CN113185305A - 一种高温隔热高熵氧化物及其制备方法 - Google Patents

一种高温隔热高熵氧化物及其制备方法 Download PDF

Info

Publication number
CN113185305A
CN113185305A CN202110249377.0A CN202110249377A CN113185305A CN 113185305 A CN113185305 A CN 113185305A CN 202110249377 A CN202110249377 A CN 202110249377A CN 113185305 A CN113185305 A CN 113185305A
Authority
CN
China
Prior art keywords
entropy oxide
temperature heat
precursor
powder
nitrate hexahydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110249377.0A
Other languages
English (en)
Other versions
CN113185305B (zh
Inventor
刘玉付
文钰斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110249377.0A priority Critical patent/CN113185305B/zh
Publication of CN113185305A publication Critical patent/CN113185305A/zh
Application granted granted Critical
Publication of CN113185305B publication Critical patent/CN113185305B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种高温隔热高熵氧化物及其制备方法,该高温隔热高熵氧化物结构为立方萤石相,化学式为Hf(0.15‑0.3)Zr(0.15‑0.3)Ce(0.15‑0.3)Y(0.05‑0.3)Al(0.05‑0.3)O2‑δ,该氧化物的制备方法包括以下步骤:(1)制备前驱体溶胶;(2)将前驱体溶胶烘干、研磨,得到前驱体凝胶粉;(3)将前驱体凝胶粉在900℃~1600℃保温1h~124h,制备出高温隔热高熵氧化物Hf(0.15‑0.3)Zr(0.15‑0.3)Ce(0.15‑0.3)Y(0.05‑0.3)Al(0.05‑0.3)O2‑δ粉体;该高熵氧化物具有稳定的Al‑O键,材料的高温稳定性好,采用溶胶凝胶法制备出的粉体均匀性较高,比表面积较高,制备的Hf(0.15‑0.3)Zr(0.15‑0.3)Ce(0.15‑0.3)Y(0.05‑0.3)Al(0.05‑0.3)O2‑δ粉体高温稳定性好,能够作为优异的高温隔热涂层。

Description

一种高温隔热高熵氧化物及其制备方法
技术领域
本发明涉及一种高熵氧化物及其制备方法,更具体地,涉及一种高温隔热高熵氧化物及其制备方法。
背景技术
热障涂层广泛应用于重型燃气轮机及航空发动机等的热端部件,现有热障涂层材料多为氧化钇稳定氧化锆(掺杂YSZ)、稀土掺杂锆酸盐和磷酸盐等。随着重型燃气轮机和航空发动机的不断发展,其热端部件面临日益苛刻的服役环境,对热障涂层材料的热导率、高温热稳定性和热机械性能等提出了更高要求。高熵陶瓷材料具有更低的热导率,因此引起了众多的关注,文献From high-entropy ceramics to compositionally-complexceramics:A case study of fluorite oxides和High-entropy fluorite oxides记载了利用氧化物获得一系列萤石型结构的高熵陶瓷粉末。然而,现有萤石型高熵陶瓷氧化物广泛采用稀有元素,材料的长期高温稳定性未见报导。
发明内容
发明目的:本发明的目的是提供一种含铝高温热稳定性好、相稳定性好、隔热性能好的高温隔热高熵氧化物,本发明的另一目的是提供该高熵氧化物的制备方法。
技术方案:本发明所述的高温隔热高熵氧化物,氧化物化学式为Hf(0.15-0.3)Zr(0.15-0.3)Ce(0.15-0.3)Y(0.05-0.3)Al(0.05-0.3)O2-δ,晶体结构为单一立方萤石相,组成元素均匀分布。
本发明所述的高温隔热高熵氧化物的制备方法,包括以下步骤:
(1)制备前驱体:先将酒精与四氯化铪、八水氧氯化锆、六水硝酸铈、六水硝酸钇和铝源混合并搅拌均匀,加入有机酸抑制金属盐水解,再加入适量较大粘度的有机物防止聚沉,搅拌加热至澄清,形成溶胶前驱体溶胶;
(2)将前驱体溶胶烘干、研磨,得到前驱体凝胶粉;
(3)将前驱体凝胶粉在900℃~1600℃保温1h~124h,制备出高温隔热高熵氧化物Hf(0.15-0.3)Zr(0.15-0.3)Ce(0.15-0.3)Y(0.05-0.3)Al(0.05-0.3)O2-δ粉体。
其中,步骤(1)中四氯化铪、八水氧氯化锆、六水硝酸铈、六水硝酸钇和铝源摩尔比为0.15~0.3:0.15~0.3:0.15~0.3:0.05~0.3:0.05~0.3;铝源为为六水氯化铝、无水氯化铝、九水硝酸铝或乙酰丙酮铝;酒精、金属盐总质量、有机酸和聚乙二醇的质量比为2~16:1:0.5~5:0.2~3;有机酸为柠檬酸、氨基磺酸、羟基乙酸或乙二胺四乙酸;有机物为聚乙二醇、甲基纤维素、聚乙烯吡络烷酮、树脂。
合成原理:采用无水乙醇为溶剂,同时加入了少量含水或不含水的有机酸如柠檬酸,使整个溶液呈现酸性,有效抑制了金属盐中Ce4+、Zr4+、Hf4+、Y3+、Al3+离子的水解,使金属阳离子能够在溶液中稳定存在;再加入有机物如聚乙二醇提高溶液粘度,使金属离子与柠檬酸络合后均匀分布、不易发生聚沉;通过不断加热搅拌浓缩,形成了稳定、均一、透明的溶胶;将溶胶缓慢烘干形成凝胶粉末,在此过程中,原料金属盐中阴离子((NO3)-,Cl-)裂解或挥发排出,溶液粘度逐渐增大,金属阳离子均匀分布,不存在偏析,仍均匀分布;凝胶粉活性高,通过控制凝胶粉末的热处理温度及时间、可有效控制颗粒尺寸。
有益效果:本发明与现有技术相比,其显著优点是:1、高熵氧化物内具有稳定的Al-O键,更有利于含铝金属表面;2、采用溶胶凝胶法制备出的粉体均匀性较高,比表面积较高,元素均匀分布;3、制备操作简单、分散性好;4、粉末的高温稳定性好,可用于高温长时间应用;5、应用于含铝金属表面更具有优势。
附图说明
图1是实施例1中的高熵氧化物的XRD图;
图2是实施例2中的高熵氧化物的扫描电镜图;
图3是实施例3中的高熵氧化物的扫描电镜图;
图4是实施例3中的高熵氧化物的EDS mapping图;
图5是实施例4中的高熵氧化物的扫描电镜图。
具体实施方式
实施例1
(1)将60g酒精和金属盐:0.96g四氯化铪、0.97g八水氧氯化锆、1.30g六水硝酸铈、1.15g六水硝酸钇和0.72g六水氯化铝搅拌混合均匀,,再加入10g一水柠檬酸和5g聚乙二醇,在70℃搅拌均匀至澄清,得到溶胶前驱体;
(2)将溶胶前驱体放入烘箱中180℃干燥12h并研磨;
(3)将研磨后的溶胶前驱体置于马弗炉中,在1500℃下保温1h,得到(Hf0.2Zr0.2Ce0.2Y0.2Al0.2)O2-δ粉体,其XRD结果如图1所示,可以看出氧化物为单一萤石型结构,空间群为Fm-3m。
实施例2
(1)将60g酒精和金属盐:0.96g四氯化铪、0.97g八水氧氯化锆、1.30g六水硝酸铈、1.15g六水硝酸钇和0.72g六水氯化铝搅拌混合均匀,再加入15g一水柠檬酸和5g聚乙二醇,在70℃搅拌均匀至澄清,得到溶胶前驱体;
(2)将溶胶前驱体放入烘箱中150℃干燥24h并研磨;
(3)将研磨后的溶胶前驱体置于马弗炉中,在900℃下保温1h,得到(Hf0.2Zr0.2Ce0.2Y0.2Al0.2)O2-δ粉体,其形貌如图2所示,可以看出粉末颗粒尺寸在20-40nm之间,分散性较好。
实施例3
(1)将60g酒精和金属盐:0.96g四氯化铪、0.97g八水氧氯化锆、1.30g六水硝酸铈、1.15g六水硝酸钇和0.72g六水氯化铝搅拌混合均匀,再加入15g一水柠檬酸和5g聚乙二醇,在70℃搅拌均匀至澄清,得到溶胶前驱体;
(2)将溶胶前驱体放入烘箱中150℃干燥24h并研磨;
(3)将研磨后的溶胶前驱体置于马弗炉中,在1500℃下保温4h,得到(Hf0.2Zr0.2Ce0.2Y0.2Al0.2)O2-δ粉体,其形貌如图3,可以看出粉末颗粒尺寸在1-4μm之间,分散性较好,元素面分布如图4所示,可以看出元素均匀分布。
实施例4
(1)将60g酒精和金属盐:0.96g四氯化铪、0.97g八水氧氯化锆、1.30g六水硝酸铈、1.15g六水硝酸钇和0.72g六水氯化铝搅拌混合均匀,再加入15g一水柠檬酸和5g聚乙二醇,在70℃搅拌均匀至澄清,得到溶胶前驱体;
(2)将溶胶前驱体放入烘箱中150℃干燥24h并研磨;
(3)将研磨后的溶胶前驱体置于马弗炉中,在1500℃下保温124h,得到(Hf0.2Zr0.2Ce0.2Y0.2Al0.2)O2-δ粉体,其形貌如图5所示,可以看出,粉末颗粒在经过124h的热处理后,颗粒尺寸仍在在1-4μm之间,颗粒长大不明显,具有优秀的抗烧结性。
实施例5
(1)将80g酒精和金属盐:0.64g四氯化铪、0.64g八水氧氯化锆、0.87g六水硝酸铈、1.15g六水硝酸钇和0.24g六水氯化铝搅拌混合均匀,,再加入20g一水柠檬酸和10g聚乙二醇,在80℃搅拌均匀至澄清,得到溶胶前驱体;
(2)将溶胶前驱体放入烘箱中240℃干燥12h并研磨;
(3)将研磨后的溶胶前驱体置于马弗炉中,在1500℃下保温4h,得到(Hf0.2Zr0.2Ce0.2Y0.3Al0.1)O2-δ粉体。
实施例6
(1)将80g酒精金属盐:0.80g四氯化铪、0.81g八水氧氯化锆、1.09g六水硝酸铈、0.48g六水硝酸钇和0.30g六水氯化铝搅拌混合均匀,再加入20g一水柠檬酸和10g聚乙二醇,在80℃搅拌均匀至澄清,得到溶胶前驱体;
(2)将溶胶前驱体放入烘箱中90℃干燥24h并研磨;
(3)将研磨后的溶胶前驱体置于马弗炉中,在1500℃下保温4h,得到(Hf0.25Zr0.25Ce0.25Y0.125Al0.125)O2-δ粉体。
实施例7
(1)将80g酒精金属盐:0.80g四氯化铪、0.81g八水氧氯化锆、1.09g六水硝酸铈、0.67g六水硝酸钇和0.18g六水氯化铝搅拌混合均匀,再加入20g一水柠檬酸和10g聚乙二醇,在80℃搅拌均匀至澄清,得到溶胶前驱体;
(2)将溶胶前驱体放入烘箱中90℃干燥24h并研磨;
(3)将研磨后的溶胶前驱体置于马弗炉中,在1500℃下保温4h,得到(Hf0.25Zr0.25Ce0.25Y0.175Al0.075)O2-δ粉体。
实施例8
(1)将80g酒精金属盐:0.91g四氯化铪、0.92g八水氧氯化锆、1.23g六水硝酸铈、0.28g六水硝酸钇和0.18g六水氯化铝搅拌混合均匀,再加入20g一水柠檬酸和10g聚乙二醇,在80℃搅拌均匀至澄清,得到溶胶前驱体;
(2)将溶胶前驱体放入烘箱中90℃干燥24h并研磨;
(3)将研磨后的溶胶前驱体置于马弗炉中,在1500℃下保温4h,得到(Hf0.284Zr0.28 4Ce0.284Y0.074Al0.074)O2-δ粉体。
实施例9
(1)将80g酒精金属盐:0.81g四氯化铪、0.92g八水氧氯化锆、1.23g六水硝酸铈、0.38g六水硝酸钇和0.12g六水氯化铝搅拌混合均匀,再加入20g一水柠檬酸和10g聚乙二醇,在80℃搅拌均匀至澄清,得到溶胶前驱体;
(2)将溶胶前驱体放入烘箱中90℃干燥24h并研磨;
(3)将研磨后的溶胶前驱体置于马弗炉中,在1500℃下保温4h,得到(Hf0.284Zr0.28 4Ce0.284Y0.01Al0.005)O2-δ粉体。
上述实施例的基础上还可以进行其他形式的变化或者变动,这里不对所有的实施例进行列举,凡是属于本发明的技术方案所以发的技术方案的显而易见的变化仍在本发明的保护范围。
对比例1
(1)将80g酒精金属盐:0.64g四氯化铪、0.64g八水氧氯化锆、0.87g六水硝酸铈、0.19g六水硝酸钇和0.84g六水氯化铝搅拌混合均匀,再加入20g一水柠檬酸和10g聚乙二醇,在80℃搅拌均匀至澄清,得到溶胶前驱体;
(2)将溶胶前驱体放入烘箱中90℃干燥24h并研磨;
(3)将研磨后的溶胶前驱体置于马弗炉中,在1500℃下保温4h。
热处理后,晶相不再是单相缺陷萤石型,不能得到(Hf0.2Zr0.2Ce0.2Y0.05Al0.35)O2-δ粉体。

Claims (7)

1.一种高温隔热高熵氧化物,其特征在于,所述氧化物化学式为Hf(0.15-0.3)Zr(0.15-0.3)Ce(0.15-0.3)Y(0.05-0.3)Al(0.05-0.3)O2-δ,晶体结构为单一立方萤石相,组成元素均匀分布。
2.一种权利要求1所述的高温隔热高熵氧化物的制备方法,其特征在于,包括以下步骤:
(1)制备前驱体:先将酒精与四氯化铪、八水氧氯化锆、六水硝酸铈、六水硝酸钇和铝源混合并搅拌均匀,加入有机酸抑制金属盐水解,再加入适量较大粘度的有机物防止聚沉,搅拌加热至澄清,形成溶胶前驱体溶胶;
(2)将前驱体溶胶烘干、研磨,得到前驱体凝胶粉;
(3)将前驱体凝胶粉在900℃~1600℃保温1h~124h,制备出高温隔热高熵氧化物Hf(0.15-0.3)Zr(0.15-0.3)Ce(0.15-0.3)Y(0.05-0.3)Al(0.05-0.3)O2-δ粉体。
3.根据权利要求2所述的高温隔热高熵氧化物的制备方法,其特征在于,所述步骤(1)中四氯化铪、八水氧氯化锆、六水硝酸铈、六水硝酸钇和铝源摩尔比为0.15~0.3:0.15~0.3:0.15~0.3:0.05~0.3:0.05~0.3。
4.根据权利要求2或3所述的高温隔热高熵氧化物的制备方法,其特征在于,所述步骤(1)中铝源为六水氯化铝、无水氯化铝、九水硝酸铝或乙酰丙酮铝。
5.根据权利要求2所述的高温隔热高熵氧化物的制备方法,其特征在于,所述步骤(1)中酒精、金属盐总质量、有机酸和聚乙二醇的质量比为2~16:1:0.5~5:0.2~3。
6.根据权利要求2所述的高温隔热高熵氧化物的制备方法,其特征在于,所述步骤(1)中有机酸为柠檬酸、氨基磺酸、羟基乙酸或乙二胺四乙酸。
7.根据权利要求2所述的高温隔热高熵氧化物的制备方法,其特征在于,所述步骤(1)中有机物为聚乙二醇、甲基纤维素、聚乙烯吡络烷酮、树脂。
CN202110249377.0A 2021-03-08 2021-03-08 一种高温隔热高熵氧化物及其制备方法 Active CN113185305B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110249377.0A CN113185305B (zh) 2021-03-08 2021-03-08 一种高温隔热高熵氧化物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110249377.0A CN113185305B (zh) 2021-03-08 2021-03-08 一种高温隔热高熵氧化物及其制备方法

Publications (2)

Publication Number Publication Date
CN113185305A true CN113185305A (zh) 2021-07-30
CN113185305B CN113185305B (zh) 2022-08-26

Family

ID=76973021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110249377.0A Active CN113185305B (zh) 2021-03-08 2021-03-08 一种高温隔热高熵氧化物及其制备方法

Country Status (1)

Country Link
CN (1) CN113185305B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405420A (zh) * 2022-01-26 2022-04-29 西安建筑科技大学 一种纳米高熵氧化物气凝胶及其制备方法
CN114618503A (zh) * 2022-03-23 2022-06-14 中国科学院赣江创新研究院 一种高熵氧化物储氧材料及其制备方法和应用
CN115872725A (zh) * 2022-12-08 2023-03-31 中国科学院合肥物质科学研究院 一种Al-Y-Cr-Fe-Zr-Nb-Ti-Ta-O高熵复合氧化物阻氢涂层

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108529689A (zh) * 2018-03-22 2018-09-14 武汉理工大学 一种(CoCrCuNiAl)O熵稳定氧化物及其低温制备方法
CN108946787A (zh) * 2018-07-23 2018-12-07 安徽工业大学 一种稀土基萤石型高熵氧化物粉体材料的制备方法
CN109987935A (zh) * 2019-03-20 2019-07-09 太原理工大学 具有萤石型结构的(ZrHfCeTiZn)O2-δ高熵氧化物陶瓷粉体及块体制备方法
CN111763087A (zh) * 2020-06-29 2020-10-13 西安交通大学 一系列立方萤石型高熵铈氧化物纳米粉体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108529689A (zh) * 2018-03-22 2018-09-14 武汉理工大学 一种(CoCrCuNiAl)O熵稳定氧化物及其低温制备方法
CN108946787A (zh) * 2018-07-23 2018-12-07 安徽工业大学 一种稀土基萤石型高熵氧化物粉体材料的制备方法
CN109987935A (zh) * 2019-03-20 2019-07-09 太原理工大学 具有萤石型结构的(ZrHfCeTiZn)O2-δ高熵氧化物陶瓷粉体及块体制备方法
CN111763087A (zh) * 2020-06-29 2020-10-13 西安交通大学 一系列立方萤石型高熵铈氧化物纳米粉体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOSHUA GILD等: "High-entropy fluorite oxides", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
张丰年等: "高熵陶瓷(Zr1/7Hf1/7Ce1/7Y2/7La2/7)O2-δ的制备及烧结行为", 《无机材料学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405420A (zh) * 2022-01-26 2022-04-29 西安建筑科技大学 一种纳米高熵氧化物气凝胶及其制备方法
CN114405420B (zh) * 2022-01-26 2023-04-21 西安建筑科技大学 一种纳米高熵氧化物气凝胶及其制备方法
CN114618503A (zh) * 2022-03-23 2022-06-14 中国科学院赣江创新研究院 一种高熵氧化物储氧材料及其制备方法和应用
CN115872725A (zh) * 2022-12-08 2023-03-31 中国科学院合肥物质科学研究院 一种Al-Y-Cr-Fe-Zr-Nb-Ti-Ta-O高熵复合氧化物阻氢涂层
CN115872725B (zh) * 2022-12-08 2023-07-25 中国科学院合肥物质科学研究院 一种Al-Y-Cr-Fe-Zr-Nb-Ti-Ta-O高熵复合氧化物阻氢涂层

Also Published As

Publication number Publication date
CN113185305B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
CN113185305B (zh) 一种高温隔热高熵氧化物及其制备方法
Zhang et al. Sol− gel fabrication and electrical property of nanocrystalline (RE2O3) 0.08 (ZrO2) 0.92 (RE= Sc, Y) thin films
CN112919908B (zh) 一种新型钙钛矿结构高熵陶瓷及其制备方法
CN104891990B (zh) 共晶结构热障涂层材料及其可用于热喷涂的粉粒制造方法
CN102659403A (zh) 一种耐高温热障涂层陶瓷材料及其制备方法
CN101407336A (zh) 锆酸镧粉体制备方法
CN115124339B (zh) 多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用
CN103408292A (zh) 一种氧化铝-氧化锆陶瓷纤维的制备方法
CN103304234A (zh) 一种抗高温烧结热障涂层用复合陶瓷粉末材料的制备方法
Loghman-Estarki et al. Large scale synthesis of non-transformable tetragonal Sc2O3, Y2O3 doped ZrO2 nanopowders via the citric acid based gel method to obtain plasma sprayed coating
CN102531580A (zh) 一种利用铝硅复合氧化物包覆纳米钛酸锶钡介质储能材料及其制备方法
CN102557626A (zh) 一种稀土改性氧化锆热障涂层用蜂窝状结构球形粉末材料的制备方法
CN111099907B (zh) 一种表面改性氧化锆纤维复合稀土锆酸镧的高性能陶瓷及其制备方法
CN103469144B (zh) 一种高气孔率且具有等轴晶结构的热障涂层
CN114956818A (zh) 一种低热导率高熵铈酸盐陶瓷材料及其制备方法
CN114478005A (zh) 一种四方相热障涂层材料及其制备方法
CN111099909B (zh) 一种表面改性多晶莫来石纤维复合稀土锆酸镧的高性能陶瓷及其制备方法
CN102153892B (zh) (La,Gd)2Zr2O7-(Zr,Gd)O2-δ复相热障涂层材料及其制备方法
CN103864423B (zh) 一种微波介质陶瓷材料的制备方法
CN105130415B (zh) Ln1‑xSrxMg1‑yMnyAl11‑zTizO19纳米陶瓷热障涂层材料及其制备方法
CN115418596B (zh) 一种共晶增韧抗烧结氧化铝/稀土掺杂氧化锆超高温热障涂层喷涂材料、制备方法及其应用
CN103011818A (zh) 非平衡四方相氧化钇掺杂氧化锆纳米结构热障涂层的制备方法
CN116903368A (zh) 一种多元共掺杂钇铝石榴石热障涂层材料及其制备方法
CN115073172B (zh) 一种陶瓷靶材及其制备方法和应用
CN106518046B (zh) 一种采用共离子络合的方法制备镁基六铝酸镧粉体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant