CN113121214A - 一种石墨尾矿基微波介质陶瓷材料及其制备方法 - Google Patents

一种石墨尾矿基微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113121214A
CN113121214A CN202110436475.5A CN202110436475A CN113121214A CN 113121214 A CN113121214 A CN 113121214A CN 202110436475 A CN202110436475 A CN 202110436475A CN 113121214 A CN113121214 A CN 113121214A
Authority
CN
China
Prior art keywords
powder
ceramic material
microwave dielectric
dielectric ceramic
graphite tailing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110436475.5A
Other languages
English (en)
Other versions
CN113121214B (zh
Inventor
王哲飞
潘卫
于阳辉
赖玮
程飞飞
胡明卫
代小元
张明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Sinoma Non Metal Mine Industrial Design And Research Institute Co ltd
Original Assignee
Suzhou Sinoma Non Metal Mine Industrial Design And Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Sinoma Non Metal Mine Industrial Design And Research Institute Co ltd filed Critical Suzhou Sinoma Non Metal Mine Industrial Design And Research Institute Co ltd
Priority to CN202110436475.5A priority Critical patent/CN113121214B/zh
Publication of CN113121214A publication Critical patent/CN113121214A/zh
Application granted granted Critical
Publication of CN113121214B publication Critical patent/CN113121214B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种石墨尾矿基微波介质陶瓷材料,由以下质量比组分原料烧结制成:45~50%石墨尾矿粉末,18~20%Al2O3粉末,10~18%BaCO3粉末,12~20%SrCO3粉末,2~5%TiO2粉末。本发明还公开了石墨尾矿基微波介质陶瓷材料的制备方法,将石墨尾矿粉体进行预处理;混合BaCO3、SrCO3、Al2O3粉末与石墨尾矿粉末并干法滚磨混合粉体;将滚磨后的粉体煅烧;煅烧后粉体与TiO2粉末混合并湿法球磨;烘干后粉体进行造粒成型,烧结获得陶瓷材料。本发明制备的石墨尾矿基微波介质陶瓷材料不但为石墨尾矿的利用提出新的途径,同时也为5G移动通信用微波介质陶瓷材料提供可行的解决方案。

Description

一种石墨尾矿基微波介质陶瓷材料及其制备方法
技术领域
本发明涉及陶瓷材料技术领域,具体涉及一种石墨尾矿基微波介质陶瓷材料及其制备方法。
背景技术
矿产资源具备不可再生和不可代替的特性,是人类赖以生存的重要资源。每年世界各国产出的矿产资源高达100亿吨,需要处理的尾矿量约50亿吨。在中国,现存的尾矿库有1500余座,堆积尾矿总量50多亿吨,尾矿存放占用耕地面积2.6万平方千米,同时每年至少有50亿吨的尾矿排出。尾矿的主流处理方式是建立庞大的尾矿库进行堆存,这样的方式不但浪费大量耕地,还会污染周边环境,影响人类的安居乐业。近年来,随着我国经济的快速发展,每年矿产资源的开采量不断增长,考虑矿物资源的稀缺性以及开采过程引起的环境问题,必须要高效、合理的利用矿产资源,同时做到保护环境。
