CN113215132B - DNase I突变体、其编码核苷酸序列及其应用 - Google Patents

DNase I突变体、其编码核苷酸序列及其应用 Download PDF

Info

Publication number
CN113215132B
CN113215132B CN202110452014.7A CN202110452014A CN113215132B CN 113215132 B CN113215132 B CN 113215132B CN 202110452014 A CN202110452014 A CN 202110452014A CN 113215132 B CN113215132 B CN 113215132B
Authority
CN
China
Prior art keywords
dnase
mutant
ser
product
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110452014.7A
Other languages
English (en)
Other versions
CN113215132A (zh
Inventor
秦雪梅
柴常升
曹振
宋东亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yeasen Biological Technology Shanghai Co ltd
Original Assignee
Yeasen Biological Technology Shanghai Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yeasen Biological Technology Shanghai Co ltd filed Critical Yeasen Biological Technology Shanghai Co ltd
Priority to CN202110452014.7A priority Critical patent/CN113215132B/zh
Publication of CN113215132A publication Critical patent/CN113215132A/zh
Application granted granted Critical
Publication of CN113215132B publication Critical patent/CN113215132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/11Exodeoxyribonucleases producing 5'-phosphomonoesters (3.1.11)
    • C12Y301/11001Exodeoxyribonuclease I (3.1.11.1)
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明通过对野生型DNase I相关位点进行突变,筛选得到了3个效果良好的突变体,其中两个为双位点突变,突变位点分别是A249T、R42H和A249T、F110V,1个为3位点突变,突变位点为A249T、R42H、F110V,其中3位点突变的DNase I突变体效果最佳,其氨基酸序列如SEQ ID No.1所示,编码核苷酸序列如SEQ ID No.2所示。并公开了其在高通量测序文库构建中的应用。本发明的DNase I突变体可高效稳定打断基因组DNA,其片段化产物可应用于高通量测序文库构建,相比野生型DNase I,建库测序质量更优异,GC偏好性更低。可实现低成本,高效率建库,且测序质量优异。

Description

DNase I突变体、其编码核苷酸序列及其应用
技术领域
本发明专利涉及DNase I突变体、其编码核苷酸序列及其应用,属于生物技术领域。
背景技术
DNase I,即Deoxyribonuclease I,中文名称为脱氧核糖核酸酶I,是一种可以消化单链或双链DNA产生单脱氧核苷酸或单链或双链的寡脱氧核苷酸的核酸内切酶。DNase I活性依赖于钙离子,并能被镁离子或二价锰离子激活。镁离子存在条件下,DNase I可随机剪切双链DNA的任意位点;二价锰离子存在条件下,DNase I可在同一位点剪切DNA双链,形成平末端,或1-2个核苷酸突出的粘末端。利用该特性,可对基因组DNA进行随机打断,打断产物可应用于高通量测序文库制备。该方法操作简便,耗时短,成本低,摆脱了大型设备的依赖性,同时可实现一体化高通量操作,可有效的减少人力成本,提高建库效率。
现阶段相关文献及相关测试显示,DNase I应用于高通量测序文库制备虽然简单易行,但仍然存在部分弊端,即微量样本打断效果不够稳定,损失相对较大;酶切位点存在一定的偏好性,测序质量有待提升。
近几年,高通量测序技术正处于飞速发展的阶段,各种生物科学领域的研究或者临床检测领域都涉及到测序文库的构建及高通量测序服务,市场需求日益增长,同时对效率、成本、质量都提出了非常高的标准。基于市场提出的高标准,高要求,现急需开发一款稳定高效的基因组DNA打断酶。
发明内容
本发明通过对野生型DNase I相关位点进行突变,筛选得到了3个效果良好的突变体,其中两个为双位点突变,突变位点分别是A249T、R42H和A249T、F110V,1个为3位点突变,突变位点为A249T、R42H、F110V,其中3位点突变的DNase I突变体效果最佳,其氨基酸序列如SEQ ID No.1所示,编码核苷酸序列如SEQ ID No.2所示,本发明对上述三个突变体性能进行详述。
其中野生型DNase I氨基酸序列如SEQ ID No.3所示。
本发明的DNase I突变体可用于高通量测序文库构建。
DNase I突变体用于高通量测序文库的步骤包括:
(1)基因组打断:在样本中加入上述的DNase I突变体,进行基因组打断;
(2)打断产物纯化:打断产物用磁珠纯化;
(3)末端修复加A:片段化产物使用试剂盒进行末端修复加A;
(4)接头连接:上一步产物用试剂盒的连接模块进行接头连接;
(5)接头连接产物纯化:接头连接产物采用磁珠纯化;
(6)文库扩增和分析。
优选的,步骤(1)中打断反应过程为:在样本中加入10×Fragment buffer 5μL,DNase I突变体0.6-1.6μL,补水至50 μL,将其置于PCR仪中进行打断,酶切温度30℃,失活温度80℃。
本发明的有益效果:
1、本发明的DNase I突变体可高效稳定打断基因组DNA,其片段化产物可应用于高通量测序文库构建,相比野生型DNase I,建库测序质量更优异,GC偏好性更低。可实现低成本,高效率建库,且测序质量优异;
2、本发明操作简便,步骤简单,建库效率高;
3、本发明可实现一体化操作流程,适用于自动化平台;
4、本发明可同时对多样本进行打断处理,实现高通量建库;
5、本发明对样本损耗小,可实现微量样本打断。
附图说明
图1为实施例1的琼脂糖凝胶电泳图。
图2为实施例2的检测结果图。
图3为实施例3的检测结果图。
图4为实施例4的检测结果图。
图5为实施例5的检测结果图。
图6为突变体7蜡状芽孢杆菌GC Bias图。
图7为突变体7大肠杆菌GC Bias图。
图8为突变体7嗜盐杆菌GC Bias图。
图9为野生型蜡状芽孢杆菌GC Bias图。
图10为野生型大肠杆菌GC Bias图。
图11为野生型嗜盐杆菌GC Bias图。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
本发明通过对野生型DNase I相关位点进行突变,筛选得到了7个突变体,具体信息如下表,其中3位点突变的DNase I突变体效果最佳,突变位点为A249T,R42H,F110V。
突变体标号 1 2 3 4 5 6 7
突变位点数 单位点 单位点 单位点 双位点 双位点 双位点 三位点
突变位点信息 A249T R42H F110V A249T,R42H R42H,F110V A249T, F110V A249T,R42H,F110V
酶切性能改善情况 轻微 轻微 轻微 较明显 轻微 较明显 显著
实施例1对突变体7的不同酶量测试
1、基因组打断
本实例中取500 ng小牛胸腺gDNA(Yeasen,Cat#60612ES03)作为片段化模板,加入10×Fragment buffer 5 μL,DNase I突变体加入量分别是0.1、0.2、0.6、0.8、1μL,补水至50 μL。将其置于PCR仪中,进行打断反应,设置酶切温度30℃,失活温度80℃。
PCR程序
温度 时间
4℃ 1 min
30℃ 15 min
80℃ 10 min
2、打断结果检测
反应程序结束之后取15 μL进行琼脂糖凝胶电泳检测。打断结果见附图1。
3、打断结果分析
1)酶量增加,打断片段逐渐减小
2)酶量0.6 μL可将基因组打断至主带300bp左右。
实施例2 对突变体7的不同DNA投入量打断测试
1、基因组打断
本实例中分别取50、500、1000 ng小牛胸腺gDNA作为片段化模板,加入10×Fragment buffer 5 μL,突变体加入酶量0.6μL,补水至50 μL。将其置于PCR仪中,进行打断,设置酶切温度30℃,失活温度80℃。
PCR程序
温度 时间
4℃ 1 min
30℃ 15 min
80℃ 10 min
2、打断产物纯化
实例中打断产物通过Hieff NGSTM DNA Selection Beads磁珠(Yeaen,Cat#12601),按试剂说明以1.5×的磁珠比例纯化回收,即可得到打断产物。
3、打断结果2100检测
打断后的纯化产物使用2100高灵敏试剂(Agilent,Cat#5067-4626)进行检测,检测结果见附图2。
4、打断结果分析
在相同酶切条件下,该突变体可将不同投入量的基因组DNA打断至相同大小。
实施例3 对突变体7的不同打断时间测试
1、基因组打断
本实例中取500 ng小牛胸腺gDNA作为片段化模板,加入10×Fragment buffer 5μL,突变体7加入酶量分别是0.6μL,补水至50 μL,制备5组,酶切时间分别设置10、15、20、25、30 min。将其置于PCR仪中,进行打断,核酸酶切温度30℃,失活温度80℃。
PCR程序
温度 时间
4℃ 1 min
30℃ 10/15/20/25/30 min
80℃ 10 min
2、打断结果检测
实例中打断产物通过Hieff NGSTM DNA Selection Beads磁珠,按试剂说明以1.5×的磁珠比例纯化回收,即可得到打断产物。
3、打断结果2100检测
打断后的纯化产物使用2100高灵敏试剂进行检测,检测结果见附图3。
4、打断结果分析
酶切时间增加,打断片段逐渐减小。
实施例4 对突变体7的不同GC含量微生物模板打断测试
1、基因组打断
本实例中分别取50 ng蜡状芽孢杆菌(35%)(购自广东省微生物菌种保藏中心)、大肠杆菌(50%)(Yeasen,Cat#11802)、嗜盐杆菌(65%)(购自中国工业微生物菌种保藏管理中心)gDNA作为片段化模板,加入10×Fragment buffer 5 μL,每个样本中突变体加入酶量分别是0.6μL,补水至50 μL。将其置于PCR仪中,进行打断,酶切温度30℃,失活温度80℃。
PCR程序
温度 时间
4℃ 1 min
30℃ 25 min
80℃ 10 min
2、打断结果检测
实例中打断产物通过Hieff NGSTM DNA Selection Beads磁珠,按试剂说明以1.5×的磁珠比例纯化回收,即可得到打断产物。
3、打断结果2100检测
打断后的纯化产物使用2100高灵敏试剂进行检测,检测结果见附图 4。
4、打断结果分析
相同酶切条件下,三种不同GC含量微生物模板打断片段大小一致。
实施例5 对突变体1-7的不同DNA投入量文库构建测试
1、基因组打断
本实例中分别取500 pg、50 ng、500 ng小牛胸腺gDNA作为模板,加入10×Fragment buffer 5 μL,突变体1-7以及野生型DNase I加入最适酶量分别是1.5μL、1.2μL、1.6μL、1μL、1.2μL、1.2μL、0.6μL、1μL,补水至50 μL。将其置于PCR仪中,进行打断,酶切温度30℃,失活温度80℃。打断产物通过Hieff NGSTM DNA Selection Beads(Cat#12601)磁珠,按试剂说明以1.5×的磁珠比例纯化回收,即可得到纯化的打断产物。
PCR程序
温度 时间
4℃ 1 min
30℃ 15 min
80℃ 10 min
2、末端修复加A
实例中片段化产物使用Hieff NGS® Fast-Pace End Repair/dA-Tailing Module(Cat#12608)进行末端修复加A步骤,操作方法参照说明书进行。
3、接头连接
实例中末端修复加A产物使用Hieff NGS® UltimaTM DNA Ligation Module(Cat#12604)连接模块进行接头连接步骤,操作方法参照说明书进行。
4、接头连接产物纯化
接头连接产物使用Hieff NGSTM DNA Selection Beads(Cat#12601)磁珠,按试剂说明以0.6×的磁珠比例纯化回收,21 μL ddH2O洗脱,回收20 μL。
5、文库扩增
接头连接纯化产物使用2×Super Canace® ⅡHigh-Fidelity Mix for LibraryAmplification(Cat#12621)扩增试剂进行扩增,按说明书扩增程序进行扩增,500 pg扩增14 cycles,50 ng 7cycles, 500 ng 4cycles。
6、扩增产物纯化
扩增产物使用Hieff NGSTM DNA Selection Beads磁珠,按试剂说明以0.9×的磁珠比例纯化回收,32 μL ddH2O洗脱,回收30 μL。
7、Qubit浓度检测
使用1×dsDNA HS Assay Kit for Qubit®(Cat#12642)对文库产物进行浓度检测,检测结果见下表
8、突变体7文库产物进行琼脂糖凝胶电泳检测,结果如图5所示。
9、建库结果分析
500 pg-500 ng基因组DNA模板使用突变体1-7均可正常建库,不同突变体,文库产出差异较明显,突变体1,2,3,5相对于野生型建库,500pg产量有提升,提升1.5-2倍左右,50ng,500ng提升不显著;突变体4,6相对于野生型建库,500pg-500ng产量均有提升,提升1.5-2倍;突变体7相对相对于野生型建库,500pg-500ng产量均有显著提升,提升2-3倍左右,且文库分布正常,产量可观,性能最佳。
实施例6 对突变体7的三种不同GC含量微生物模板高通量建库测序
1、文库构建
本实例中分别取50 ng蜡状芽孢杆菌、大肠杆菌、嗜盐杆菌 gDNA作为片段化模板,加入10×Fragment buffer 5 μL,突变体加入酶量分别是0.6μL,补水至50 μL。将其置于PCR仪中,进行打断,酶切温度30℃,打断时间15min,失活温度80℃,10 min。参照实例5的建库流程进行建库。同时使用野生型DNase I进行建库,建库流程一致。文库产物进行Illumina平台高通量测序,测序模式PE150。
2、测序数据
1)测序质量
2)GC偏好性(GC bias)
蜡状芽孢杆菌、大肠杆菌、嗜盐杆菌gDNA作为片段化模板分别用DNase I突变体建库的GC偏好性结果分别如图6、图7、图8所示。
蜡状芽孢杆菌、大肠杆菌、嗜盐杆菌gDNA作为片段化模板分别用DNase I野生型建库的GC偏好性结果分别如图9、图10、图11所示。
3、结果分析
1)该DNase I突变体7打断三种不同GC微生物模板,建库测序质量优异,GC偏好性低,均显著优于DNase I。
2)该DNase I突变体7打断三种不同GC微生物模板,建库测序质量优异,Duplication低,优于DNase I野生型。
3)该DNase I突变体7,可高效稳定打断基因组DNA,其片段化产物应用于高通量测序文库构建,可实现低成本,高效率建库,且测序质量优异。
序列表
<110> 翌圣生物科技(上海)有限公司
<120> DNase I突变体、其编码核苷酸序列及其应用
<141> 2021-03-15
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 261
<212> PRT
<213> Artificial Sequence
<400> 1
Met Leu Lys Ile Ala Ala Phe Asn Ile Arg Thr Phe Gly Glu Thr Lys
1 5 10 15
Met Ser Asn Ala Thr Leu Ala Ser Tyr Ile Val Arg Ile Val Arg Arg
20 25 30
Tyr Asp Ile Val Leu Ile Gln Glu Val His Asp Ser His Leu Val Ala
35 40 45
Val Gly Lys Leu Leu Asp Tyr Leu Asn Gln Asp Asp Pro Asn Thr Tyr
50 55 60
His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn Ser Tyr Lys Glu Arg
65 70 75 80
Tyr Leu Phe Leu Phe Arg Pro Asn Lys Val Ser Val Leu Asp Thr Tyr
85 90 95
Gln Tyr Asp Asp Gly Cys Glu Ser Cys Gly Asn Asp Ser Val Ser Arg
100 105 110
Glu Pro Ala Val Val Lys Phe Ser Ser His Ser Thr Lys Val Lys Glu
115 120 125
Phe Ala Ile Val Ala Leu His Ser Ala Pro Ser Asp Ala Val Ala Glu
130 135 140
Ile Asn Ser Leu Tyr Asp Val Tyr Leu Asp Val Gln Gln Lys Trp His
145 150 155 160
Leu Asn Asp Val Met Leu Met Gly Asp Phe Asn Ala Asp Cys Ser Tyr
165 170 175
Val Thr Ser Ser Gln Trp Ser Ser Ile Arg Leu Arg Thr Ser Ser Thr
180 185 190
Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr Thr Ala Thr Ser Thr
195 200 205
Asn Cys Ala Tyr Asp Arg Ile Val Val Ala Gly Ser Leu Leu Gln Ser
210 215 220
Ser Val Val Pro Gly Ser Ala Ala Pro Phe Asp Phe Gln Ala Ala Tyr
225 230 235 240
Gly Leu Ser Asn Glu Met Ala Leu Thr Ile Ser Asp His Tyr Pro Val
245 250 255
Glu Val Thr Leu Thr
260
<210> 2
<211> 786
<212> DNA
<213> Artificial Sequence
<400> 2
atgctgaaaa ttgccgcatt caatattcgt acctttggcg aaaccaaaat gagtaatgca 60
accctggcca gctatattgt gcgtattgtt cgccgctatg atattgttct gattcaggaa 120
gtgcatgata gtcatctggt ggcagttggt aaactgctgg attatctgaa tcaggatgat 180
ccgaatacct atcattatgt ggtgagtgaa ccgctgggtc gcaatagcta taaagaacgt 240
tatctgtttc tgtttcgccc gaataaggtg agtgtgctgg atacctatca gtatgatgat 300
ggttgcgaaa gttgtggtaa tgatagcgtt agtcgcgaac cggccgttgt taaattttct 360
agccatagca ccaaagtgaa agaatttgca attgttgccc tgcatagcgc cccgagtgat 420
gcagtggcag aaattaatag tctgtatgat gtttacctgg atgttcagca gaaatggcat 480
ctgaatgatg tgatgctgat gggcgatttt aatgccgatt gcagttatgt taccagcagt 540
cagtggagta gtattcgcct gcgtaccagc agtacctttc agtggctgat tccggatagt 600
gccgatacca ccgcaaccag taccaattgt gcctatgatc gtattgtggt tgccggtagt 660
ctgctgcaga gcagcgttgt tccgggtagc gccgcaccgt ttgattttca ggcagcctat 720
ggtctgagta atgaaatggc cctgaccatt agcgatcatt atccggttga agtgaccctg 780
acctaa 786
<210> 3
<211> 261
<212> PRT
<213> Artificial Sequence
<400> 3
Met Leu Lys Ile Ala Ala Phe Asn Ile Arg Thr Phe Gly Glu Thr Lys
1 5 10 15
Met Ser Asn Ala Thr Leu Ala Ser Tyr Ile Val Arg Ile Val Arg Arg
20 25 30
Tyr Asp Ile Val Leu Ile Gln Glu Val Arg Asp Ser His Leu Val Ala
35 40 45
Val Gly Lys Leu Leu Asp Tyr Leu Asn Gln Asp Asp Pro Asn Thr Tyr
50 55 60
His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn Ser Tyr Lys Glu Arg
65 70 75 80
Tyr Leu Phe Leu Phe Arg Pro Asn Lys Val Ser Val Leu Asp Thr Tyr
85 90 95
Gln Tyr Asp Asp Gly Cys Glu Ser Cys Gly Asn Asp Ser Phe Ser Arg
100 105 110
Glu Pro Ala Val Val Lys Phe Ser Ser His Ser Thr Lys Val Lys Glu
115 120 125
Phe Ala Ile Val Ala Leu His Ser Ala Pro Ser Asp Ala Val Ala Glu
130 135 140
Ile Asn Ser Leu Tyr Asp Val Tyr Leu Asp Val Gln Gln Lys Trp His
145 150 155 160
Leu Asn Asp Val Met Leu Met Gly Asp Phe Asn Ala Asp Cys Ser Tyr
165 170 175
Val Thr Ser Ser Gln Trp Ser Ser Ile Arg Leu Arg Thr Ser Ser Thr
180 185 190
Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr Thr Ala Thr Ser Thr
195 200 205
Asn Cys Ala Tyr Asp Arg Ile Val Val Ala Gly Ser Leu Leu Gln Ser
210 215 220
Ser Val Val Pro Gly Ser Ala Ala Pro Phe Asp Phe Gln Ala Ala Tyr
225 230 235 240
Gly Leu Ser Asn Glu Met Ala Leu Ala Ile Ser Asp His Tyr Pro Val
245 250 255
Glu Val Thr Leu Thr
260

Claims (6)

1.一种DNase I突变体,其特征在于:该突变体是在野生型DNase I酶的基础上,进行A249T和R42H的双位点突变,或者进行A249T和F110V的双位点突变,或者进行A249T、R42H和F110V的三位点突变后所得,其中所述野生型DNase I酶的氨基酸序列如SEQ ID No.3所示。
2.根据权利要求1所述的DNase I突变体,其特征在于:所述突变体的氨基酸序列如SEQID No.1所示。
3.编码权利要求2所述的DNase I突变体的DNA,其特征在于:所述DNA的序列如SEQ IDNo.2所示。
4.权利要求1或2所述的DNase I突变体在高通量测序文库构建中的应用。
5.根据权利要求4所述的应用,其特征在于其步骤包括:
(1)基因组打断:在样本中加入权利要求1或2所述的DNase I突变体,进行基因组打断;
(2)打断产物纯化:打断产物用磁珠纯化;
(3)末端修复加A:片段化产物使用试剂盒进行末端修复加A;
(4)接头连接:上一步产物用试剂盒的连接模块进行接头连接;
(5)接头连接产物纯化:接头连接产物采用磁珠纯化;
(6)文库扩增和分析。
6.根据权利要求5所述的应用,其特征在于:步骤(1)中打断反应过程为:在样本中加入10×Fragment buffer 5μL,DNase I突变体0.6-1.6μL,补水至50 μL,将其置于PCR仪中进行打断,酶切温度30℃,失活温度80℃。
CN202110452014.7A 2021-04-26 2021-04-26 DNase I突变体、其编码核苷酸序列及其应用 Active CN113215132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110452014.7A CN113215132B (zh) 2021-04-26 2021-04-26 DNase I突变体、其编码核苷酸序列及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110452014.7A CN113215132B (zh) 2021-04-26 2021-04-26 DNase I突变体、其编码核苷酸序列及其应用

Publications (2)

Publication Number Publication Date
CN113215132A CN113215132A (zh) 2021-08-06
CN113215132B true CN113215132B (zh) 2023-09-22

Family

ID=77089064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110452014.7A Active CN113215132B (zh) 2021-04-26 2021-04-26 DNase I突变体、其编码核苷酸序列及其应用

Country Status (1)

Country Link
CN (1) CN113215132B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480346B (zh) * 2022-02-18 2023-07-21 嘉兴维亚生物科技有限公司 一种dna水解酶及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1366042A (zh) * 2001-01-19 2002-08-28 北京华大基因研究中心 一种制备重组脱氧核糖核酸酶i的方法
JP2009060900A (ja) * 2008-09-04 2009-03-26 Genentech Inc ヒトdnアーゼi変異体
CN109415708A (zh) * 2016-07-13 2019-03-01 宝洁公司 食物芽孢杆菌脱氧核糖核酸酶变体及其用途
WO2021058022A1 (en) * 2019-09-29 2021-04-01 Novozymes A/S Use of cellulase for improvement of sustainability of detergents

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1366042A (zh) * 2001-01-19 2002-08-28 北京华大基因研究中心 一种制备重组脱氧核糖核酸酶i的方法
JP2009060900A (ja) * 2008-09-04 2009-03-26 Genentech Inc ヒトdnアーゼi変異体
CN109415708A (zh) * 2016-07-13 2019-03-01 宝洁公司 食物芽孢杆菌脱氧核糖核酸酶变体及其用途
WO2021058022A1 (en) * 2019-09-29 2021-04-01 Novozymes A/S Use of cellulase for improvement of sustainability of detergents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AAA72974.1;Worrall,A.F.等;《GenBank》;全文 *

Also Published As

Publication number Publication date
CN113215132A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN111139532B (zh) 一种dna和rna同时构建测序文库的方法及试剂盒
CN108138364B (zh) 一种核酸单链环状文库的构建方法和试剂
EP1546345B1 (en) Genome partitioning
CN105986015B (zh) 一种基于高通量测序的多样本的一个或多个靶序列的检测方法和试剂盒
JP7460539B2 (ja) 核酸を結合、修飾、および切断する物質の基質選択性および部位のためのin vitroでの高感度アッセイ
TW201321518A (zh) 微量核酸樣本的庫製備方法及其應用
CN113444770B (zh) 一种单细胞转录组测序文库的构建方法及其应用
WO2022021279A1 (zh) 多种核酸共标记支持物及其制作方法与应用
CA2578564A1 (en) Method of error reduction in nucleic acid populations
JP2012510810A (ja) アダプター連結制限断片における反復配列を減少させる方法
CN112251821A (zh) 一种快速高效的构建二代测序文库的试剂盒
CN113215132B (zh) DNase I突变体、其编码核苷酸序列及其应用
WO2023098492A1 (zh) 测序文库构建方法及应用
CN112941635A (zh) 一种提高文库转化率的二代测序建库试剂盒及其方法
WO2018113799A1 (zh) 构建简化基因组文库的方法及试剂盒
CN116043337A (zh) Dna甲基化标志物筛查试剂盒及方法
CN111647644B (zh) 一种基于新冠病毒特异性逆转录引物的建库方法及运用
WO2018121634A1 (zh) 用于dna片段的非特异性复制的方法及试剂盒
CN114807084B (zh) 突变型Tn5转座酶及试剂盒
CN109852668A (zh) 一种简化基因组测序文库及其建库方法
CN113943779A (zh) 一种高cg含量dna序列的富集方法及其应用
CN108265047B (zh) 用于dna片段的非特异性复制的方法及试剂盒
US20180251813A1 (en) Nucleic acid fragmentation method and sequence combination
CA2962254C (en) Composition and method for processing dna
CN111876472A (zh) 多种混合核酸中检测痕量核酸的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant