硫酸钠除去过量的溴素,二氯甲烷萃取,无水硫酸镁干燥,抽滤,用旋蒸除去二氯甲烷溶剂,粗产品用柱层析色谱分离提纯(硅胶,洗脱剂:石油醚/二氯甲烷=7/3,v/v),得无色粘稠液体1.63g,产率42%。1H NMR(400MHz,CDCl3,δ/ppm):3.09-3.07(d,J=7.2Hz,4H,CH2),2.00-1.94(m,2H,CH),1.40-1.24(m,32H,CH2),0.89-0.83(t,J=2.8Hz,12H,CH3).13C-NMR(100MHz,CDCl3,δ/ppm):173.74,147.70,137.09,105.79,39.43,39.19,33.36,33.07,31.78,29.49,28.65,26.88,26.40,22.89,22.62,14.08,14.07.HRMScalcd.For:C32H50Br2N2S2,686.1762;found[M+H]+:687.1793;[M+Na]+:709.1568。
化合物6的合成:准确称取化合物4(1.5g,2.19mmol)和化合物5(2.46g,6.58mmol)于100mL的圆底烧瓶中,加入20mL脱气甲苯,氩气保护下,加入四(三苯基膦)钯,加热至110℃,避光反应8小时,冷却至室温,用旋蒸除去二氯甲烷溶剂,粗产品用柱层析色谱分离提纯(硅胶,洗脱剂:石油醚/二氯甲烷=3/2,v/v),得浅黄色固体1.40g,产率92%。1H-NMR(400MHz,CDCl3,δ/ppm):7.93-7.92(dd,J1=1.2Hz,J2=1.2Hz,2H,ArH),7.54-7.52(dd,J1=6.8Hz,J2=1.2Hz,2H,ArH),7.25-7.23(dd,J1=4Hz,J2=3.6Hz,ArH),3.13-3.11(d,J=3.6Hz,4H,CH2),2.09-2.03(m,2H,CH),1.43-1.28(m,32H,CH2),0.92-0.85(t,J=6.8Hz,12H,CH3).13C-NMR(100MHz,CDCl3,δ/ppm):171.41,147.88,139.33,133.80,128.33,127.54,126.71,121.30,38.89,38.75,33.51,33.23,31.91,29.64,28.86,26.60,23.03,22.70,14.16,14.12.HRMS calcd.for:C40H56N2S4,692.3326;found[M+H]+:693.3434;[M+Na]+:715.2731。
化合物BBT-Br的合成:将化合物6(1.2g,1.73mmol)于100mL三口瓶中,加入无水四氢呋喃,冰水浴冷却至0℃,避光下,分批加入N-溴代丁二酰亚胺(0.67g,3.81mmol),加完后,移至室温,避光反应12小时,加水猝灭反应,用饱和亚硫酸钠除去过量的溴,二氯甲烷萃取,无水硫酸镁干燥,抽滤,用旋蒸除去二氯甲烷溶剂,粗产品用柱层析色谱分离提纯(硅胶,洗脱剂:石油醚/三氯甲烷=3/1,v/v),得到黄色固体0.68g,产率90%。1H-NMR(400MHz,CDCl3,δ/ppm):7.64-7.63(dd,J1=0.8Hz,J2=0.8Hz,2H,ArH),7.18-7.17(dd,J1=J2=1.2Hz,ArH),3.14-3.13(d,J1=6.4Hz,4H,CH2),2.09-2.03(m,2H,CH),1.41-1.28(m,32H,CH2),0.93-0.85(t,J1=6.8Hz,12H,CH3).13C-NMR(100MHz,CDCl3,δ/ppm):171.40,147.56,140.64,132.23,129.32,127.90,120.63,116.07,38.89,38.53,33.48,33.21,31.93,29.65,28.89,26.61,23.04,22.71,14.20,14.13.HRMS calcd.for:C40H54Br2N2S4,850.1516;found[M+H]+:850.9168;[M+Na]+:872.9504.
实施例2
一种名为PBDTF-BBT的聚合物给体材料,合成路线如下:
Figure BDA0003082775640000091
聚合物PBDTF-BBT的合成:将BBT-Br(0.31g,0.36mmol)和BDTF-Sn(0.34g,0.36mmol)加入到25mL的两口瓶中,加入脱气的氯苯5.5mL,氩气保护下,快速加入三(二亚苄基丙酮)二钯(6.67mg,7.29μmol)和三(邻甲基苯基)膦(8.87mg,29.14μmol),抽换气3次,110℃反应6小时,冷却至室温,将反应液分散在装有300mL甲醇的烧杯中,抽滤,得到红色固体,分别用甲醇、正己烷、丙酮、二氯甲烷索氏提提取,除去催化剂和低分子量聚合物,再用氯仿索氏提取得到深红色残余固体,把残余固体置于含有200mL甲醇的烧杯中,搅拌30分钟,静置2小时,抽滤,得到黑色固体,真空干燥,得到0.20g,产率42%。
实施例3
一种名为PBDTCl-BBT的聚合物给体材料,合成路线如下:
Figure BDA0003082775640000092
聚合物PBDTCl-BBT的合成:将BBT-Br(0.28g,0.33mmol)和BDTCl-Sn(0.3206g,0.3290mmol)加入到25mL的两口瓶中,加入脱气的氯苯5.5mL,氩气保护下,快速加入三(二亚苄基丙酮)二钯(6.03mg,6.58μmol)和三(邻甲基苯基)膦(8.01mg,26.32μmol),抽换气3次,110℃反应6小时,冷却至室温,将反应体系分散在装有300mL甲醇的烧杯中,抽滤,得到红色固体,分别用甲醇、正己烷、丙酮、二氯甲烷索氏提提取,除去催化剂和低分子量聚合物,再用氯仿索氏提取得到深红色残余固体,把残余固体置于含有200mL甲醇的烧杯中,搅拌30分钟,静止2小时,抽滤,得到黑色固体,真空干燥,得到0.17g,产率38%。
实施例4
聚合物PBDTF-BBT以及PBDTCl-BBT给体材料的紫外可见-吸收光谱测试
图1和图2分别为PBDTF-BBT以及PBDTCl-BBT聚合物给体材料在氯仿和薄膜状态下的紫外-可见吸收光谱。
由图1和图2可知,PBDTF-BBT以及PBDTCl-BBT聚合物给体材料的吸收主要在400-600纳米范围;苯并噻二唑侧链上卤素原子(F、Cl)对材料的吸收影响较小,但是卤素原子可以提高结晶性,增加吸收。
实施例5
PBDTF-BBT以及PBDTCl-BBT聚合物给体材料的光伏性能测试
为了研究PBDTF-BBT以及PBDTCl-BBT聚合物给体材料的光伏性能,本发明选用非富勒烯小分子Y6为受体,分别与PBDTF-BBT以及PBDTCl-BBT以一定比例共混,采用氧化铟锡/聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸盐/PBDTF-BBT(或PBDTCl-BBT):Y6/PFN-Br/铝的正装结构的器件进行具体研究和分析。
基于PBDTF-BBT的光伏性能,如图3和表1所示:开路电压为0.84V,短路电流密度为24.50mA cm-2,填充因子为63.87%,因而其光电转换效率为13.14%。
基于DTZ-PDI的光伏性能,如图3和表1所示:开路电压为0.85V,短路电流密度为25.86mA cm-2,填充因子为67.40%,因而其光电转换效率为14.86%。
表1是PBDTF-BBT以及PBDTCl-BBT聚合物给体材料的光伏性能数据
Figure BDA0003082775640000111
以上内容仅仅是对本发明结构所作的举例和说明,所属本领域的技术人员不经创造性劳动即对所描述的具体实施例做的修改或补充或采用类似的方式替代仍属本专利的保护范围。

Claims (9)

1.一种基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料,其特征在于,所述宽带隙聚合物给体材料的结构通式如式I所示:
Figure FDA0003082775630000011
其中,R为一维侧链或二维侧链;R1为氢原子、C1-C20直链烷基或C1-C20支链烷基;Ar为给电子结构单元;其中,一维侧链为C1-C20直链烷基、C1-C20支链烷基、羰基或酯基,二维侧链为烷基取代的噻吩基、烷氧基取代的噻吩基、烷硫基取代的噻吩基、烷基取代的苯基、烷氧基取代的苯基或烷硫基取代的苯基。
2.如权利要求1所述的基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料,其特征在于,所述Ar的结构通式如式Ⅱ、Ⅲ或Ⅳ所示:
Figure FDA0003082775630000012
其中,R2为一维侧链或二维侧链;其中,一维侧链为C1-C20直链烷基、C1-C20支链烷基、羰基或酯基,二维侧链为烷基取代的噻吩基、烷氧基取代的噻吩基、烷硫基取代的噻吩基、烷基取代的苯基、烷氧基取代的苯基或烷硫基取代的苯基。
3.如权利要求1所述的基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料,其特征在于,所述宽带隙聚合物给体材料的结构通式Ⅰ中n的范围为1-100。
4.权利要求1-3任一项所述的基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料的制备方法,其特征在于,包括以下步骤:
Figure FDA0003082775630000021
将M1、M2和溶剂加入反应容器中,于惰性气体保护下加入催化剂和配体,95℃~120℃反应至聚合结束,冷却至室温,对反应产物进行分离纯化,制得宽带隙聚合物给体材料。
5.如权利要求4所述的基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料的制备方法,其特征在于,所述M1、M2、催化剂和配体的摩尔比为1:1~3:0.01~0.04:0.02~0.12。
6.如权利要求5所述的基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料的制备方法,其特征在于,所述催化剂为钯催化剂,所述配体为膦配体。
7.如权利要求4所述的基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料的制备方法,其特征在于,所述反应温度为110℃。
8.如权利要求4所述的基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料的制备方法,其特征在于,反应时间为5~18小时。
9.权利要求1-4任一项所述的基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料在有机太阳能电池中应用。
CN202110571621.5A 2021-05-11 2021-05-25 基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料及其制备方法和应用 Expired - Fee Related CN113248693B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110509807 2021-05-11
CN2021105098078 2021-05-11

Publications (2)

Publication Number Publication Date
CN113248693A true CN113248693A (zh) 2021-08-13
CN113248693B CN113248693B (zh) 2022-07-22

Family

ID=77184273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110571621.5A Expired - Fee Related CN113248693B (zh) 2021-05-11 2021-05-25 基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113248693B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070569A1 (zh) * 2021-10-29 2023-05-04 武汉工程大学 一类酯基噻唑类宽带隙聚合物及其在光电器件中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992787A (zh) * 2014-02-14 2016-10-05 东洋纺株式会社 有机半导体材料
CN108779128A (zh) * 2016-03-15 2018-11-09 默克专利有限公司 有机半导体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992787A (zh) * 2014-02-14 2016-10-05 东洋纺株式会社 有机半导体材料
US20170069845A1 (en) * 2014-02-14 2017-03-09 Toyobo Co., Ltd. Organic semiconductor material
CN108779128A (zh) * 2016-03-15 2018-11-09 默克专利有限公司 有机半导体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GARY CONBOY ETAL.: "Novel 4,8-benzobisthiazole copolymers and their field-effect transistor and photovoltaic applications", 《 JOURNAL OF MATERIALS CHEMISTRY C》 *
SHUGUANG WEN ETAL.: "High-efficiency organic solar cells enabled by", 《JOURNAL OF MATERIALS CHEMISTRY C》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070569A1 (zh) * 2021-10-29 2023-05-04 武汉工程大学 一类酯基噻唑类宽带隙聚合物及其在光电器件中的应用

Also Published As

Publication number Publication date
CN113248693B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN112225882B (zh) 一类含非稠环受体单元的n-型聚合物及其制备方法与应用
CN109627428B (zh) 一种d-a型共轭聚合物及其制备方法和应用及热电材料
Liu et al. A new highly conjugated crossed benzodithiophene and its donor–acceptor copolymers for high open circuit voltages polymer solar cells
CN110483555B (zh) 一类基于吡嗪吲哚末端受体的D(π-A)2型小分子给体材料及制备方法和应用
CN110041508B (zh) 一种星型共轭结构聚合物及其制备方法和应用
CN113248693B (zh) 基于苯并二噻唑缺电子单元的宽带隙聚合物给体材料及其制备方法和应用
CN112280008B (zh) 一种桥联不对称的苯并二唑类和/或吡啶二唑类双受体的聚合物半导体及其制备方法与应用
Liu et al. Solution processable low bandgap small molecule donors with naphthalene end-groups for organic solar cells
CN114479019B (zh) 一种三嗪类聚合物材料及其制备方法和在光电器件中的应用
Wu et al. Synthesis and photovoltaic properties of an alternating polymer based fluorene and fluorine substituted quinoxaline derivatives
CN111171287A (zh) 一种二噻并苯并二噻吩类聚合物、其制备方法与应用
CN112592464B (zh) 一种二维共轭2-氯苯基芴类共聚物光伏材料、制备方法和应用
KR101828012B1 (ko) 유기 태양전지용 공액 고분자 및 이의 제조방법
Wen et al. Incorporating a vertical BDT unit in conjugated polymers for drastically improving the open-circuit voltage of polymer solar cells
KR102267252B1 (ko) 고성능 에너지변환 유기반도체 고분자, 이의 제조방법 및 이를 포함하는 유기반도체소자
US11114619B2 (en) Conjugated polymer for a photoactive layer, a coating composition including the conjugated polymer, and an organic solar cell including the photoactive layer
CN112574396B (zh) 一种2-氟苯基芴与吡咯并吡咯二酮共聚物光伏材料、制备方法和应用
CN111040134B (zh) 一种基于并芴稠环与氟代异靛蓝共聚的共轭聚合物
CN113801115B (zh) 一种稠环酰亚胺空穴传输材料及其制备方法和钙钛矿太阳能电池应用
CN111675802B (zh) 一种基于单氟喹喔啉-呋喃为缺电单元的宽带隙共轭聚合物及应用
CN114874418B (zh) 基于三氟甲基取代喹喔啉的共轭聚合物及其制备方法和应用
CN117343055B (zh) 一种苯并噻二唑类有机小分子受体材料及其制备方法和应用、有机太阳能电池
CN114478569B (zh) 一种基于噻吩[3,2-b]吡咯的多元稠环类共轭小分子及其制备方法和应用
KR101969523B1 (ko) 유기태양전지용 공액 고분자 및 이를 포함하는 유기태양전지
CN109161004B (zh) 基于吡咯并二吲哚的共聚物及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220722

CF01 Termination of patent right due to non-payment of annual fee