第5代移动通信技术(5G)作为面向2020年后新一代移动通信的发展方向,以低延迟、高可靠、低功耗的优势在移动互联网的发展中“独领风骚”,世界各国把抢占5G通信技术的至高点作为国家发展的重要战略,不管是在关键元器件、上游材料制备还是在网络部署等方面都开始积极布局,抢先发展先机。我国是5G通信技术发展较快的国家,在整个产业的部分领域已经走在世界前沿,并处于领跑位置。我国政府高度重视5G通信产业发展的战略地位,支持5G产业创新和发展。因此,5G通信技术用的电子陶瓷材料需求巨大,市场前景不可估量。
鉴于5G通信用微波介质陶瓷材料不可估量的前景和效益,以及石墨尾矿需尽早加以合理利用的现状,以石墨尾矿作为主要原料制备可应用于5G通信的低介电常数微波介质陶瓷材料的研究不但可以为石墨尾矿的利用提出新的途径,同时也为5G移动通信用微波介质陶瓷材料提供可行的解决方案,目前尚无相关或者相类似的研究报道。
发明内容
针对上述现有技术的缺陷,本发明提供了一种石墨尾矿基微波介质陶瓷材料,不但为石墨尾矿的利用提出新的途径,同时也为5G移动通信用微波介质陶瓷材料提供可行的解决方案。本发明还提供了一种石墨尾矿基微波介质陶瓷材料的制备方法。
本发明技术方案如下:一种石墨尾矿基微波介质陶瓷材料,由以下质量比的组分原料烧结制成:45~50%石墨尾矿粉末,18~20%Al2O3粉末,10~18%BaCO3粉末,12~20%SrCO3粉末和2~5%TiO2粉末,所述石墨尾矿基微波介质陶瓷材料的主物相是钡长石相。
可选地,所述石墨尾矿基微波介质陶瓷材料的介电常数为6.5~7.4,品质因数为28617~37265GHz,谐振频率温度系数为-5~5ppm/℃。
可选地,所述石墨尾矿粉末原料为石墨尾矿精选产生的细颗粒状尾矿,粒径范围在45~75μm,化学成分包括SiO2、Al2O3、CaO、K2O、MgO、Fe2O3、Na2O和TiO2
可选地,所述原料Al2O3粉末、BaCO3粉末、SrCO3粉末和TiO2粉末均为分析纯。
一种石墨尾矿基微波介质陶瓷材料的制备方法,包括以下步骤:
步骤S1、将石墨尾矿原料进行预处理,获得石墨尾矿粉末;
步骤S2、将BaCO3粉末、SrCO3粉末、Al2O3粉末与所述步骤S1中预处理后的石墨尾矿粉末按比例混合,并干法滚磨混合粉体;
步骤S3、取出所述步骤S2滚磨后的混合粉体,将粉体置于马弗炉中煅烧;
步骤S4、将所述步骤S3中煅烧后的粉体取出后,再按比例与TiO2粉末混合,并湿法球磨混合粉体;
步骤S5、将所述步骤S4获得的混合物烘干并造粒压制成坯料,将坯料进行烧结得到陶瓷材料。
可选地,所述步骤S1的预处理过程为:
首先将石墨尾矿破碎成粒度为3~10mm的颗粒,然后进一步细磨,使其粒径小于200μm,再通过机械筛分的方法获得粒度45~75μm的尾矿粉末,最后在120℃温度下脱水4h。
可选地,所述步骤S2的具体步骤是:
先采用手工研磨的方式混合BaCO3粉末、SrCO3粉末和Al2O3粉末,再与所述S1步骤预处理后的石墨尾矿粉末进行混合,干法滚磨4~6h,转速为150~200r/min。
可选地,所述步骤S3中的具体步骤是:
取出所述步骤S2滚磨后的混合粉体,将粉体置于马弗炉中进行900~1000℃热处理,保温1~2h,保温结束后随炉冷却。
可选地,所述步骤S4的具体步骤是:
首先采用超声分散机将TiO2粉末分散于无水乙醇中,TiO2粉末与乙醇的质量比为1:2,分散时间为5min,然后与步骤S3煅烧后的混合粉体混合,湿法球磨8~12h,转速为300~350r/min。
可选地,所述步骤S5中的具体步骤是:
将所述步骤S4获得的混合物先烘干,再向其中添加粘结剂进行造粒,所述粘结剂的添加质量为烘干后的混合物质量的2.5~5%,造粒后压制成坯料,将坯料在1200~1300℃温度下烧结4~6h,烧结结束后以1~2℃/min的降温速率冷却至750-800℃,然后随炉冷却;
所述粘结剂由聚乙烯醇、甘油、羧甲基纤维素和水构成,各组分所占质量比为:聚乙烯醇10%、甘油5%、羧甲基纤维素5%和水80%。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
(1)根据石墨尾矿的化学成分,引入适量Al2O3、BaCO3形成钡长石相,使得材料具备优良的微波介电特性,SrCO3和TiO2的少量掺杂分别改善了材料的介质损耗和谐振频率温度系数;
(2)配方中石墨尾矿的占比接近百分之五十,大幅降低了原料成本,适合于石墨尾矿的大宗应用;
(3)相比于传统的行星式球磨工艺和聚乙烯醇水溶液粘结剂,本申请通过多种球磨方式并用、预先超声分散、自制粉末粘结剂等措施改善了原料粉体的粒度和混合均匀性,使得最终烧结的陶瓷颗粒均匀分布,紧密堆积,气孔率低,具备优异的微波介电性能。
附图说明
图1为石墨尾矿粉末原料的XRD图谱。
图2为本发明实施例1所制备的石墨尾矿基微波介质陶瓷材料的XRD图谱。
图3为本发明实施例1所制备的石墨尾矿基微波介质陶瓷材料的SEM图像;
图4为本发明对比例1所制备的微波介质陶瓷材料的SEM图。
具体实施方式
结合附图及实施例对本发明作进一步描述:
图1为石墨尾矿粉末原料的XRD图谱。参见图1,石墨尾矿粉末原料中的化学成分包括SiO2、Al2O3、CaO、K2O、MgO、Fe2O3、Na2O和TiO2等。
本申请各实施例中采用的粘结剂由聚乙烯醇、甘油、羧甲基纤维素和水构成,各组分所占质量比为:聚乙烯醇10%、甘油5%、羧甲基纤维素5%和水80%。
实施例1
S1:首先将石墨尾矿破碎成粒度为3~10mm的颗粒,然后进一步细磨,使其粒径小于200μm,再通过机械筛分的方法获得粒度45~75μm的尾矿粉体,最后在烘箱中120℃温度下脱水4h;
S2:称取预处理后的石墨尾矿粉末30g、分析纯Al2O3粉末10.8g、分析纯BaCO3粉末6g和分析纯SrCO3粉末12g,用研钵进行手工研磨30min,然后干法滚磨4h,转速为150r/min;
S3:取出滚磨后的混合粉末并置于马弗炉内进行900℃热处理,保温1h,保温结束后随炉冷却;
S4:首先采用超声分散机将1.2g TiO2粉末分散于2.4g无水乙醇中形成浆料,分散时间为5min,然后将煅烧后的混合粉体倒入浆料中,湿法球磨8h,转速为300r/min;
S5:将S4获得的混合物先烘干,干燥后的粉末中加入占粉末2.5wt%的粘结剂进行造粒,然后装入金属模具中冷压成型,将成型的块体置于高温炉中1200℃烧结4h,烧结结束后以1℃/min的降温速率冷却至750℃,然后随炉冷却。
经测,实施例1制得石墨尾矿基微波介质陶瓷材料的微波介电性能如下:介电常数εr=6.5,品质因数Q×f=28617GHz,谐振频率温度系数τf=-5ppm/℃。
实施例2
S1:首先将石墨尾矿破碎成粒度为3~10mm的颗粒,然后进一步细磨,使其粒径小于200μm,再通过机械筛分的方法获得粒度45~75μm的尾矿粉体,最后在烘箱中120℃温度下脱水4h;
S2:称取预处理后的石墨尾矿粉末28.8g、分析纯Al2O3粉末11.4g、分析纯BaCO3粉末7.2g和分析纯SrCO3粉末10.8g,用研钵进行手工研磨30min,然后干法滚磨6h,转速为200r/min;
S3:取出滚磨后的混合粉末并置于马弗炉内进行1000℃热处理,保温2h,保温结束后随炉冷却;
S4:首先采用超声分散机将1.8g TiO2粉末分散于3.6g无水乙醇中形成浆料,分散时间为5min,然后将煅烧后的混合粉体倒入浆料中,湿法球磨12h,转速为350r/min;
S5:将S4获得的混合物先烘干,干燥后的粉末中加入占粉末5wt%的粘结剂进行造粒,然后装入金属模具中冷压成型,将成型的块体置于高温炉中1300℃烧结6h,烧结结束后以2℃/min的降温速率冷却至800℃,然后随炉冷却。
经测,实施例2制得石墨尾矿基微波介质陶瓷材料的微波介电性能:介电常数εr=7.4,品质因数Q×f=37265GHz,谐振频率温度系数τf=1ppm/℃。
实施例3
S1:首先将石墨尾矿破碎成粒度为3~10mm的颗粒,然后进一步细磨,使其粒径小于200μm,再通过机械筛分的方法获得粒度45~75μm的尾矿粉体,最后在烘箱中120℃温度下脱水4h;
S2:称取预处理后的石墨尾矿粉末27.6g、分析纯Al2O3粉末12g、分析纯BaCO3粉末9g和分析纯SrCO3粉末9g,用研钵进行手工研磨30min,然后干法滚磨6h,转速为150r/min;
S3:取出滚磨后的混合粉末并置于马弗炉内进行950℃热处理,保温1.5h,保温结束后随炉冷却;
S4:首先采用超声分散机将2.4g TiO2粉末分散于4.8g无水乙醇中形成浆料,分散时间为5min,然后将煅烧后的混合粉体倒入浆料中,湿法球磨10h,转速为300r/min;
S5:将S4获得的混合物先烘干,干燥后的粉末中加入占粉末3wt%的粘结剂进行造粒,然后装入金属模具中冷压成型,将成型的块体置于高温炉中1250℃烧结5h,烧结结束后以1.5℃/min的降温速率冷却至775℃,然后随炉冷却。
经测,实施例3制得石墨尾矿基微波介质陶瓷材料的微波介电性能:介电常数εr=7.2,品质因数Q×f=34160GHz,谐振频率温度系数τf=5ppm/℃。
实施例4
S1:首先将石墨尾矿破碎成粒度为3~10mm的颗粒,然后进一步细磨,使其粒径小于200μm,再通过机械筛分的方法获得粒度45~75μm的尾矿粉体,最后在烘箱中120℃温度下脱水4h;
S2:称取预处理后的石墨尾矿粉末27g、分析纯Al2O3粉末12g、分析纯BaCO3粉末10.8g和分析纯SrCO3粉末7.2g,用研钵进行手工研磨30min,然后干法滚磨4h,转速为200r/min;
S3:取出滚磨后的混合粉末并置于马弗炉内进行950℃热处理,保温1.5h,保温结束后随炉冷却;
S4:首先采用超声分散机将3g TiO2粉末分散于6g无水乙醇中形成浆料,分散时间为5min,然后将煅烧后的混合粉体倒入浆料中,湿法球磨12h,转速为350r/min;
S5:将S4获得的混合物先烘干,干燥后的粉末中加入占粉末4wt%的粘结剂进行造粒,然后装入金属模具中冷压成型,将成型的块体置于高温炉中1300℃烧结4h,烧结结束后以2℃/min的降温速率冷却至750℃,然后随炉冷却。
经测,实施例4制得石墨尾矿基微波介质陶瓷材料的微波介电性能:介电常数εr=6.8,品质因数Q×f=29452GHz,谐振频率温度系数τf=-2ppm/℃。
对比例1
S1:首先将石墨尾矿破碎成粒度为3~10mm的颗粒,然后进一步细磨,使其粒径小于200μm,再通过机械筛分的方法获得粒度45~75μm的尾矿粉体,最后在烘箱中120℃温度下脱水4h;
S2:称取预处理后的石墨尾矿粉末30g、分析纯Al2O3粉末10.8g、分析纯BaCO3粉末6g和分析纯SrCO3粉末12g,加入球磨罐中湿法球磨8h,转速为300r/min;
S3:取出滚磨后的混合粉末并置于马弗炉内进行900℃热处理,保温1h,保温结束后随炉冷却;
S4:将S3获得的混合粉末与1.2g TiO2粉末加入球磨罐中,湿法球磨8h,转速为300r/min;
S5:将S4获得的混合物先烘干,干燥后的粉末中加入占粉末7wt%的聚乙烯醇水溶液进行造粒,然后装入金属模具中冷压成型,将成型的块体置于高温炉中1200℃烧结4h,然后随炉冷却。
经测,对比例1制得石墨尾矿基微波介质陶瓷材料的微波介电性能如下:介电常数εr=6.3,品质因数Q×f=16217GHz,谐振频率温度系数τf=-10ppm/℃。
由实施例1和对比例1可以看出,本申请实施例1所采用的制备方法所制备的微波介质陶瓷材料具有更优异的微波介电性能。并且,结合图3及图4可以看出,本申请实施例1所采用的制备方法所制备的微波介质陶瓷材料的陶瓷颗粒均匀分布,紧密堆积,气孔率低,而对比例1采用传统工艺制备的微波介质陶瓷材料颗粒分布不均,有较多气孔。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种石墨尾矿基微波介质陶瓷材料,其特征在于,由以下质量比的组分原料烧结制成:45~50%石墨尾矿粉末,18~20%Al2O3粉末,10~18%BaCO3粉末,12~20%SrCO3粉末和2~5%TiO2粉末,所述石墨尾矿基微波介质陶瓷材料的主物相是钡长石相。
2.根据权利要求1所述的石墨尾矿基微波介质陶瓷材料,其特征在于,所述石墨尾矿基微波介质陶瓷材料的介电常数为6.5~7.4,品质因数为28617~37265GHz,谐振频率温度系数为-5~5ppm/℃。
3.根据权利要求1所述的石墨尾矿基微波介质陶瓷材料,其特征在于,所述石墨尾矿粉末原料为石墨尾矿精选产生的细颗粒状尾矿,粒径范围在45~75μm,化学成分包括SiO2、Al2O3、CaO、K2O、MgO、Fe2O3、Na2O和TiO2
4.根据权利要求1所述的石墨尾矿基微波介质陶瓷材料,其特征在于,所述原料Al2O3粉末、BaCO3粉末、SrCO3粉末和TiO2粉末均为分析纯。
5.一种石墨尾矿基微波介质陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤S1、将石墨尾矿原料进行预处理,获得石墨尾矿粉末;
步骤S2、将BaCO3粉末、SrCO3粉末、Al2O3粉末与所述步骤S1中预处理后的石墨尾矿粉末按比例混合,并干法滚磨混合粉体;
步骤S3、取出所述步骤S2滚磨后的混合粉体,将粉体置于马弗炉中煅烧;
步骤S4、将所述步骤S3中煅烧后的粉体取出后,再按比例与TiO2粉末混合,并湿法球磨混合粉体;
步骤S5、将所述步骤S4获得的混合物烘干并造粒压制成坯料,将坯料进行烧结得到陶瓷材料。
6.根据权利要求5所述的石墨尾矿基微波介质陶瓷材料的制备方法,其特征在于,所述步骤S1的预处理过程为:
首先将石墨尾矿破碎成粒度为3~10mm的颗粒,然后进一步细磨,使其粒径小于200μm,再通过机械筛分的方法获得粒度45~75μm的尾矿粉末,最后在120℃温度下脱水4h。
7.根据权利要求5所述的石墨尾矿基微波介质陶瓷材料的制备方法,其特征在于,所述步骤S2的具体步骤是:
先采用手工研磨的方式混合BaCO3粉末、SrCO3粉末和Al2O3粉末,再与所述S1步骤预处理后的石墨尾矿粉末进行混合,干法滚磨4~6h,转速为150~200r/min。
8.根据权利要求5所述的石墨尾矿基微波介质陶瓷材料的制备方法,其特征在于,所述步骤S3中的具体步骤是:
取出所述步骤S2滚磨后的混合粉体,将粉体置于马弗炉中进行900~1000℃热处理,保温1~2h,保温结束后随炉冷却。
9.根据权利要求5所述的石墨尾矿基微波介质陶瓷材料的制备方法,其特征在于,所述步骤S4的具体步骤是:
首先采用超声分散机将TiO2粉末分散于无水乙醇中,TiO2粉末与乙醇的质量比为1:2,分散时间为5min,然后与步骤S3煅烧后的混合粉体混合,湿法球磨8~12h,转速为300~350r/min。
10.根据权利要求5所述的石墨尾矿基微波介质陶瓷材料的制备方法,其特征在于,所述步骤S5中的具体步骤是:
将所述步骤S4获得的混合物先烘干,再向其中添加粘结剂进行造粒,所述粘结剂的添加质量为烘干后的混合物质量的2.5~5%,造粒后压制成坯料,将坯料在1200~1300℃温度下烧结4~6h,烧结结束后以1~2℃/min的降温速率冷却至750-800℃,然后随炉冷却;
所述粘结剂由聚乙烯醇、甘油、羧甲基纤维素和水构成,各组分所占质量比为:聚乙烯醇10%、甘油5%、羧甲基纤维素5%和水80%。
CN202110436475.5A 2021-04-22 2021-04-22 一种石墨尾矿基微波介质陶瓷材料及其制备方法 Active CN113121214B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110436475.5A CN113121214B (zh) 2021-04-22 2021-04-22 一种石墨尾矿基微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110436475.5A CN113121214B (zh) 2021-04-22 2021-04-22 一种石墨尾矿基微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113121214A true CN113121214A (zh) 2021-07-16
CN113121214B CN113121214B (zh) 2022-12-30

Family

ID=76779128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110436475.5A Active CN113121214B (zh) 2021-04-22 2021-04-22 一种石墨尾矿基微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113121214B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925389A (zh) * 2022-12-13 2023-04-07 常熟理工学院 一种煤系高岭土矿质微波介质陶瓷材料及其制备方法
CN115959893A (zh) * 2022-11-02 2023-04-14 常熟理工学院 一种低成本非金属矿质微波介质陶瓷材料及其制备方法
WO2024114334A1 (zh) * 2022-11-29 2024-06-06 苏州中材非金属矿工业设计研究院有限公司 一种黑滑石矿质微波介质陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003697A (zh) * 2014-06-10 2014-08-27 中南大学 一种bsas复合陶瓷粉末的制备方法
CN109180151A (zh) * 2018-11-21 2019-01-11 苏州中材非金属矿工业设计研究院有限公司 一种利用石墨尾矿制备陶瓷原料的方法
CN109574651A (zh) * 2017-09-28 2019-04-05 天津大学 一种低损耗高稳定磷基微波介质陶瓷及其制备方法和应用
CN111635222A (zh) * 2020-06-24 2020-09-08 西华大学 一种基于单斜相的低介微波介质陶瓷材料及其制备方法
CN111925199A (zh) * 2020-07-03 2020-11-13 成都宏科电子科技有限公司 一种低温烧结微波介质陶瓷材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003697A (zh) * 2014-06-10 2014-08-27 中南大学 一种bsas复合陶瓷粉末的制备方法
CN109574651A (zh) * 2017-09-28 2019-04-05 天津大学 一种低损耗高稳定磷基微波介质陶瓷及其制备方法和应用
CN109180151A (zh) * 2018-11-21 2019-01-11 苏州中材非金属矿工业设计研究院有限公司 一种利用石墨尾矿制备陶瓷原料的方法
CN111635222A (zh) * 2020-06-24 2020-09-08 西华大学 一种基于单斜相的低介微波介质陶瓷材料及其制备方法
CN111925199A (zh) * 2020-07-03 2020-11-13 成都宏科电子科技有限公司 一种低温烧结微波介质陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
宋天秀等: "Ba1-xSrxAl2Si2O8系陶瓷晶体结构及微波介电性能", 《硅酸盐学报》 *
程飞飞等: "鹤岗某石墨尾矿用于陶瓷原料的可行性研究", 《非金属矿》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115959893A (zh) * 2022-11-02 2023-04-14 常熟理工学院 一种低成本非金属矿质微波介质陶瓷材料及其制备方法
CN115959893B (zh) * 2022-11-02 2023-10-24 常熟理工学院 一种低成本非金属矿质微波介质陶瓷材料及其制备方法
WO2024114334A1 (zh) * 2022-11-29 2024-06-06 苏州中材非金属矿工业设计研究院有限公司 一种黑滑石矿质微波介质陶瓷材料及其制备方法
CN115925389A (zh) * 2022-12-13 2023-04-07 常熟理工学院 一种煤系高岭土矿质微波介质陶瓷材料及其制备方法
CN115925389B (zh) * 2022-12-13 2023-09-22 常熟理工学院 一种煤系高岭土矿质微波介质陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN113121214B (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
CN113121214B (zh) 一种石墨尾矿基微波介质陶瓷材料及其制备方法
CN104310980B (zh) 一种微波介质陶瓷材料及其制备方法
CN103232235B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN107793128B (zh) 低膨胀陶瓷坯料及其制备方法和应用
CN106904960A (zh) 一种Mg2SiO4‑Li2TiO3复合体系LTCC材料及其制备方法
CN110981439A (zh) 一种微波陶瓷粉料及其制备方法和其在介质滤波器中的应用
CN115536377B (zh) 一种黑滑石矿质微波介质陶瓷材料及其制备方法
CN105000877A (zh) 一种高品质因数温度稳定型微波介质材料及其制备方法
CN109415265B (zh) 一种介质陶瓷材料及其制备方法
CN103613369A (zh) 一种硅酸盐低温共烧陶瓷基板材料及其制备方法
CN112851344A (zh) 一种中介电常数微波介质陶瓷及其制备方法
CN105347781B (zh) 一种陶瓷材料及其制备方法
CN109928753A (zh) 一种低介电常数硅基微波介质陶瓷材料及其制备方法
CN104944940A (zh) 一种温度稳定型钛酸镁基微波介质陶瓷及其制备方法
CN105000881A (zh) 一种铌酸盐中介电常数微波介质陶瓷材料及其制备方法
CN113336539A (zh) 微波介质陶瓷材料、制备方法及应用
CN108585809A (zh) 一种低温烧结SiO2基微波介质陶瓷材料及其制备方法
CN105060878A (zh) 低介电常数高品质因数微波介质陶瓷及其制备方法
Wu et al. Synthesis, characterization, and microwave dielectric properties of monoclinal structure ZnZrNb 2 O 8 ceramics through the aqueous sol–gel process
CN110668820A (zh) 一种高性能极细结构炭素石墨制品的制备方法
CN110683845A (zh) 一种极细结构炭素石墨制品的制备方法
CN111908897A (zh) MgO基微波陶瓷介质材料及其制备方法
CN106348756A (zh) 一种高q值锂镁铌系微波介质陶瓷
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN101817686A (zh) 一种掺杂改性的钛酸钡复合粒子及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant