CN113113290B - 一种碳化硅晶体制备方法 - Google Patents

一种碳化硅晶体制备方法 Download PDF

Info

Publication number
CN113113290B
CN113113290B CN202110362787.6A CN202110362787A CN113113290B CN 113113290 B CN113113290 B CN 113113290B CN 202110362787 A CN202110362787 A CN 202110362787A CN 113113290 B CN113113290 B CN 113113290B
Authority
CN
China
Prior art keywords
chamber
substrate
crystal
cavity
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110362787.6A
Other languages
English (en)
Other versions
CN113113290A (zh
Inventor
王宇
杨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meishan Tianle Semiconductor Material Co ltd
Original Assignee
Meishan Boya New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meishan Boya New Material Co ltd filed Critical Meishan Boya New Material Co ltd
Priority to CN202110362787.6A priority Critical patent/CN113113290B/zh
Publication of CN113113290A publication Critical patent/CN113113290A/zh
Application granted granted Critical
Publication of CN113113290B publication Critical patent/CN113113290B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本说明书实施例公开了一种碳化硅晶体制备方法,包括:(1)选取至少一个衬底,对至少一个衬底进行抛光处理和清洗处理;(2)在第一条件下,通入氢气对至少一个衬底进行原位刻蚀处理;(3)在第二条件下,通入丙烷和氢气对至少一个衬底进行碳化处理;(4)在第三条件下,通入硅烷、丙烷和氢气,在至少一个衬底上通过气相沉积生长碳化硅晶体,得到包括衬底和碳化硅晶体的至少一个组合晶体;(5)将组合晶体置于温度为500~1200℃的环境中至少冷却降温至少1h;(6)将组合晶体置于室温环境中降温;(7)将组合晶体加热到50~100℃内,使用刻蚀溶液在50~100℃下对组合晶体进行超声清洗第一时长,得到基面位错密度为120‑2000cm‑2的碳化硅晶体。

Description

一种碳化硅晶体制备方法
技术领域
本说明书涉及晶体制备技术领域,特别涉及一种碳化硅晶体制备方法。
背景技术
碳化硅晶体作为半导体材料,其单晶具有宽禁带、高化学稳定性、热导率大、抗辐射能力强、击穿电场高、电子饱和漂移速度高等性能。因此,碳化硅晶体材料可以广泛应用于各个领域。然而,碳化硅晶体是已知的最坚硬的材料之一,碳化硅晶体的硬度和杨氏模量达到380~700Gpa。这对晶锭切割和抛光成晶圆片构成了挑战。
因此,有必要提供一种碳化硅晶体制备方法,以减少加工切割碳化硅晶体的过程、提高碳化硅晶体制造效率。
发明内容
本说明书实施例的一个方面提供一种碳化硅晶体制备方法,所述方法包括:(1)选取至少一个衬底,对所述至少一个衬底进行抛光处理和清洗处理;(2)在第一条件下,通入氢气对所述至少一个衬底进行原位刻蚀处理;(3)在第二条件下,通入丙烷和氢气对所述至少一个衬底进行碳化处理;(4)在第三条件下,通入硅烷、丙烷和氢气,在所述至少一个衬底上通过气相沉积生长碳化硅晶体,得到包括衬底和碳化硅晶体的至少一个组合晶体;(5)将所述组合晶体置于温度为500~1200℃的环境中至少冷却降温至少1h;(6)将所述组合晶体置于室温环境中降温;(7)将所述组合晶体加热到50~100℃内,使用刻蚀溶液在50~100℃下对所述组合晶体进行超声清洗第一时长,得到基面位错密度为120-2000cm-2的所述碳化硅晶体。
在一些实施例中,所述刻蚀溶液5%-30%的NaOH溶液。
在一些实施例中,所述第一条件包括在10~90分钟范围内保持压力小于5×10- 3Pa,温度为400~900℃。
在一些实施例中,所述通入氢气对所述至少一个衬底进行原位刻蚀处理包括:通入氢气至常压,在第三时长范围内保持所述至少一个衬底处于第三温度区间进行原位刻蚀处理。
在一些实施例中,所述第二条件包括温度为700~1100℃,压力小于5×10-5Pa。
在一些实施例中,所述通入丙烷和氢气对所述至少一个衬底进行碳化处理包括:同时通入丙烷和氢气至第三压力区间,并在第四时长内保持所述至少一个衬底处于压力为第三压力区间,温度在第四温度区间内进行碳化处理。
在一些实施例中,所述第三条件包括温度为1300~1750℃,压力小于5×10-5Pa。
在一些实施例中,所述通入硅烷、丙烷和氢气,在所述至少一个衬底上通过气相沉积生长碳化硅晶体包括:通入硅烷、丙烷和氢气至第五压力区间,保持所述至少一个衬底处于1300~1750℃内进行晶体生长;当所述碳化硅晶体厚度达到目标厚度时,停止进行晶体生长。
在一些实施例中,所述目标厚度包括200~600μm。
在一些实施例中,所述冷却降温还包括:通入置换气体对所述组合晶体进行冷却降温处理。
附图说明
图1是根据一些实施例所述的晶体制备系统的示例性硬件和/或软件的示意图;
图2A是根据一些实施例所述的多腔体生长装置的示例性结构示意图;
图2B是根据一些实施例所述的多腔体生长装置中各腔体的示例性分布的俯视图;
图3A是根据另一些实施例所述的多腔体生长装置的示例性结构示意图;
图3B是根据另一些实施例所述的多腔体生长装置中各腔体的示例性分布的俯视图;
图4是根据一些实施例所述的第一类腔体的示例性结构示意图;
图5是根据一些实施例所述的第二类腔体的示例性结构示意图;
图6是根据一些实施例所述的第三类腔体的示例性结构示意图;
图7是根据一些实施例所述的托盘的示例性结构示意图;
图8是根据一些实施例所述的传动组件的示例性结构示意图;
图9是根据一些实施例所述的碳化硅晶体制备方法的示例性流程示意图;
图10是根据一些实施例所述的衬底表面处理过程的示例性流程示意图;
图11是根据一些实施例所述的将衬底在各腔体之间传送和处理的示例性流程示意图;
图12是根据一些实施例所述的真空处理的示例性流程示意图;
图13是根据一些实施例所述的原位刻蚀处理的示例性流程示意图;
图14是根据一些实施例所述的碳化处理的示例性流程示意图;
图15是根据一些实施例所述的将衬底从碳化腔体传送至生长腔体的示例性流程示意图;
图16是根据一些实施例所述的晶体生长的示例性流程示意图;
图17是根据一些实施例所述的缓冲和降温处理的示例性流程示意图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本说明书使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是根据一些实施例所述的晶体制备系统的示例性硬件和/或软件的示意图。
如图1所示,晶体制备系统100可以包括控制模块101、检测模块102、加热模块103、抛光模块104、清洗模块105、真空模块106、刻蚀模块107、碳化模块108、生长模块109、驱动模块110、机械结构111、通信模块112、供电模块113以及输入/输出模块114。本说明书中提到的模块、单元、子单元可以通过硬件、软件或者软件和硬件的结合的方式来实现。其中,硬件的实现方式可以包括利用实体部件组成的电路或结构来实现;软件的实现方式可以包括将模块、单元、子单元对应的操作以代码的形式存储在存储器中,由适当的硬件例如,微处理器来执行。在本说明书提到的模块、单元、子单元执行其操作时,如果没有特殊说明,既可以指包含该功能的软件代码被执行,也可以指具有该功能的硬件被使用。同时,本说明书中所提到的模块、单元、子单元在对应硬件的时候并不限定其对应硬件的结构,只要能实现其功能的硬件都在本说明书保护范围内。例如,本说明书中所提到的不同模块、单元、子单元可以对应同一个硬件结构。又例如,本说明书中所提到的同一个模块、单元、子单元也可以对应多个独立的硬件结构。
控制模块101可以与其他模块相关联。在一些实施例中,控制模块101可以控制其它模块(例如,检测模块102、加热模块103、驱动模块110、通信模块112、供电模块113等)的运行状态。在一些实施例中,控制模块101可以控制驱动模块110启动或停止。在一些实施例中,控制模块101可以控制供电模块113的供电功率、供电时长等。在一些实施例中,控制模块101可以管理通信模块112中的数据获取或发送过程。
检测模块102用于检测系统的工艺参数,例如,温度、压力、气体流速、晶体生长厚度等。在一些实施例中,检测模块102可以将系统工艺参数的检测结果发送给控制模块101,控制模块101可以根据检测结果执行后续的操作或指令。在一些实施例中,检测模块102可以监测生长腔体内的温度并将温度数据发送给控制模块101,控制模块101根据检测模块102实时反馈的温度数据,确定是否调整加热模块103的运行参数(例如,加热电流、加热功率等)以控制生长腔体内的温度。在一些实施例中,检测模块102可以监测真空腔体内的压力并将压力数据发送给控制模块101,控制模块101根据检测模块102实时反馈的压力数据,确定是否继续对真空腔体抽真空,若是,控制模块101可以控制真空模块106对真空腔体抽真空;反之,控制模块101可以控制真空模块106停止抽真空,以保持当前真空度。在一些实施例中,检测模块102可以监测各类气体原料的流量并将流量数据发送给控制模块101,控制模块101根据检测模块102实时反馈的气体原料的流量,确定是否调整各类气体原料的流量,以控制气体原料的组分比例或晶体生长厚度。
加热模块103用于提供系统所需的热能。在一些实施例中,加热模块103可以对生长腔体或原位刻蚀腔体进行加热。在一些实施例中,加热模块103可以包括电阻式加热体、感应线圈等加热组件。电阻式加热体可以包括石墨电阻或碳硅棒电阻。在一些实施例中,加热模块103可以与一个或多个其他模块或腔体进行组合使用,或安装于一个或多个其他模块或腔体中或腔体外,用于提供该其他模块或腔体所需的热能。在一些实施例中,生长腔体和原位刻蚀腔体中分别安装加热模块103的子系统,以分别控制生长腔体和原位刻蚀腔体中的温度。
在一些实施例中,抛光模块104对衬底的抛光处理过程进行控制。在一些实施例中,在利用衬底制备晶体之前,需要对衬底表面进行预处理,以使衬底表面(尤其是晶体生长面)保持洁净和平整。在一些实施例中,预处理可以包括抛光处理和清洗处理。在一些实施例中,抛光处理在抛光设备中完成。抛光设备可以包括抛光机。在一些实施例中,衬底由机械结构111(例如,机械手)放置于抛光设备上,对衬底进行抛光。在一些实施例中,抛光模块可以控制抛光设备先对衬底背面(晶体生长面的相对面)进行抛光,使其表面平整;然后对衬底正面(晶体生长面)进行精细抛光,去除表面切割划痕和缺陷。
在一些实施例中,清洗模块105对衬底的清洗过程进行控制。在一些实施例中,清洗处理可以在清洗设备中完成。在一些实施例中,清洗设备可以包括超声波清洗机。衬底可以由机械结构111(例如,机械手)放置于清洗设备中,在至少一种清洗液和超声波作用下,对衬底进行至少两次清洗,清洗完成后,使用机械结构111从清洗液中取出并用气体吹干衬底表面。在一些实施例中,清洗液可以包括丙酮、酒精或去离子水。在一些实施例中,可以采用丙酮、酒精和去离子水依次对衬底进行清洗。在一些实施例中,用于吹干衬底表面的气体是惰性气体。在一些实施例中,用于吹干衬底表面的气体是纯度超过99%的氮气。
在一些实施例中,清洗模块105可以对组合晶体进行化学刻蚀过程和清洗过程进行控制。在一些实施例中,化学刻蚀过程和清洗过程可以在清洗设备中完成。在一些实施例中,组合晶体可以由机械结构111(例如,机械手)放置于清洗设备中,在一定温度、碱溶液和超声波作用下,将组合晶体上的衬底溶解去除,得到目标晶体(例如,碳化硅晶体)。在一些实施例中,碱溶液可以包括NaOH溶液或KOH溶液。去除衬底的碳化硅晶体可以继续由机械结构111(例如,机械手)放置于清洗设备中,在清洗液(例如,异丙醇或去离子水)和超声波作用下,进行清洗得到不含衬底的碳化硅晶体。可以用基面位错密度(单位面积的缺陷数量)表征碳化硅晶体的质量。在一些实施例中,碳化硅晶体的基面位错密度为100~2200cm-2。在一些实施例中,碳化硅晶体的基面位错密度为120~2000cm-2。在一些实施例中,碳化硅晶体的基面位错密度为200~1800cm-2。在一些实施例中,碳化硅晶体的基面位错密度为500~1500cm-2。在一些实施例中,碳化硅晶体的基面位错密度为700~1300cm-2。在一些实施例中,碳化硅晶体的基面位错密度为900~1100cm-2
在一些实施例中,真空模块106对系统的抽真空过程进行控制。抽真空过程通过控制抽真空设备分别对各腔体(例如,原位刻蚀腔体、碳化腔体、生长腔体)进行抽真空至一定气体压力。在一些实施例中,抽真空设备可以包括真空泵。在一些实施例中,检测模块102可以分别检测各腔体中的压力,并将压力数据发送给控制模块101,控制模块101根据压力数据执行后续的操作或指令。在一些实施例中,检测模块102将原位刻蚀腔体或真空腔体中的压力数据发给控制模块101,控制模块101根据该压力数据判断需要对原位刻蚀腔体或真空腔体继续抽真空,则会控制抽真空设备对原位刻蚀腔体或真空腔体继续抽真空。在一些实施例中,抽真空设备可以包括至少一个真空泵,至少一个真空泵可以分别与需要进行压力控制的各腔体进行连接,以独立对每个腔体进行抽真空。
在一些实施例中,刻蚀模块107对衬底的原位刻蚀处理进行控制。在一些实施例中,原位刻蚀处理在原位刻蚀腔体中进行。原位刻蚀腔体包括一个或多个通道、一个或多个气体进出口、加热组件、传动组件。在一些实施例中,衬底由机械结构111传送至原位刻蚀腔体中,在一定温度、一定压力和气体作用下,在衬底表面进行原位刻蚀处理。在一些实施例中,真空模块106可以将原位刻蚀腔体抽真空至一定气体压力,缓慢升温至一定温度并保持一定时长,通入气体(例如,氢气)至常压,再升温至一定温度并保持一定时长进行原位刻蚀处理。
在原位刻蚀处理过程中,检测模块102可以实时监测原位刻蚀腔体内的温度和压力,并将温度和压力数据传输给控制模块101。在一些实施例中,控制模块101可以根据检测模块102传输的温度,控制加热模块103调整加热组件的运行参数,从而调整原位刻蚀腔体的温度。控制模块101可以根据检测模块102传输的压力数据,控制真空模块106调整抽真空设备的运行参数,或控制机械结构111调整气体的流量,从而调整原位刻蚀腔体内的压力。原位刻蚀处理完成后,可以将衬底传送至原位刻蚀腔体外。在一些实施例中,控制模块101可以控制驱动模块110开启原位刻蚀腔体上的一个或者多个通道,通过机械结构111(例如,传动组件)将衬底传送至原位刻蚀腔体外。
在一些实施例中,碳化模块108对衬底的碳化处理过程进行控制。在一些实施例中,碳化处理在碳化腔体中进行。碳化腔体包括一个或多个通道、一个或多个气体进出口、加热组件、传动组件。在一些实施例中,衬底由机械结构111传送至碳化腔体,在一定温度、一定压力和气体作用下,对衬底进行碳化处理。在一些实施例中,可以预先将碳化腔体升温至一定温度,待传动组件将衬底传送至碳化腔体后,将碳化腔体降温至另一温度,并抽真空至一定气体压力后开始升温,同时通入气体(例如,丙烷、氢气)至一定气体压力,待温度升至一定温度后保持一定时长进行碳化处理。
在碳化处理过程中,检测模块102可以实时监测碳化腔体内的温度和压力数据,并将温度和压力数据传输给控制模块101。在一些实施例中,控制模块101可以根据检测模块102传输的温度,控制加热模块103调整加热组件的运行参数,从而调整碳化腔体的温度。控制模块101可以根据检测模块102传输的压力数据,控制真空模块106调整真空设备的运行参数,或控制机械结构111调整气体的流量,从而调整碳化腔体内的压力。碳化处理完成后,可以将衬底传送至碳化腔体外。在一些实施例中,控制模块101可以控制驱动模块110开启碳化腔体上的一个或者多个通道,通过机械结构111(例如,传动组件)将衬底传送至生长腔体外。
在一些实施例中,生长模块109对晶体生长过程进行控制。晶体生长方法可以包括气相沉积法、液相沉积法、提拉法、水热法、焰熔法等。特别的,气相沉积法把含有构成薄膜元素的气态反应物、液态反应物的蒸气或反应所需的其它气体引入反应环境内,在衬底表面发生化学反应,并把固体产物沉积到衬底表面生成薄膜。气相沉积法可以包括物理气相沉积法、化学气相沉积法。在一些实施例中,化学气相沉积法可以是金属有机化合物化学气相沉积法(MOCVD)、等离子化学气相沉积法(PCVD)、激光化学气相沉积法(LCVD)、低压化学气相沉积法(LPCVD)、超真空化学气相沉积法(UHVCVD)、超声波化学气相沉积法(UWCVD)等。
在一些实施例中,晶体生长在生长腔体中完成。生长腔体可以是釜式生长腔体,也可以是管式生长腔体、塔式生长腔体、流化床或固定床。
在一些实施例中,生长腔体可以包括一个或者多个通道、一个或多个气体进出口、加热组件和旋转组件。
在一些实施例中,衬底由机械结构111传送至生长腔体中,在一定温度、一定压力时在衬底表面进行晶体生长过程。具体地,可以将生长腔体升温至某一预定温度,该温度随所生长的晶体不同而不同,该温度可以是在整个生长过程中保持恒定,也可以结合晶体生长方法不同而在生长过程中调整。该温度可以由检测模块102监控,并通过控制模块101控制加热模块103实现精确控制。并通入某几类气体。在生长过程中,生长腔体会保持某一设定的压力,该压力随所生长的晶体不同而不同,该压力可以是在整个生长过程中保持恒定,也可以结合压力生长方法不同而在生长过程中调整。该压力可以由检测模块102监控,并通过控制模块101控制驱动模块110实现精确控制。在控制温度和压力的情况下,在生长腔体内,衬底表面进行气相沉积生长晶体。检测模块102可以对晶体生长的厚度进行监控,并根据晶体生长的速度、厚度等参数,控制模块101控制生长腔体的温度、压力,以及各类气体的流量。当晶体达到预设的厚度时,控制模块101可以通过控制驱动模块110,进而控制机械结构111,停止晶体的生长。具体地,控制模块101可以通过控制驱动模块110,驱动模块110控制一个或者多个通道开启,通过机械结构111(例如,传动组件)将生长有晶体的衬底传送出生长腔体。
在一些实施例中,晶体生长装置可以包括缓冲腔体,缓冲腔体用于对组合晶体进行冷却。缓冲腔体包括一个或多个通道、一个或多个气体进出口、加热组件、传动组件。在一些实施例中,组合晶体由机械结构111传送至缓冲腔体中,在一定温度下进行冷却。冷却后的组合晶体可以传送至缓冲腔体外。在一些实施例中,控制模块101可以控制驱动模块110开启缓冲腔体上的一个或者多个通道,通过机械结构111(例如,传动组件)将组合晶体传送出缓冲腔体。
在一些实施例中,晶体生长装置可以包括末端腔体,末端腔体用于对组合晶体进行进一步冷却。末端腔体包括一个或多个通道、一个或多个气体进出口、加热组件、传动组件。在缓冲腔体中冷却后的组合晶体由机械结构111传送至末端腔体中,在一定温度下进行进一步冷却。冷却后的组合晶体可以传送至末端腔体外。在一些实施例中,控制模块101可以控制驱动模块110开启末端腔体上的一个或者多个通道,通过机械结构111(例如,传动组件)将组合晶体传送至末端腔体外。
在一些实施例中,驱动模块110可以包括一个或多个驱动力源。在一些实施例中,驱动力源可以包括采用电力驱动的驱动电机。在一些实施例中,驱动电机可以是直流电机、交流感应电机、永磁电机和开关磁阻电机等中的一种或几种的组合。在一些实施例中,驱动模块110可以包括一个或多个驱动电机。在一些实施例中,检测模块102检测晶体生长厚度已达到工艺要求,控制模块101可以控制驱动模块110进行运转,用于驱动机械结构111执行相应的操作。在一些实施例中,控制模块101发出指令,该指令包含一个电信号,电信号包含了所需工作状态和持续时长。驱动模块110的驱动力源根据电信号内容进行相应配置(如驱动模块110中的驱动电机相应以每分钟特定的转速转动特定的时长),驱动电机的转动带动与之相连的机械结构111状态的改变(如,传动组件的前进、停止,腔体通道的开关,气体进出口的开关),以将组合晶体传送出生长腔体。在一些实施例中,抛光模块104对衬底进行抛光处理时,控制模块101可以发出控制指令给驱动模块110,驱动模块110根据该控制指令,驱动抛光设备运行。
机械结构111并不限于上述的传动组件、通道、气体进出口、抛光设备等,还可以为其它结构,具体结构以晶体制备系统100中所需要的结构类型为准,在此不做限定。任何可以使用本说明书所包含的晶体制备方法的设备的机械机构都在本说明书的保护范围内。
在一些实施例中,通信模块112可以用于信息或数据的交换。在一些实施例中,通信模块112可以用于晶体制备系统100内部组件(例如,控制模块101、检测模块102、加热模块103、真空模块106、输入/输出模块114和/或驱动模块110)之间的通信。在一些实施例中,检测模块102可以发送系统的信息(例如,温度、压力、气体流量等数据)到通信模块112,通信模块112可以将该信息发送给控制模块101,供控制模块101确定是否调整其他模块(如,加热模块103、真空模块106)的运行参数;若确定需要调整运行参数,控制模块101通过通信模块112将调整后的运行参数发送给相关模块。在一些实施例中,通信模块112还可以用于晶体制备系统100和其他外接设备(例如,服务器、用户终端等)之间的通信。在一些实施例中,通信模块112可以将晶体制备系统100的状态信息(例如,运行参数等)发送到用户终端,用户终端可以基于该状态信息对晶体制备系统100进行监控。通信模块112可以采用有线、无线以及有线/无线混合技术。有线技术可以基于诸如金属电缆、混合电缆、光缆等一种或多种光缆组合的方式。无线技术可以包括蓝牙(Bluetooth)、无线网(Wi-Fi)、紫蜂(ZigBee)、近场通信(Near Field Communication,NFC)、射频识别技术(RadioFrequencyIdentification,RFID)、蜂窝网络(包括GSM、CDMA、3G、4G、5G等)、基于蜂窝的窄带物联网(Narrow Band Internet of Things,NBIoT)等。在一些实施例中,通信模块112可以采用一种或多种编码方式对传输的信息进行编码处理,例如,编码方式可以包括相位编码、不归零制码、差分曼彻斯特码等。
在一些实施例中,通信模块112可以根据需要传输的数据类型或网络类型,选择不同的传输和编码方式。在一些实施例中,通信模块112可以包括一个或多个通信接口,用于不同的通信方式。在一些实施例中,晶体制备系统100中的其他模块(如,加热模块103)可以是分散在多个腔体上的,在这种情况下,其他各个模块可以分别包括一个或多个通信模块112,来进行模块之间的信息传输。在一些实施例中,通信模块112可以包括一个接收器和一个发送器。在另一些实施例中,通信模块112可以是一个收发器。在一些实施例中,通信模块112还可以具有提醒或/和报警功能。在一些实施例中,晶体制备系统100运行故障(如,晶体生长的温度或压力超限)时,通信模块112可以向现场操作者和/或用户终端发出提醒信息或报警信息。在一些实施例中,报警方式可以包括声音报警、灯光报警、远程报警等,或其任意组合。在一些实施例中,当报警方式为远程报警,通信模块112可以向相关联的用户终端发送提醒信息或报警信息,通信模块112还可以建立现场操作者与相关联的用户终端之间的通讯(如,语音通话、视频通话)。在一些实施例中,晶体制备系统100运行良好时,通信模块112也可以向现场操作者或/和用户终端发出提示信息。在一些实施例中,通信模块112可以向相关联的用户终端发送温度或压力满足工艺要求的提示信息。
在一些实施例中,供电模块113可以为晶体制备系统100中的其他模块和组件(例如,检测模块102、控制模块101、通信模块112、输入/输出模块114、驱动模块110)提供电力。供电模块113可以从控制模块101接收控制信号以控制晶体制备系统100的电力输出。在一些实施例中,在一定时间段(例如,1s、2s、3s或4s)内没有接收到控制模块101对某些模块的任何操作的情况下,供电模块113可以仅向正在运行的模块供电,使晶体制备系统100进入省电模式。在一些实施例中,晶体制备系统100的所有模块在一定时间段(例如,1s、2s、3s或4s)内没有接收到任何操作的情况下,供电模块113可以断开对其它模块的供电,将晶体制备系统100中的数据可以转存到硬盘中。在一些实施例中,供电模块113可以包括至少一个电源。所述电源可以包括燃油发电机、燃气发电机、燃煤发电机、太阳能发电机、风能发电机、水力发电机等中的一种或几种的组合。所述燃油发电机、燃气发电机、燃煤发电机可以将化学能转化为电能并存储在供电模块113中。所述太阳能发电机可以将光能转化为电能并存储在供电模块113中。所述风能发电机可以将风能转化为电能并存储在供电模块113中。所述水力发电机可以将机械能转化为电能并存储在供电模块113中。在一些实施例中,当供电模块113的电压不稳时,控制模块101可以向通信模块112发送控制信号,该控制信号可以控制通信模块112向用户终端和/或现场操作者发出语音提醒。该语音提醒可以包括所述供电模块113电压不稳的信息。在一些实施例中,供电模块113可以包含备用电源,供电模块113在紧急情况(如电路故障、外部电力系统停电无法供电)下,可以使用备用电源进行临时供电。
输入/输出模块114可以获取、传输和发送信号。输入/输出模块114可以与晶体制备系统100中的其他组件进行连接或通信。晶体制备系统100中的其他组件可以通过输入/输出模块114实现连接或通信。输入/输出模块114可以是有线的USB接口、串行通信接口、并行通信口,或是无线的蓝牙、红外、无线射频识别(Radio-frequency identification,RFID)、无线局域网鉴别与保密基础结构(Wlan Authentication and PrivacyInfrastructure,WAPI)、通用分组无线业务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)等,或其任意组合。在一些实施例中,输入/输出模块114可以与网络连接,并通过网络获取信息。在一些实施例中,输入/输出模块114可以通过网络或通信模块112从检测模块102中获取晶体生长信息进行输出。在一些实施例中,输入/输出模块114可以通过网络或通信模块112从控制模块101获取提醒或控制指令。在一些实施例中,输入/输出模块114可以包括VCC、GND、RS-232、RS-485(例如,RS485-A,RS485-B)和通用网络接口等,或其任意组合。在一些实施例中,输入/输出模块114可以采用一种或多种编码方式对传输的信号进行编码处理。所述编码方式可以包括相位编码、不归零制码、差分曼彻斯特码等,或其任意组合。
应当理解,图1所示的系统及其模块可以利用各种方式来实现。例如,在一些实施例中,系统及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本说明书的一个或多个实施例的系统及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
需要注意的是,以上对于晶体制备系统及其模块的描述,仅为描述方便,并不能把本说明书的一个或多个实施例限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个模块进行任意组合,或者构成子系统与其他模块连接,或者对其中的一个或多个模块进行省略。在一些实施例中,检测模块102和控制模块101可以为一个模块,该模块可以具有检测和控制晶体生长信息的功能。诸如此类的变形,均在本说明书的一个或多个实施例的保护范围之内。
在一些实施例中,多腔体生长装置可以用于制备包含衬底和目标晶体的组合晶体。在一些实施例中,目标晶体可以包括碳化硅晶体、氮化硅晶体、二硫化钼晶体、氮化硼晶体、石墨烯晶体等。在一些实施例中,组合晶体是包含衬底和碳化硅晶体的组合晶体。在一些实施例中,可以在衬底表面沉积至少一层碳化硅晶体以制得组合晶体。
图2A是根据一些实施例所述的多腔体生长装置的示例性结构示意图;图2B是根据一些实施例所述的多腔体生长装置中各腔体的示例性分布的俯视图。为了便于说明,图2A-2B中多腔体装置中各腔体的横截面为矩形(对应的各腔体为立方体),需要说明的是,各腔体的横截面还可以为圆形、多边形或其他形状,对应的各腔体为圆柱体、多棱柱体或其他形状。
在一些实施例中,如图2A所示,多腔体生长装置200可以包括原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205、托盘207、传动组件208和控制组件(图中未示出)。
原位刻蚀腔体202可以用于提供原位刻蚀处理的空间,在一定反应条件下、向其中通入气体对衬底进行原位刻蚀处理。衬底的表面可以进行气相沉积生成薄膜,衬底可以支撑和改善表面沉积的薄膜的特性。在一些实施例中,通过传动组件208将衬底传送至原位刻蚀腔体202中,在一定温度、一定气体压力和氢气作用下,在衬底表面进行原位刻蚀处理。在一些实施例中,可以将原位刻蚀腔体202抽真空至一设定的压力,通过传动组件208将衬底传送至原位刻蚀腔体202;将原位刻蚀腔体202继续抽真空至一设定的更低压力,缓慢将温度调节至某一温度并保持一段时长;通入刻蚀气体(例如,氢气、四氟甲烷、六氟化硫、三氟化氮等)至常压,并将温度调节至某一温度并保持一段时长,对衬底进行原位刻蚀处理。关于对衬底进行原位刻蚀处理的更多内容可以参见图13的描述。
碳化腔体203可以用于提供碳化处理的空间,在一定反应条件下、向其中通入气体对衬底进行碳化处理。在一些实施例中,通过传动组件208将衬底传送至碳化腔体203中,在一定温度、在碳化气体(例如,甲烷、丙烷、丁烷等)和氢气作用下,在衬底表面进行碳化处理。在一些实施例中,可以将碳化腔体203的温度调节至某一温度,然后控制原位刻蚀腔体202和碳化腔体203之间的第三通道打开,通过传动组件208将衬底传送至碳化腔体203中,关闭第三通道;将碳化腔体降温至某一温度,并抽真空至一设定的压力后开始升温,同时通入碳化气体(例如,甲烷、丙烷、丁烷等)和氢气至一设定的压力,将温度调节至某一温度保持一段时间进行碳化处理。关于对衬底进行碳化处理的更多内容可以参见图14的描述。
生长腔体204可以用于提供气相沉积的反应空间,在一定反应条件下、反应原料在衬底表面进行气相沉积生长晶体,得到包括衬底和碳化硅晶体的组合晶体。在一些实施例中,通过传动组件208将衬底传送至生长腔体204中,在一定温度、在碳化气体(例如,甲烷、丙烷、丁烷等)和氢气作用下,在衬底表面进行晶体生长。在一些实施例中,可以将生长腔体204的温度调节至某一温度,加压至一设定的压力;控制碳化腔体203和生长腔体204之间的第四通道打开,通过传动组件208将衬底传送至生长腔体204中,关闭第四通道;然后将生长腔体204的温度调节至某一温度,通入硅烷、丙烷和氢气至一设定的压力,在衬底表面进行晶体生长;当晶体生长厚度达到目标厚度时,停止进行晶体生长,得到组合晶体。关于进行晶体生长的更多内容可以参见图15-图16的描述。
缓冲腔体205可以用于对组合晶体进行降温冷却。在一些实施例中,通过传动组件208将组合晶体传送至缓冲腔体205中,在一定温度、一定气体压力下,对组合晶体进行降温冷却。在一些实施例中,将缓冲腔体205加热至某一温度;控制生长腔体204和缓冲腔体205之间的第五通道打开,通过传动组件208将组合晶体传送至缓冲腔体205中,关闭第五通道;将缓冲腔体205降温至某一温度,保持一段时间,对组合晶体进行冷却降温。在一些实施例中,通过传动组件208将组合晶体传送至缓冲腔体205中,在常温、常压下,对组合晶体进行降温冷却。关于进行组合晶体进行冷却降温的更多内容可以参见图17的描述。
传动组件208可以设置在各腔体(例如,原位刻蚀腔体202、碳化腔体203、生长腔体204和缓冲腔体205)内部的下端,用于将衬底或组合晶体依次在各腔体之间进行传送。传动组件208也可以称为机械结构111。关于传动组件208的更多内容可以参见图8的描述。
控制组件可以用于控制传动组件208转动,以将衬底或组合晶体依次在各腔体(原位刻蚀腔体202、碳化腔体203、生长腔体204和缓冲腔体205)之间进行传送。在一些实施例中,控制组件可以通过控制驱动电机运转,以驱动传动组件208转动,以将衬底或组合晶体依次在各腔体之间进行传送。控制组件可以是控制模块101,驱动电机可以是驱动模块110。
在一些实施例中,原位刻蚀腔体202、碳化腔体203、生长腔体204和缓冲腔体205可以依次排列大致成“一字型”,各腔体内的传动组件208首尾依次连接,衬底或组合晶体在各腔体之间的传送路线基本上为直线。在一些实施例中,如图2A所示,原位刻蚀腔体202、碳化腔体203、生长腔体204和缓冲腔体205可以依次排列成“一字型”,各腔体内的传动组件208首尾依次连接,衬底或组合晶体在各腔体之间的传送路线为直线。在一些替代性实施例中,可以将图2A中各腔体的分布图整体旋转任意角度对各腔体进行设置。
在一些实施例中,如图2B所示,原位刻蚀腔体202、碳化腔体203、生长腔体204和缓冲腔体205可以依次排列成“田字型”,原位刻蚀腔体202位于碳化腔体203邻侧,生长腔体204位于碳化腔体203另一邻侧,缓冲腔体205与原位刻蚀腔体202和生长腔体204相邻;各腔体内的传动组件208首尾依次连接,传动组件208可以依次在各个腔体间循环。
图3A是根据另一些实施例所述的多腔体生长装置的示例性结构示意图;图3B是根据另一些实施例所述的多腔体生长装置中各腔体的示例性分布的俯视图。为了便于说明,图3A-3B中多腔体装置中各腔体的横截面为矩形(对应的各腔体为立方体),需要说明的是,各腔体的横截面还可以为圆形、多边形或其他形状,对应的各腔体为圆柱体、多棱柱体或其他形状。
在一些实施例中,多腔体生长装置还可以包括真空腔体。在一些实施例中,多腔体生长装置还可以包括末端腔体。在一些实施例中,如图3A所示,多腔体生长装置300可以包括真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205、末端腔体206、托盘207、传动组件208和控制组件(图中未示出),真空腔体201与原位刻蚀腔体202相邻,末端腔体206与缓冲腔体205相邻。
真空腔体201可以用于使衬底处于真空环境。在一些实施例中,将衬底置于真空腔体201中,对真空腔体201抽真空使得衬底处于真空环境中。在一些实施例中,可以关闭真空腔体的第一通道,对真空腔体抽真空至一设定的压力。关于对衬底进行真空处理的更多内容可以参见图12的描述。
末端腔体206可以用于将组合晶体降温至室温。在一些实施例中,通过传动组件208将组合晶体从缓冲腔体205传送至末端腔体206中,在常温、常压下,对组合晶体进行降温冷却。在一些实施例中,控制缓冲腔体205和末端腔体206之间的第六通道打开,通过传动组件208将组合晶体传送至末端腔体206中,关闭第六通道;对组合晶体进行冷却降温。关于进行组合晶体进行冷却降温的更多内容可以参见图17的描述。
在一些实施例中,多腔体生长装置的各个腔体可以直线排布,也可以非直线排布。在一些实施例中,如图3A所示,各腔体(真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205和末端腔体206)可以依次直线排列成“一字型”,各腔体内的传动组件208首尾依次连接,各个腔体之间的传送路线为直线。在一些替代性实施例中,真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205、末端腔体206也可以依次排列大致成“一字型”,各腔体内的传动组件208首尾依次连接,衬底或组合晶体在各腔体之间的传送路线基本上为直线。在一些替代性实施例中,可以将图3A以及上述示例中各腔体的分布图整体旋转任意角度对各腔体进行设置。
在一些实施例中,如图3B所示,真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205、末端腔体206可以依次堆叠,真空腔体201位于原位刻蚀腔体202邻侧,碳化腔体203位于原位刻蚀腔体202另一邻侧,生长腔体204与缓冲腔体205和碳化腔体相邻,末端腔体206位于缓冲腔体205另一邻侧;各个腔体内的传动组件208首尾依次连接,传动组件208可以依次在各个腔体间循环。在一些替代性实施例中,可以将图3B以及上述示例中各腔体的分布图整体旋转任意角度对各腔体进行设置。
需要说明的是,真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205和末端腔体206可以依次排列成能够将衬底或组合晶体在各腔体之间依次传送的任何形状,均在本说明书的保护范围之内。真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205和末端腔体206的尺寸可以相同,也可以不同,对此不作限制。
本说明书一些实施例中涉及的各类腔体,包括且不限于第一类腔体、第二类腔体和第三类腔体等。在一些实施例中,第一类腔体可以提供使衬底或组合晶体处于一设定的压力或某一温度下的场所。在一些实施例中,第二类腔体可以提供对衬底进行处理的场所,或者使组合晶体处于某一温度下的场所。在一些实施例中,第三类腔体可以提供在衬底表面进行晶体生长的场所。
图4是根据一些实施例的第一类腔体的示例性结构示意图。
如图4所示,第一类腔体400侧壁设置有进口通道401和出口通道402,第一类腔体400内部安装有传动组件404,传动组件404连通进口通道401和出口通道402,以在进口通道501和出口通道502之间传送衬底或组合晶体。在一些实施例中,进口通道401和出口通道402可以设置于第一类腔体400相对的两个侧壁,使得进口通道401、传动组件404和出口通道402构成直线。在一些实施例中,进口通道401和出口通道402可以设置于第一类腔体400相邻的两个侧壁,进口通道401、传动组件404和出口通道402构成L型折线。在一些实施例中,进口通道401和出口通道402可以设置于第一类腔体400的同一个侧壁,进口通道401、传动组件404和出口通道402构成U型折线。在一些实施例中,进口通道401和出口通道402设置于第一类腔体400侧壁的顶部、中部、底端。仅作为示例,如图4所示,进口通道401和出口通道402分别设置于第一类腔体400相对的两个侧壁的底端,传动组件404设置于第一类腔体400的底部。关于传动组件404的更多内容可以参见图8的描述。
在一些实施例中,进口通道401和出口通道402的形状包括但不限于矩形、圆形、椭圆形,以及其他任何规则或不规则形状。在一些实施例中,进口通道401和出口通道402的数量可以分别是一个,也可以分别是两个或多个。在一些实施例中,进口通道401和出口通道402的数量可以相同,也可以不同。在一些实施例中,进口通道401和出口通道402数量相同且成对设置。在一些实施例中,可以设置两组或多组进口通道401和出口通道402,每组进口通道401和出口通道402之间都分别设置传动组件404,可以同时从不同路线传送衬底或组合晶体。在一些实施例中,进口通道401和出口通道402的数量不同。在一些实施例中,可以设置两个或多个进口通道401,设置一个出口通道402,衬底或组合晶体可以从多个进口通道401传入第一类腔体400,从一个出口通道402传出第一类腔体400。
在一些实施例中,进口通道401和出口通道402处均安装有自动控制阀,以便于通过控制模块101控制进口通道401和出口通道402的开闭。在一些实施例中,进口通道401和出口通道402可以互换使用。
如图4所示,第一类腔体400设置有至少一个气体管道403,用于使第一类腔体400中的气体排出或向第一类腔体400通入气体,以使第一类腔体400内到达所需压力。
在一些实施例中,气体管道403可以与抽真空设备连通,通过控制真空设备的运行参数(例如,功率、转速、运行时间等)可以调整抽真空的速度和时间,以控制第一类腔体400内的压力变化。在一些实施例中,抽真空设备可以包括真空泵。在一些实施例中,气体管道403的数量可以为一个或多个。在一些实施例中,真空泵的数量可以为一台真空泵或两台以上。在一些实施例中,气体管道403可以设置于第一类腔体400的顶部、侧壁、底部。例如,如图4所示,气体管道403设置于第一类腔体400的底部。在一些实施例中,气体管道403设置于第一类腔体400的任一侧壁或顶部。在一些实施例中,气体管道403可以与气体储罐通过管道连通,并在管道上设置流量调节阀,以控制通入气体的流量和流速。
在一些实施例中,第一类腔体400可以是真空腔体201,也可以是末端腔体206。
真空腔体201可以是多腔体晶体生长装置的第一个腔体。通过气体管道403可以对真空腔体抽真空。
末端腔体206可以是多腔体晶体生长装置的最后一个腔体。在一些实施例中,末端腔体206可以不使用气体管道403,即气体管道403处于关闭状态。在一些实施例中,气体管道403包括两个或多个,可以通过气体管道403中的一个或多个向末端腔体206中通入气体(例如,置换气体),通过气体管道403中的另外一个或多个排出末端腔体206中的气体,以加快末端腔体206中的降温速度。
在一些实施例中,第一类腔体400的形状可以包括但不限于圆柱形、棱柱形、正方体、长方柱形等等规则或不规则形状。第一类腔体400的尺寸可以根据实际生产需要进行设置。在一些实施例中,第一类腔体400的顶壁距离组合晶体生长面的高度可以为20~500mm。在一些实施例中,第一类腔体400的顶壁距离复合晶体组合晶体生长面的高度可以为50~400mm。在一些实施例中,第一类腔体400的顶壁距离复合晶体组合晶体生长面的高度可以为100~300mm。在一些实施例中,第一类腔体400的顶壁距离复合晶体组合晶体生长面的高度可以为150~250mm。
在一些实施例中,第一类腔体400的材质可以包括高强度不锈钢或高强度铝合金。其中,高强度不锈钢或高强度铝合金的强度能够确保安全生产,在生产过程中第一类腔体400不变形、不破裂。
图5是一些实施例所述的第二类腔体的示例性结构示意图。
如图5所示,第二类腔体500侧壁设置有进口通道501和出口通道502,第二类腔体500内部安装有传动组件506,传动组件506连通进口通道501和出口通道502,以在进口通道501和出口通道502之间传送衬底或组合晶体。在一些实施例中,进口通道501和出口通道502可以设置于第二类腔体500相对的两个侧壁,使得进口通道501、传动组件506和出口通道502构成直线。在一些实施例中,进口通道501和出口通道502可以设置于第二类腔体500相邻的两个侧壁,进口通道501、传动组件506和出口通道502构成L型折线。在一些实施例中,进口通道501和出口通道502可以设置于第二类腔体500的同一个侧壁,进口通道501、传动组件506和出口通道502构成U型折线。在一些实施例中,进口通道501和出口通道502设置于第二类腔体500侧壁的顶部、中部、底端。仅作为示例,如图5所示,进口通道501和出口通道502分别设置于第二类腔体500相对的两个侧壁的底端,传动组件506设置于第二类腔体500的底部。关于传动组件506的更多内容可以参见图8的描述。
在一些实施例中,进口通道501和出口通道502的形状包括但不限于矩形、圆形、椭圆形,以及其他任何规则或不规则形状。在一些实施例中,进口通道501和出口通道502的数量可以分别是一个,也可以分别是两个或多个。在一些实施例中,进口通道501和出口通道502的数量可以相同,也可以不同。在一些实施例中,进口通道501和出口通道502数量相同且成对设置。在一些实施例中,可以设置两组或多组进口通道501和出口通道502,每组进口通道501和出口通道502之间都分别设置传动组件506,可以同时从不同路线传送衬底或组合晶体。在一些实施例中,进口通道501和出口通道502的数量不同。在一些实施例中,可以设置两个或多个进口通道501,设置一个出口通道502,衬底或组合晶体可以从多个进口通道501传入第二类腔体500,从一个出口通道502传出第二类腔体500。
在一些实施例中,进口通道501和出口通道502处均安装有自动控制阀,以便通过控制模块101控制进口通道501和出口通道502的开闭。在一些实施例中,进口通道501和出口通道502可以互换使用。
如图5所示,第二类腔体500包括至少一个抽气管道503,用于对第二类腔体500进行抽真空,以使第二类腔体500内到达所需压力。在一些实施例中,抽气管道503可以设置于第二类腔体500的底部、顶部或侧壁。例如,如图5所示,抽气管道503设置于第二类腔体500的底部。在一些实施例中,抽气管道503设置于第二类腔体500的任一侧壁或顶部。在一些实施例中,抽气管道503可以与抽真空设备连通,通过控制真空设备的运行参数(例如,功率、转速、运行时间等)可以调整抽真空的速度和时间,以控制第二类腔体500内的压力变化。在一些实施例中,抽真空设备可以包括真空泵。在一些实施例中,抽气管道503的数量可以为一个或多个。在一些实施例中,真空泵的数量可以为一台或两台以上。
在一些实施例中,第二类腔体500包括至少一个进气管道504,用于向第二类腔体500中通入气体。在一些实施例中,进气管道504可以设置于第二类腔体500的底部、顶部或侧壁。例如,如图5所示,进气管道504设置于第二类腔体500的顶部。在一些实施例中,进气管道504的数量可以为一个或多个。在一些实施例中,可以设置一个进气管道504,所有气体从同一个进气管道504通入第二类腔体500。在一些实施例中,可以设置两个或多个进气管道504,不同气体分别从不同进气管道504通入第二类腔体500。在一些实施例中,每个进气管道504上都可以设置流量调节阀,以控制各气体的流量,从而控制各气体的配比(例如,质量比或摩尔比)。
如图5所示,第二类腔体500还设置有加热体505,用于对第二类腔体500进行温度调节,以控制第二类腔体500内到达所需温度。在一些实施例中,通过控制加热体505的加热功率和加热时间,可以调整第二类腔体500内的温度。在一些实施例中,加热体505可以设置于第二类腔体500的外顶壁、外侧壁、内顶壁、内侧壁,或其任意组合。例如,如图5所示,加热体505设置于第二类腔体500的内侧壁。
在一些实施例中,加热体505可以包括但不限于电阻加热组件和/或电磁感应加热组件等。在一些实施例中,电阻加热组件可以包括石墨电阻或碳硅棒电阻。石墨电阻或碳硅棒电阻通电后,可以利用电流流过上述电阻的焦耳效应产生的热能对第二类腔体500进行温度调节。在一些实施例中,电磁感应加热组件可以包括感性线圈。感应线圈在不同频率的交流电作用下,可以在第二类腔体500上产生涡流,在涡流作用下,第二类腔体500上产生的电能可以转变为热能,以对第二类腔体500进行温度调节。
在一些实施例中,加热体505可以包括一个或多个加热件。
在一些实施例中,加热体505可以包括一个或多个电阻加热组件,各个电阻加热组件可以均匀或不均匀设置于第二类腔体500的侧壁。在一些实施例中,加热体505可以包括5个石墨电阻,第二类腔体500可以为圆柱形,5个石墨电阻等距周向设置于第二类腔体500的侧壁,即,各个石墨电阻分别位于第二类腔体500侧壁五分之一的位置。在一些实施例中,加热体505可以包括4个石墨电阻,第二类腔体500可以为长方柱形,4个石墨电阻可以分别设置于第二类腔体500的四个侧壁,或者4个石墨电阻可以分别设置于第二类腔体500的四个转角位置。
在一些实施例中,加热体505可以包括一个或多个感应加热组件,各个感应加热组件可以均匀或不均匀设置于第二类腔体500的外侧壁。在一些实施例中,加热体505可以包括多圈感应线圈,感应线圈可以螺旋式缠绕于第二类腔体500的外侧壁。进一步地,感应线圈可以缠绕第二类腔体500的整个外侧壁,也可以缠绕托盘所在位置对应的第二类腔体500的外侧壁。
在一些实施例中,第二类腔体500可以是原位刻蚀腔体202,也可以是碳化腔体203或缓冲腔体205。
原位刻蚀腔体202可以设置与真空腔体201相邻。在一些实施例中,原位刻蚀腔体202与真空腔体201可以共用同一个通道,即,真空腔体201的出口通道402和原位刻蚀腔体202的进口通道501为同一个通道。在一些实施例中,原位刻蚀腔体202与真空腔体201可以不共用同一个通道,真空腔体201的出口通道402和原位刻蚀腔体202的进口通道501为两个通道且相邻设置。在一些实施例中,可以通过加热体505对原位刻蚀腔体202进行温度调节,通过抽气管道503对原位刻蚀腔体202进行抽真空,可以通过进气管道504向原位刻蚀腔体202中通入氢气对衬底进行原位刻蚀。
碳化腔体203可以设置与原位刻蚀腔体202相邻。在一些实施例中,碳化腔体203和原位刻蚀腔体202可以共用同一个通道,即,原位刻蚀腔体202的出口通道和碳化腔体203的进口通道为同一个通道。在一些实施例中,碳化腔体203和原位刻蚀腔体202可以不共用同一个通道,原位刻蚀腔体202的出口通道和碳化腔体203的进口通道为两个通道且相邻设置。在一些实施例中,可以通过加热体505对碳化腔体203进行温度调节,通过抽气管道503对碳化腔体203进行抽真空,通过进气管道504向碳化腔体203中通入碳化气体(例如,甲烷、丙烷、丁烷等)和氢气对衬底进行碳化处理。
缓冲腔体205可以设置与末端腔体206相邻。在一些实施例中,缓冲腔体205与末端腔体206可以共用同一个通道,即,缓冲腔体205的出口通道502和末端腔体206的进口通道401为同一个通道。在一些实施例中,缓冲腔体205与末端腔体206可以不共用同一个通道,缓冲腔体205的出口通道502和末端腔体206的进口通道401为两个通道且相邻设置。在一些实施例中,可以通过加热体505对缓冲腔体205进行温度调节。在一些实施例中,缓冲腔体205可以不使用抽气管道503和进气管道504,即抽气管道503和进气管道504处于关闭状态。在一些实施例中,可以通过进气管道504向缓冲腔体205中通入气体,通过抽气管道503排出缓冲腔体205中的气体,以加快缓冲腔体205中的降温速度。
在一些实施例中,第二类腔体500的形状包括但不限于圆柱形、棱柱形、正方体、长方柱形等等规则或不规则形状。第二类腔体500的尺寸可以根据实际生产需要进行设置。在一些实施例中,第二类腔体500的顶壁距离组合晶体生长面的高度可以为20~300mm。在一些实施例中,第二类腔体500的顶壁距离组合晶体生长面的高度可以为50~200mm。在一些实施例中,第二类腔体500的顶壁距离组合晶体生长面的高度可以为70~180mm。在一些实施例中,第二类腔体500的顶壁距离组合晶体生长面的高度可以为100~150mm。
在一些实施例中,第二类腔体500的腔壁可以采用双层中空的高强度不锈钢或铝合金制得,中空腔内通冷却水对腔壁进行冷却,起到隔热、散热的作用。在一些实施例中,第二类腔体500的腔壁内侧设置有一层或多层保温材料。在一些实施例中,保温材料可以包括石墨毡、氧化锆毡。
图6是一些实施例所述的第三类腔体的示例性结构示意图。
在一些实施例中,第三类腔体600可以为生长腔体204。如图6所示,第三类腔体600(或称为生长腔体204)侧壁设置有进口通道601和出口通道602,第三类腔体600内部安装有传动组件608,传动组件608连通进口通道601和出口通道602,以在进口通道601和出口通道602之间传送衬底或组合晶体。在一些实施例中,进口通道601和出口通道602可以设置于第三类腔体600相对的两个侧壁,使得进口通道601、传动组件608和出口通道602构成直线。在一些实施例中,进口通道601和出口通道602可以设置于第三类腔体600相邻的两个侧壁,进口通道601、传动组件608和出口通道602构成L型折线。在一些实施例中,进口通道601和出口通道602可以设置于第三类腔体600的同一个侧壁,进口通道601、传动组件608和出口通道602构成U型折线。在一些实施例中,进口通道601和出口通道602设置于第三类腔体600侧壁的顶部、中部、底端。仅作为示例,如图6所示,进口通道601和出口通道602分别设置于第三类腔体600相对的两个侧壁的底端,传动组件608设置于第三类腔体600的底部。关于传动组件608的更多内容可以参见图8的描述。
在一些实施例中,进口通道601和出口通道602的形状包括但不限于矩形、圆形、椭圆形,以及其他任何规则或不规则形状。在一些实施例中,进口通道601和出口通道602的数量可以分别是一个,也可以分别是两个或多个。在一些实施例中,进口通道601和出口通道602的数量可以相同,也可以不同。在一些实施例中,进口通道601和出口通道602数量相同且成对设置。在一些实施例中,可以设置两组或多组进口通道601和出口通道602,每组进口通道601和出口通道602之间都分别设置传动组件608,可以同时从不同路线传送衬底或组合晶体。在一些实施例中,进口通道601和出口通道602的数量不同。在一些实施例中,可以设置两个或多个进口通道601,设置一个出口通道602,衬底或组合晶体可以从多个进口通道601传入第三类腔体600,从一个出口通道602传出第三类腔体600。
在一些实施例中,进口通道601和出口通道602处均安装有自动控制阀,以便于通过控制模块101控制进口通道601和出口通道602的开闭。在一些实施例中,进口通道601和出口通道602可以互换使用。
在一些实施例中,第三类腔体600包括至少一个抽气管道603,用于对第三类腔体600进行抽真空,以使第三类腔体600内压力到达所需压力。在一些实施例中,抽气管道603可以设置于第三类腔体600的底部、顶部或侧壁。在一些实施例中,如图6所示,抽气管道603设置于第三类腔体600的底部。在一些实施例中,抽气管道603设置于第三类腔体600的任一侧壁或顶部。在一些实施例中,抽气管道603可以与抽真空设备连通,通过控制真空设备的运行参数(例如,功率、转速、运行时间等)可以调整抽真空的速度和时间,以控制第三类腔体600内的压力变化。在一些实施例中,抽真空设备可以包括真空泵。在一些实施例中,抽气管道603的数量可以为一个或多个。在一些实施例中,真空泵的数量可以设置一台或两台以上。
在一些实施例中,第三类腔体600包括至少一个进气管道604,用于通入反应气体。例如,硅烷和丙烷。在一些实施例中,进气管道604可以设置于第三类腔体600的顶部、底部或侧壁。在一些实施例中,如图6所示,进气管道604设置于第三类腔体600的顶部。在一些实施例中,进气管道604的数量可以为一个或多个。在一些实施例中,可以设置一个进气管道604,所有气体从同一个进气管道604通入第三类腔体600。在一些实施例中,可以设置两个或多个进气管道604,不同气体分别从不同进气管道604通入第三类腔体600。在一些实施例中,每个进气管道604上都可以设置流量调节阀,以控制各气体的流量,从而控制各气体的配比(例如,质量比或摩尔比)。
在一些实施例中,第三类腔体600(或称为生长腔体204)设置有加热体605,用于对生长腔体204进行温度调节,以控制生长腔体204内温度到达所需温度。在一些实施例中,通过控制加热体605的加热功率和加热时间,可以调整生长腔体204内的温度。在一些实施例中,加热体605可以设置于生长腔体204的外顶壁、外侧壁、内顶壁、内侧壁,或其任意组合。在一些实施例中,如图6所示,加热体605设置于生长腔体204的内侧壁。
在一些实施例中,加热体605可以包括但不限于电阻加热组件和/或电磁感应加热组件等。在一些实施例中,电阻加热组件可以包括石墨电阻或碳硅棒电阻。在一些实施例中,电磁感应加热组件可以包括感性线圈。关于加热体605的更多内容可以参见加热体505的描述。
在一些实施例中,生长腔体204还包括旋转轴606(也可以称为旋转轴207),旋转轴606设置于生长腔体204底部,用于将托盘607顶起至生长腔体204的中部。关于托盘的更多内容可以参见图7的描述。在一些实施例中,旋转轴606的高度可以包括10-200mm。在一些实施例中,旋转轴606的高度可以包括20-180mm。在一些实施例中,旋转轴606的高度可以包括30-150mm。在一些实施例中,旋转轴606的高度可以包括40-130mm。在一些实施例中,旋转轴606的高度可以包括50-100mm。在一些实施例中,旋转轴606的高度可以包括60-80mm。在一些实施例中,旋转轴606的高度可以为生长腔体204高度的
Figure BDA0003006251330000281
在一些实施例中,旋转轴606的高度可以为生长腔体204高度的
Figure BDA0003006251330000282
在一些实施例中,旋转轴606的高度可以为生长腔体204高度的
Figure BDA0003006251330000283
在一些实施例中,旋转轴606的高度可以为生长腔体204高度的
Figure BDA0003006251330000284
在一些实施例中,旋转轴606的高度可以为生长腔体204高度的
Figure BDA0003006251330000285
在一些实施例中,旋转轴606上安装有定位器(图中未示出),用于检测托盘607的位置。在一些实施例中,定位器可以是位移传感器。在一些实施例中,可以在旋转轴606顶端设置定位器,可以实时检测托盘607的位置,并通过旋转轴606将托盘607顶起至生长腔体204的中部。在一些实施例中,定位器实时检测托盘607的位置并将托盘607的位置信息发送给控制模块101,当定位器检测到托盘607被传动组件608传送至旋转轴606正上方时,控制模块101可以通过驱动模块110控制传动组件608停止转动,并通过驱动模块110控制旋转轴606将托盘607平稳顶起至生长腔体204中部。在一些实施例中,在生长过程中,旋转轴606可以持续旋转,以使衬底各个位置反应均匀。在一些实施例中,定位器也可以为GPS定位器。在一些实施例中,可以将GPS定位器装在托盘607上,用于实时将托盘607的位置信息发送给控制模块101。
图7是一些实施例所述的托盘的示例性结构示意图。
在一些实施例中,多腔体生长装置包括托盘207。在一些实施例中,如图7所示,托盘207上设有至少一个凹槽207-1,每个凹槽207-1可以放置一个衬底。在一些实施例中,托盘207的形状包括但不限于圆形、椭圆形、三角形、矩形、多边形,或者其他任意规则或不规则形状。在一些实施例中,每个托盘207上表面可以设置一个或两个以上的凹槽207-1。在一些实施例中,凹槽207-1的数量可以是1个、2个、4个、7个、11个等。在一些实施例中,凹槽207-1的排布方式可以均匀排布,也可以不均匀排布。在一些实施例中,如图7所示,托盘207为圆形,6个凹槽207-1周向均匀排布于托盘207上表面。
在一些实施例中,托盘207中心还设置有与旋转轴606配合的顶升结构,当托盘207传送至旋转轴606的正上方时,旋转轴606与该顶升结构配合,从而将托盘207平稳顶升至所需高度。在一些实施例中,顶升结构可以与旋转轴606通过卡接连接。在一些实施例中,顶升结构可以是托盘207中心的定位孔207-2,旋转轴606顶端为截面积小于中部或底端的轴,旋转轴606顶端可以插入定位孔207-2,使得旋转轴606可以平稳顶升托盘207。
图8是根据一些实施例所述的传动组件的示例性结构示意图。
如图8所示,传动组件208包括至少两个平行排列的圆柱滚轮208-1以及平行设置于圆柱滚轮208-1上下两端的两根传动架208-2,两根传动架208-2固定设置于各腔体下方(图8中未示出),使得圆柱滚轮208-1在其轴向被限定于两根传动架208-2之间并可绕自身的轴进行转动。在一些实施例中,圆柱滚轮208-1的上下两端为圆柱,且上下两端的截面积小于中部,传动架208-2上设置多个截面积大于圆柱滚轮208-1上下两端的截面积的孔,使得圆柱滚轮208-1的上下两端可以插入两根传动架208-2之间并可绕自身的轴进行转动。如图8所示,托盘207可以放置于圆柱滚轮208-1上,随着圆柱滚轮208-1转动,托盘207底部与圆柱滚轮208-1之间的静摩擦力,使得托盘207被向前传送。
在一些实施例中,圆柱滚轮208-1的数量可以根据传动架208-2的长度以及圆柱滚轮208-1上下两端的直径进行确定。在一些实施例中,圆柱滚轮208-1上下两端的直径与圆柱滚轮208-1的数量的乘积小于或等于传动架208-2的长度。在一些实施例中,圆柱滚轮208-1的数量可以为7根、8根、9根或10根。在一些实施例中,圆柱滚轮208-1之间的间距可以根据实际生产需要进行设置,能够保证随着圆柱滚轮208-1转动可以将托盘207往前传送即可。
在一些实施例中,传动架208-2可以设置为直线,也可以设置有弯角。在一些实施例中,两根传动架208-2分别设置为90°L形架并平行设置于圆柱滚轮208-1之间。需说明的是,对传动架208-2的设置形式不作限制,保证传动组件208能够连通各腔体的进口通道和出口通道,实现将托盘207在各腔体之间传进和传出即可。
真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205、末端腔体206都设置有进口通道、出口通道以及传动组件208,并且传动组件208连通各腔体的进口通道和出口通道,将托盘207放置于传动组件208上,可以通过传动组件208将托盘207在各腔体之间传送。在一些实施例中,进口通道和出口通道位置都安装有自动控制阀,通过自动控制阀可以打开或关闭进口通道和出口通道,以控制托盘207进出对应的腔体。在一些实施例中,托盘207的数量可以是一个,也可以是多个,若将放置有衬底的多个托盘207置于传动组件208上,则可以在各腔体之间实现流水线式批量传送托盘207并生长包含衬底和碳化硅晶体的组合晶体。
图9是根据一些实施例所述的碳化硅晶体制备方法的示例性流程示意图。
在一些实施例中,该碳化硅晶体制备过程900可以由控制设备(例如,控制模块101)执行。例如,过程900可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程900。在一些实施例中,过程900可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图9所示的操作的顺序并非限制性的。
在一些实施例中,碳化硅晶体制备方法可以在多腔体生长装置(例如,多腔体生长装置200、多腔体生长装置300)中进行,多腔体生长装置包括多个依次排列的腔体,关于多腔体生长装置可以参见图2A-2B、图3A-3B。在一些实施例中,碳化硅晶体制备方法可以在单个腔体或一个反应室中进行,单个腔体或一个反应室具有与多腔体生长装置对应的所有功能(例如,抽真空、加热、通入置换气体等),即,碳化硅晶体制备过程中的各个步骤(例如,真空处理过程、原位刻蚀处理过程、碳化处理过程、晶体生长过程、冷却降温过程等)可以在同一个反应室内进行。碳化硅晶体制备过程900包括:
步骤910,将衬底依次在多个腔体之间进行传送和处理。在一些实施例中,该步骤910可以由控制模块101执行。
衬底是具有特定晶面和适当电学、光学和机械特性的单晶薄片,可以用于生长外延层(例如,目标晶体),起到支撑和改善目标晶体特性的作用。选择衬底时可以综合考虑以下条件:结构特性(目标晶体与衬底的晶格结构相同或相近、晶格常数失配度小、结晶性能好)、界面特性(有利于目标晶体的生长、黏附性强)、化学稳定性(在目标晶体生长的温度和气氛中不容易分解和被腐蚀)、热学性能(导热性好和热失配度小)、良好的导电性、光学性能好(对光的吸收少)、机械性能好(容易进行抛光和切割等加工)、尺寸(直径不小于2英寸)。在一些实施例中,衬底的材料可以包括蓝宝石(Al2O3)、硅(Si)、碳化硅(SiC)、砷化镓(GaAs)、氮化铝(AIN)、氧化锌(ZnO)。
在一些实施例中,衬底可以包括单晶硅。单晶硅为光伏级单晶硅。在一些实施例中,单晶硅纯度为大于99.9999%。在一些实施例中,单晶硅纯度为大于99.99999%。在一些实施例中,单晶硅纯度为大于99.999999%。在一些实施例中,单晶硅纯度为大于99.9999999%。在一些实施例中,衬底在一个方向(称为X方向)的尺寸可以小于垂直于X方向的另一个方向的横截面的尺寸。在一些实施例中,衬底在垂直于X方向的横截面形状可以是圆形、椭圆形、多边形、规则或不规则形状。在一些实施例中,衬底在垂直于X方向的横截面形状为圆形,衬底在垂直于X方向的横截面的尺寸可以根据实际生产需要进行设置。衬底在垂直于X方向的横截面的尺寸可以为衬底边缘上距离最远的两个点的直线距离。在一些实施例中,衬底在垂直于X方向的横截面形状为圆形,圆形的直径包括1-10英寸。在一些实施例中,圆形的直径包括1.5-8英寸。在一些实施例中,圆形的直径包括2-6英寸。在一些实施例中,圆形的直径包括3-5英寸。在一些实施例中,圆形的直径包括3-4英寸。衬底在垂直于X方向的横截面的尺寸可以根据实际需要制备的目标晶体的尺寸进行选择,例如,若需要制备在垂直于X方向的横截面尺寸较大的目标晶体,则可以选择在垂直于X方向的横截面的尺大的晶体。X方向的尺寸可以称为衬底的厚度。在一些实施例中,衬底在不同区域的厚度相同。厚度相同可以为在衬底上最大厚度区域与最小厚度区域的厚度差异小于厚度阈值(例如,10um或15um)。厚度相同的平整衬底可以使晶体生长过程中应力均匀,形成晶型一致的晶体。在一些实施例中,衬底的厚度为100um-400um。在一些实施例中,衬底的厚度为160um-300um。在一些实施例中,衬底的厚度可以为180um-280um。在一些实施例中,衬底的厚度可以为200um-260um。在一些实施例中,衬底的厚度可以为220um-240um。上述衬底厚度与量产光伏单晶晶片的厚度相近,容易获得,并且衬底较薄成本较低。
在一些实施例中,多腔体生长装置至少包括原位刻蚀腔体、碳化腔体、生长腔体、缓冲腔体和传动组件,原位刻蚀腔体、碳化腔体、生长腔体和缓冲腔体依次进行排列。在一些实施例中,多腔体生长装置可以包括真空腔体、原位刻蚀腔体、碳化腔体、生长腔体、缓冲腔体、末端腔体和传动组件,原位刻蚀腔体、碳化腔体、生长腔体、缓冲腔体和末端腔体依次进行排列。在一些实施例中,每个腔体都开设有进口通道和出口通道,衬底可以通过传动组件(例如,传动组件208)在各个腔体之间传出或传进。关于多腔体装置的更多内容可以参见图2A-2B、图3A-3B的内容。
在一些实施例中,可以将衬底依次在多个腔体之间进行传送和处理,以对衬底或组合晶体分别执行不同的工序。例如,对衬底或组合晶体进行原位刻蚀处理、碳化处理、晶体生长、缓冲处理、降温冷却等工序。关于将衬底依次在多个腔体之间进行传送和处理的更多内容可以参见图11的描述。
在一些实施例中,可以在多腔体装置中同时传送多个衬底(或称为一组或一批次衬底),进行晶体生长,以实现组合晶体的批量生产。在一些实施例中,可以在多腔体装置中依次传送多组或多批次衬底,进行晶体生长,以实现组合晶体的连续流水线式生产。在一些实施例中,在至少一组或一批次衬底完成依次在多个腔体之间进行传送和处理前,启动另一个批次的至少一个衬底在多个腔体之间进行传送和处理,所述两个批次的至少一个衬底同时分别在不同的腔体进行传送和处理。
步骤920,在多个腔体中的一个腔体内,衬底表面通过气相沉积生长目标晶体,得到包含衬底和目标晶体的组合晶体。在一些实施例中,该步骤920可以由控制模块101执行。
在一些实施例中,多腔体生长装置中的一个腔体可以为生长腔体。在一些实施例中,在生长腔体内,在衬底表面通过气相沉积法进行目标晶体生长过程,从而制得包含衬底和目标晶体的组合晶体。气相沉积法把含有构成薄膜元素的气态反应物、液态反应物的蒸气或反应所需的其它气体引入反应环境内,在衬底表面发生化学反应,并把固体产物沉积到衬底表面生成薄膜。
在一些实施例中,目标晶体可以包括碳化硅晶体、氮化硅晶体、二硫化钼晶体、氮化硼晶体、石墨烯晶体等。下面主要以碳化硅晶体为例,对制备组合晶体的过程进行说明,需要注意的是,本说明书中的目标晶体不限于碳化硅晶体,可以是能够通过气相沉积法制备的任何组合晶体。
在一些实施例中,制备组合晶体的反应物可以包括硅源和碳源。在一些实施例中,硅源可以包括硅烷(SiH4)、氯硅烷、三甲基氯硅烷。在一些实施例中,碳源可以包括丙烷(C3H8)、丁烷、乙烷、乙炔。在一些实施例中,可以将硅烷和丙烷通入生长腔体中在衬底表面进行晶体生长过程。在一些实施例中,可以使用载气带载反应物气体通入生长腔体内。载气不参与反应,仅起带载反应物气体的作用,因此可以选择惰性气体或化学稳定性较高的气体。在一些实施例中,载气可以为H2、N2、Ar或He。在一些实施例中,综合考虑价格和化学稳定性,载气可以为H2、N2
在一些实施例中,可以对组合晶体进行化学刻蚀除去组合晶体上的衬底,以得到碳化硅晶体。由于碳化硅晶体与衬底的硬度不同,碳化硅晶体耐酸度或耐碱度更高,因此,可以通过酸溶液或碱溶液溶解去除衬底,而保留碳化硅晶体。
在一些实施例中,可以在第一温度区间,使用刻蚀溶液对组合晶体进行超声清洗第一时长,溶解去除衬底得到碳化硅晶体。在一些实施例中,第一温度区间可以是50℃~100℃。在一些实施例中,第一温度区间可以是65℃~80℃。在一些实施例中,第一温度区间可以是67~78℃。在一些实施例中,第一温度区间可以是70~76℃。在一些实施例中,第一温度区间可以是72~74℃。通过设定第一温度区间为50℃~100℃,可以加快刻蚀速度。
在一些实施例中,刻蚀溶液可以为碱溶液或酸溶液。在一些实施例中,碱溶液可以包括NaOH溶液、KOH溶液或NH4OH溶液。在一些实施例中,碱溶液可以是5%~30%的NaOH溶液。在一些实施例中,碱溶液可以是10%~25%的NaOH溶液。在一些实施例中,碱溶液可以是15%~20%的NaOH溶液。在一些实施例中,碱溶液可以是10%~25%的NaOH溶液。在一些实施例中,碱溶液可以是12%~23%的NaOH溶液。在一些实施例中,碱溶液可以是14%~21%的NaOH溶液。在一些实施例中,碱溶液可以是16%~18%的NaOH溶液。在一些实施例中,酸溶液可以包括盐酸溶液、稀硫酸溶液、硝酸溶液、氢氟酸或次氯酸溶液。
在一些实施例中,上述碱溶液或酸溶液的纯度可以不作限制。例如,上述碱溶液和酸溶液可以使用其他工艺(例如,光伏或半导体器件生产工艺)中回收的酸溶液和碱溶液,可以循环利用资源、节约成本且生产方式环保。
在一些实施例中,第一时长与衬底厚度正相关,衬底越厚,刻蚀去除该衬底所需的第一时长就越长。在一些实施例中,第一时长间可以是至少40分钟。在一些实施例中,第一时长间可以是40~90分钟。在一些实施例中,第一时长可以是50~80分钟。在一些实施例中,第一时长可以是55~75分钟。在一些实施例中,第一时长可以是60~70分钟。在一些实施例中,第一时长可以是63~68分钟。通过设定超声清洗的时长为40~90分钟,可以充分刻蚀除去组合晶体上的衬底,得到不含衬底的碳化硅晶体。在一些实施例中,可以通过人眼观察或成分检测,确定衬底是否刻蚀完成。可以用基面位错密度(单位面积的缺陷数量)表征碳化硅晶体的质量。关于基面位错密度的内容可以参见图1的描述。
在一些实施例中,可以对去除衬底的碳化硅晶体进行清洗。在一些实施例中,可以使用清洗液(例如,异丙醇或去离子水)在50℃~80℃和超声波作用下,对不含衬底的碳化硅晶体进行清洗一定时长(例如,3-10分钟)。通过对碳化硅晶体进行清洗,可以得到表面洁净的碳化硅晶体。
图10是根据一些实施例所述的衬底表面处理过程的示例性流程示意图。在一些实施例中,在将衬底依次在多个腔体之间进行传送和处理之前,还可以对衬底表面进行,以使衬底表面,尤其是晶体生长的表面,保持洁净和平整。
在一些实施例中,该衬底表面处理过程1000可以由控制设备(例如,控制模块101)执行。例如,过程1000可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1000。在一些实施例中,过程1000可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图10所示的操作的顺序并非限制性的。
步骤1010,对衬底表面进行抛光处理。在一些实施例中,该步骤1010可以由抛光模块104执行。
在一些实施例中,将衬底放置于抛光设备(例如,抛光机)上进行抛光。在一些实施例中,可以先对衬底背面(晶体生长面的相对面)进行抛光,然后对衬底正面(晶体生长面)进行精细抛光。在一些实施例中,可以对衬底正面(晶体生长面)进行精细抛光。在一些实施例中,可以对衬底背面(晶体生长面的相对面)进行抛光。通过对衬底背面进行抛光,去除衬底背面的切割划痕和缺陷,可以使得衬底平整,在衬底传送过程中可以保持晶体生长面的水平度。通过对衬底正面(晶体生长面)进行精细抛光,使其表面平整,便于在晶体生长时反应产物在晶体生长面上均匀结晶。
在一些实施例中,可以对抛光处理后的衬底进行干燥。例如,用氮气或氦气吹干衬底各个表面。
步骤1020,对衬底表面进行清洗处理。在一些实施例中,该步骤1010可以由清洗模块105执行。
在一些实施例中,可以使用清洗装置(例如,超声清洗设备)对衬底表面进行清洗处理,以去除抛光处理中产生的残渣。在一些实施例中,可以采用至少一种清洗液对衬底表面进行至少一次清洗。在一些实施例中,可以依次采用丙酮、酒精、去离子水对衬底表面分别超声清洗一次。在一些实施例中,一次清洗时长可以为至少5分钟。在一些实施例中,一次清洗时长可以为5-30分钟。在一些实施例中,一次清洗时长可以为10-20分钟。在一些实施例中,一次清洗时长可以为15-18分钟。在一些实施例中,可以对清洗处理后的衬底进行干燥。例如,衬底清洗完成后,用氮气或氦气吹干衬底各个表面。
在一些实施例中,将衬底表面抛光处理和清洗处理后,还可以对衬底进行进一步清洗处理。在一些实施例中,可以将抛光处理和清洗处理后的衬底放入强酸溶液中浸泡一定时长,然后进行进一步清洗处理。在一些实施例中,强酸溶液可以包括盐酸、硫酸、硝酸溶液、氢氟酸或次氯酸溶液。在一些实施例中,强酸溶液可以包括30%-40%的氢氟酸(HF)溶液。在一些实施例中,可以将强酸溶液稀释后,再将衬底放入稀释后的酸溶液中浸泡,以避免酸溶液浓度过高而损坏衬底。在一些实施例中,可以将30%-40%的HF溶液稀释为1%的HF溶液,再将衬底放入1%-3%的HF溶液中浸泡一定时长,然后用超声清洗设备进行进一步清洗处理。在一些实施例中,可以将单晶硅衬底放入1%-3%的HF溶液中浸泡5-8分钟,然后用去离子水进一步超声清洗5-10分钟。在一些实施例中,可以对进一步清洗处理后的衬底进行干燥。例如,进一步清洗完成后的衬底用氮气或氦气吹干衬底各个表面。
图11是根据一些实施例所述的将衬底在各腔体之间传送和处理的示例性流程示意图。
在一些实施例中,在各腔体之间传送和处理过程1100可以由控制设备(例如,控制模块101)执行。例如,过程1100可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1100。在一些实施例中,过程1100可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图11所示的操作的顺序并非限制性的。
关于多腔体生长装置的更多内容可以参见图2A-2B、图3A-3B和图9的内容。衬底在各腔体间传送和处理的过程1100包括:
步骤1110,在原位刻蚀腔体中对衬底进行原位刻蚀处理。
在一些实施例中,可以对至少一片衬底进行原位刻蚀处理。例如,可以将一片或多片衬底放置于托盘上,并传送至原位刻蚀腔体中进行原位刻蚀处理。在一些实施例中,可以在一定气体压力、一定温度和处理气体的反应条件下对衬底进行原位刻蚀处理。在一些实施例中,可以在第二时长范围内保持原位刻蚀腔体的压力在第二压力区间,温度在第二温度区间;然后通入氢气至原位刻蚀腔体为常压,在第三时长范围内保持原位刻蚀腔体的温度在第三温度区间对衬底进行原位刻蚀处理。关于对衬底进行原位处理的更多内容可以参见图13的描述。
通过对衬底进行原位刻蚀处理,可以去除衬底晶体生长面的缺陷,便于在衬底表面生长晶型一致、质量高的碳化硅晶体。
步骤1120,通过传动组件将衬底从原位刻蚀腔体传送至碳化腔体,进行碳化处理。
经过原位刻蚀处理后的衬底,可以进一步进行碳化处理。在一些实施例中,可以通过传动组件(例如,传动组件208)将衬底从原位刻蚀腔体传送至碳化腔体中进行碳化处理。在一些实施例中,可以在一定气体压力、一定温度和处理气体的反应条件下对衬底进行碳化处理。在一些实施例中,可以在第四时长内保持碳化腔体的压力为第三压力区间,温度原位刻蚀腔体的温度相等或相近(温度差小于或等于5℃);然后控制原位刻蚀腔体和碳化腔体之间的第三通道打开,通过传动组件208将衬底传送至碳化腔体中,关闭第三通道;之后将碳化腔体降温至第五温度区间,并抽真空至第四压力区间后,逐渐对碳化腔体升温至第四温度区间,同时通入碳化气体(例如,甲烷、丙烷、丁烷等)和氢气至第三压力进行碳化处理。关于对衬底进行碳化处理的更多内容可以参见图14的描述。
通过对衬底进行碳化处理,可以在衬底的晶体生长面上制备碳化缓冲层,有利于碳化硅晶体在衬底表面结晶。
步骤1130,通过传动组件将衬底从碳化腔体传送至生长腔体进行气相沉积,得到组合晶体。
经过碳化处理后的衬底,可以在衬底的晶体生长面上生长碳化硅晶体。在一些实施例中,可以通过传动组件(例如,传动组件208)将衬底从碳化腔体传送至生长腔体中。在一些实施例中,可以将生长腔体升温至第四温度区间,并加压至第三压力区间;然后控制碳化腔体和生长腔体之间的第四通道打开,通过传动组件208将衬底传送至生长腔体中,关闭第四通道。关于将衬底从碳化腔体传送至生长腔体中的更多内容可以参见图15的描述。
在一些实施例中,在生长腔体中,在衬底的晶体生长面进行气相沉积进行晶体生长,以制得包含衬底和碳化硅晶体的组合晶体。在一些实施例中,将生长腔体升温至第六温度区间,并通入硅烷、丙烷和氢气至第五压力区间进行晶体生长;当目标晶体生长厚度达到目标厚度时,停止进行晶体生长。关于在生长腔体中晶体生长的更多内容可以参见图16的描述。
步骤1140,通过传动组件将组合晶体从生长腔体传送至缓冲腔体,进行降温冷却。
生长完成的组合晶体可以进一步进行降温。在一些实施例中,可以通过传动组件208将组合晶体从生长腔体传送至缓冲腔体,在缓冲腔体内进行降温冷却。在一些实施例中,将缓冲腔体升温至第六温度区间,并控制生长腔体和缓冲腔体之间的第五通道打开,通过传动组件208将组合晶体传送至缓冲腔体中,关闭第五通道;然后将缓冲腔体逐渐降温至第七温度区间,保持第五时长。关于在缓冲腔体中冷却降温的更多内容可以参见图17的描述。
图12是根据一些实施例所述的真空处理的示例性流程示意图。在一些实施例中,在对衬底进行原位刻蚀处理之前,可以对衬底进行真空处理。
在一些实施例中,该真空处理过程1200可以由控制设备(例如,控制模块101)执行。例如,过程1200可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1200。在一些实施例中,过程1200可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图12所示的操作的顺序并非限制性的。
在一些实施例中,可以在真空腔体中对衬底进行真空处理。关于真空腔体的更多内容可以参见图3A-图3B的内容。对衬底进行真空处理的过程1200包括:
步骤1210,将衬底放置于真空腔体中。
在一些实施例中,可以对抛光处理和清洗处理后的衬底进行真空处理。在一些实施例中,可以人工手动将衬底放置于真空腔体中,或者可以人工手动将衬底放置于传动组件208上,通过传动组件208将衬底传送至真空腔体中。在另一些实施例中,可以通过机械结构111(如,机械手)将衬底放置于真空腔体中,或者可以通过机械结构111将衬底放置于传动组件208上,通过传动组件208将衬底传送至真空腔体中。在一些实施例中,可以将一个或多个衬底放置于真空腔体中。在一些实施例中,可以连续依次将多组衬底放置于真空腔体中。
步骤1220,关闭真空腔体的第一通道,调整真空腔体和原位刻蚀腔体的压力至第一压力区间。
在一些实施例中,第一通道为真空腔体的入口通道(例如,进口通道401)。在一些实施例中,可以调整原位刻蚀腔体与真空腔体的压力相等或相近(差值不超过5Pa)后,再将衬底传送至原位刻蚀腔体。在一些实施例中,将衬底放置于真空腔体后,关闭真空腔体的第一通道,分别对真空腔体和原位刻蚀腔体抽真空至第一压力区间。在一些实施例中,第一压力区间可以是3~15Pa。在一些实施例中,第一压力区间可以是5~10Pa。在一些实施例中,第一压力区间可以是6~9Pa。在一些实施例中,第一压力区间可以是7~8Pa。通过将真空腔体和原位刻蚀腔体的压力都调整为第一压力区间,可以减小真空腔体和原位刻蚀腔体的压力差,使得衬底处于相对稳定的环境中。
在一些实施例中,可以同时对真空腔体和原位刻蚀腔体进行抽真空。在一些实施例中,将真空腔体和原位刻蚀腔体的抽气管道(例如,抽气管道403和抽气管道503)连接后再连通至一个抽真空设备,控制抽真空设备的运行速度和时间进行抽真空。在一些实施例中,可以分别对真空腔体和原位刻蚀腔体进行抽真空,并实时监测压力。在一些实施例中,将真空腔体和原位刻蚀腔体的抽气管道分别连通至多个抽真空设备,控制抽真空设备的运行速度和时间,分别对真空腔体和原位刻蚀腔体抽真空,并实时监测压力。在一些实施例中,可以采用机械泵和分子泵联合进行抽真空。在一些实施例中,可以先通过机械泵对真空腔体和/或原位刻蚀腔体抽真空至一定真空度,然后通过分子泵对真空腔体和/或原位刻蚀腔体继续抽真空至第一压力区间。
步骤1230,传动组件通过真空腔体和原位刻蚀腔体之间的第二通道将衬底传送至原位刻蚀腔体。
在一些实施例中,当真空腔体和原位刻蚀腔体内压力相等或相近且达到第一压力区间时,可以将衬底传送至原位刻蚀腔体中。在一些实施例中,控制模块101可以控制真空腔体和原位刻蚀腔体之间的第二通道打开,启动传动组件208将衬底传送至原位刻蚀腔体中的特定位置,关闭第二通道,并停止传动组件208。第二通道是指真空腔体和原位刻蚀腔体相邻的通道,例如,第二通道可以是原位刻蚀腔体的进口通道501或真空腔体的出口通道402。在一些实施例中,原位刻蚀腔体的进口通道501和真空腔体的出口通道402为同一个通道。在一些实施例中,原位刻蚀腔体中的特定位置可以是原位刻蚀腔体的底部中心区域。在一些实施例中,可以通过检测模块102(如,传感器)检测衬底的位置。在一些实施例中,当检测模块102检测到衬底处于原位刻蚀腔体的底部中心区域时,可以将衬底的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止运转。
图13是根据一些实施例所述的原位刻蚀处理的示例性流程示意图。
在一些实施例中,该原位刻蚀处理过程1300可以由控制设备(例如,控制模块101)执行。例如,过程1300可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1300。在一些实施例中,过程1300可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图13所示的操作的顺序并非限制性的。
在一些实施例中,可以在原位刻蚀腔体中对衬底进行原位刻蚀处理。关于原位刻蚀腔体的更多内容可以参见图2A-图2B、图3A-图3B的内容。对衬底进行原位刻蚀处理的过程1300包括:
步骤1310,在第二时长范围内保持原位刻蚀腔体的压力在第二压力区间,温度在第二温度区间。
在一些实施例中,可以在第一条件下通入氢气对衬底进行原位刻蚀处理。在一些实施例中,第一条件可以包括在第二时长范围内保持压力在第二压力区间,温度在第二温度区间。在一些实施例中,第二压力区间为压力小于5×10-3Pa的范围内。在一些实施例中,第二压力区间为压力小于1×10-3Pa的范围内。在一些实施例中,第二压力区间可以为压力小于0.8×10-3Pa的范围内。在一些实施例中,第二压力区间可以为压力小于0.5×10-3Pa的范围内。在一些实施例中,第二压力区间可以为压力小于1×10-4Pa的范围内。在一些实施例中,第二压力区间为压力小于1×10-5Pa的范围内。通过将原位刻蚀腔体的压力设置为小于5×10-3Pa的范围内,有利于原位刻蚀处理过程中产生的气体从衬底表面脱附,脱附效果更好。
为了在不损伤衬底的前提下,尽量除去原位刻蚀腔体内的气体,第二温度应选择适宜的温度区间。例如,氮气或氧气吸附在衬底表面,温度过低不利于上述气体脱附,温度过高则易使衬底氮化或氧化。在一些实施例中,第二温度区间可以包括400~900℃。在一些实施例中,第二温度区间可以包括500~800℃。在一些实施例中,第二温度区间可以包括550~750℃。在一些实施例中,第二温度区间可以包括600~700℃。在一些实施例中,第二温度区间可以包括630~680℃。在一些实施例中,可以通过加热体505对原位刻蚀腔体进行温度调节。关于加热体505的更多内容可以参见图5的描述。
在一些实施例中,第二时长可以为至少10分钟。在一些实施例中,第二时长可以为10~90分钟。在一些实施例中,第二时长可以为20~80分钟。在一些实施例中,第二时长可以为25~75分钟。在一些实施例中,第二时长可以为30~70分钟。在一些实施例中,第二时长可以是40~60分钟。通过将第二温度区间保持10~90分钟,可以使得原位刻蚀腔体内的温度保持稳定,便于后续对衬底进行均匀、有效的刻蚀。
在一些实施例中,将衬底传送至原位刻蚀腔体后,控制模块101可以控制抽真空设备对原位刻蚀腔体抽真空使得原位刻蚀腔体内压力达到第二压力区间,并缓慢升温至第二温度区间保持第二时长,以充分排出原位刻蚀腔体内的气体。
步骤1320,通入氢气至常压,在第三时长范围内保持原位刻蚀腔体的温度在第三温度区间进行原位刻蚀处理。
在一些实施例中,第三温度区间可以包括900~1300℃。在一些实施例中,第三温度区间可以包括1000~1200℃。在一些实施例中,第三温度区间可以包括1050~1150℃。在一些实施例中,第三温度区间可以包括1080~1130℃。通过设置原位刻蚀腔体的温度在第三温度区间,可以使得氢气与衬底表面附着的氧化物进行反应,氧化物被还原以完成原位刻蚀处理。
在一些实施例中,第三时长可以是至少0.5分钟。在一些实施例中,第三时长可以是0.5~5分钟。在一些实施例中,第三时长可以是1~3分钟。在一些实施例中,第三时长可以是1.5~2.8分钟。在一些实施例中,第三时长可以是1.8~2.5分钟。在一些实施例中,第三时长可以是2分钟。通过在常压、第三温度区间下刻蚀第三时长,可以对衬底进行充分刻蚀。
在一些实施例中,排出原位刻蚀腔体内的气体后,控制模块101可以控制向原位刻蚀腔体中通入氢气进行原位刻蚀处理。在一些实施例中,控制模块101可以控制进气管道504上的阀门打开并向原位刻蚀腔体中通入氢气至常压,然后控制加热体505进行加热,使原位刻蚀腔体内的温度升至第三温度区间保持第三时长,对衬底的晶体生长面进行原位刻蚀,去除晶体生长面的缺陷。
图14是根据一些实施例所述的碳化处理的示例性流程示意图。在一些实施例中,可以将原位刻蚀处理后的衬底传送至碳化腔体,对衬底的晶体生长面进行碳化处理,以在晶体生长面形成碳化缓冲层。
在一些实施例中,该碳化处理过程1400可以由控制设备(例如,控制模块101)执行。例如,过程1400可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1400。在一些实施例中,过程1400可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图14所示的操作的顺序并非限制性的。碳化处理的过程1400可以包括:
步骤1410,调整碳化腔体温度至第三温度区间。
在一些实施例中,可以通过碳化腔体内的加热体将碳化腔体升温至第三温度区间。关于加热体和第三温度区间的更多内容可以参见其他部分的描述。在一些实施例中,控制模块101可以控制加热模块103(如,加热体)使碳化腔体升温至第三温度区间。
将碳化腔体升温至与原位刻蚀腔体的温度相等或相近(温度差小于或等于5℃)时,再将衬底传送至碳化腔体内,避免了由于温度骤变导致衬底变形或变性。
步骤1420,通过传动组件将衬底传送至碳化腔体中。
在一些实施例中,当原位刻蚀腔体和碳化腔体的温度都保持在第三温度区间时,可以将衬底传送至碳化腔体中。在一些实施例中,控制模块101可以控制原位刻蚀腔体和碳化腔体之间的第三通道打开,启动传动组件(例如,传动组件208)将衬底传送至碳化腔体中的特定位置,关闭第三通道并停止传动组件运转。第三通道是指原位刻蚀腔体和碳化腔体相邻的通道,例如,第三通道可以是原位刻蚀腔体的出口通道502或碳化腔体的进口通道501。在一些实施例中,原位刻蚀腔体的出口通道502和碳化腔体的进口通道501为同一个通道。在一些实施例中,碳化腔体中的特定位置可以是碳化腔体的底部中心区域。在一些实施例中,可以通过检测模块102(如,传感器)检测衬底的位置。在一些实施例中,当传感器检测到衬底处于原位刻蚀腔体的底部中心区域时,可以将衬底的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止运转。
步骤1430,调整碳化腔体温度至第五温度区间,压力至第四压力区间,同时通入丙烷和氢气至第三压力区间,并在第四时长内保持碳化腔体的压力为第三压力区间,温度在第四温度区间内进行碳化处理。
衬底在原位刻蚀腔体中经过原位刻蚀处理后温度较高(900~1300℃),若直接将衬底传送至碳化腔体,衬底可能会与碳化处理气体直接进行反应,并且会使得压力和气体组分不稳定,因此可以先将碳化腔体内温度降低,待压力和气体组分稳定后再升温至碳化处理所需温度。在一些实施例中,可以在第二条件下通入丙烷和氢气对衬底进行碳化处理。在一些实施例中,第二条件可以包括压力在第四压力区间,温度在第五温度区间。
在一些实施例中,第五温度区间可以是700~1100℃。在一些实施例中,第五温度区间可以是800~1000℃。在一些实施例中,第五温度区间可以是850~980℃。在一些实施例中,第五温度区间可以是900~950℃。在一些实施例中,第四压力区间可以是小于5×10- 5Pa。在一些实施例中,第四压力区间可以是小于1×10-5Pa。在一些实施例中,第四压力区间可以是小于0.5×10-5Pa。在一些实施例中,第四压力区间可以是小于10-6Pa。当衬底传送至碳化腔体后,将碳化腔体降温至第五温度区间,并抽真空至第四压力区间,可以进一步排出碳化腔体内的气体。
在一些实施例中,第三压力区间可以是1×103~1×105Pa。在一些实施例中,第三压力区间可以是1×103-6×104Pa。在一些实施例中,第三压力区间可以是2×103-6×103Pa。在一些实施例中,第四温度区间可以是1000~1500℃。在一些实施例中,第四温度区间可以是1100~1400℃。在一些实施例中,第四温度区间可以是1200~1350℃。在一些实施例中,第四温度区间可以是1250~1300℃。
在一些实施例中,第四时长可以是至少0.5分钟。在一些实施例中,第四时长可以是0.5~5分钟。在一些实施例中,第四时长可以是1~3分钟。在一些实施例中,第四时长可以是1.5~2.5分钟。在一些实施例中,第四时长可以是2分钟。
在一些实施例中,丙烷(C3H8)的流量包括3~25sccm。在一些实施例中,丙烷(C3H8)的流量包括5~20sccm。在一些实施例中,丙烷(C3H8)的流量包括7~18sccm。在一些实施例中,丙烷(C3H8)的流量包括10~15sccm。在一些实施例中,氢气的流量包括0.5~25L/分钟。在一些实施例中,氢气的流量包括1~20L/分钟。在一些实施例中,氢气的流量包括5~15L/分钟。在一些实施例中,氢气的流量包括7~12L/分钟。
在一些实施例中,控制模块101控制碳化腔体降温至第五温度区间,并抽真空至第四压力区间后开始升温,同时通入丙烷和氢气至压力达到第三压力区间,升温至第四温度区间,恒温恒压保持第四时长进行碳化处理。
图15是根据一些实施例所述的将衬底从碳化腔体传送至生长腔体的示例性流程示意图。在一些实施例中,可以将原位刻蚀处理后的衬底传送至生长腔体,以在衬底的晶体生长面生长碳化硅晶体。
在一些实施例中,将衬底从碳化腔体传送至生长腔体的过程1500可以由控制设备(例如,控制模块101)执行。例如,过程1500可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1500。在一些实施例中,过程1500可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图15所示的操作的顺序并非限制性的。将衬底从碳化腔体传送至生长腔体的过程1500可以包括:
步骤1510,调整生长腔体温度至第四温度区间,压力至第三压力区间。
在一些实施例中,可以通过生长腔体内的加热体将生长腔体升温至第四温度区间。关于加热体和第四温度区间的更多内容可以参见其他部分的描述。在一些实施例中,控制模块101可以控制加热模块103(如,加热体)使生长腔体升温至第四温度区间。在一些实施例中,控制模块101可以控制抽真空设备对生长腔体抽气使得生长腔体内的压力调整为第三压力区间。关于第三压力区间的更多内容可以参见图14的描述。
将生长腔体升温至与碳化腔体的温度相等或相近(温度差小于或等于5℃)且抽真空至压力相等或相近(压力差不超过10Pa)时,再将衬底传送至生长腔体内,避免了由于温度或压力骤变导致衬底变形或变性。
步骤1520,控制碳化腔体和生长腔体之间的第四通道打开,通过传动组件将衬底传送至生长腔体中。
在一些实施例中,当生长腔体和碳化腔体的温度都为第四温度区间、压力都为第三压力区间时,可以将衬底传送至生长腔体中。在一些实施例中,当生长腔体的温度达到第四温度区间、压力达到第三压力区间后,控制模块101可以控制生长腔体和碳化腔体之间的第四通道打开,启动传动组件(例如,传动组件208)将衬底传送至生长腔体中的特定位置,关闭第四通道并停止传动组件。第四通道是指生长腔体和碳化腔体相邻的通道,例如,第四通道可以是碳化腔体的出口通道502或生长腔体的进口通道601。在一些实施例中,碳化腔体的出口通道502和生长腔体的进口通道601为同一个通道。在一些实施例中,生长腔体中的特定位置可以是生长腔体底部的旋转轴606的正上方。
在一些实施例中,可以通过检测模块102(如,定位器)检测衬底的位置。可以将衬底的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止运转。
在一些实施例中,当定位器确定衬底位于生长腔体的预设位置时,可以将衬底的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止传动。在一些实施例中,生长腔体的预设位置可以为旋转轴606的正上方。在一些实施例中,定位器可以设置于旋转轴上。在一些实施例中,控制模块101可以控制旋转轴606上升,以将衬底顶起至生长腔体的中部。在一些实施例中,旋转轴可以带动衬底顺时针或逆时针旋转。在一些实施例中,旋转轴的旋转速度可以调节。
图16是根据一些实施例所述的晶体生长的示例性流程示意图。
在一些实施例中,可以在生长腔体中在衬底的晶体生长面进行气相沉积,制得包含衬底和碳化硅晶体的组合晶体。关于生长腔体的更多内容可以参见图2A-图2B、图3A-图3B和图6的内容。
在一些实施例中,该晶体生长过程1600可以由控制设备(例如,控制模块101)执行。例如,过程1600可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1600。在一些实施例中,过程1600可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图16所示的操作的顺序并非限制性的。晶体生长过程1600可以包括:
步骤1610,将生长腔体升温至第六温度区间,调整压力至第四压力区间。
在一些实施例中,可以在第三条件下通入硅烷、丙烷和氢气在衬底上通过气相沉积生长目标晶体(例如,碳化硅晶体)。在一些实施例中,第三条件可以包括压力在第四压力区间,温度在第六温度区间。第六温度区间根据待生长晶体的类型不同而不同。在一些实施例中,第六温度区间可以是1300~1750℃。在一些实施例中,第六温度区间可以是1400~1700℃。在一些实施例中,第六温度区间可以是1450~1650℃。在一些实施例中,第六温度区间可以是1500~1600℃。在一些实施例中,第六温度区间可以是1520~1570℃。在一些实施例中,第六温度区间可以是在整个生长过程中保持恒定,也可以根据晶体生长过程的不同阶段进行调整。
在一些实施例中,控制模块101可以控制加热模块103(如,生长腔体中的加热体)使生长腔体升温至第六温度区间。关于加热体的更多内容可以参见其他部分的描述。
在一些实施例中,可以通过真空设备(例如,真空泵)将生长腔体抽真空至第四压力区间。关于第四压力区间的更多内容可以图14的描述。
步骤1620,通入硅烷、丙烷和氢气至第五压力区间进行晶体生长。
第五压力区间根据待生长晶体的类型不同而不同,对于某一特定晶体(例如,碳化硅晶体),第五压力区间过小,晶体生长速率较低;第五压力过大,晶体生长易形成缺陷。在一些实施例中,第五压力区间可以是20~100Pa。在一些实施例中,第五压力区间可以是30~90Pa。在一些实施例中,第五压力区间可以是40~80Pa。在一些实施例中,第五压力区间可以是50~70Pa。在一些实施例中,第五压力区间可以是55~65Pa。在一些实施例中,第五压力区间可以是在整个生长过程中保持恒定,也可以根据晶体生长过程的不同阶段进行调整。
在一些实施例中,通入硅烷(SiH4)的流量包括300~800sccm。在一些实施例中,通入硅烷(SiH4)的流量包括400~600sccm。在一些实施例中,通入硅烷(SiH4)的流量包括450~550sccm。在一些实施例中,通入硅烷(SiH4)的流量包括480~520sccm。在一些实施例中,通入丙烷(C3H8)的流量包括100~250sccm。在一些实施例中,通入丙烷(C3H8)的流量包括133~200sccm。在一些实施例中,通入丙烷(C3H8)的流量包括150~180sccm。在一些实施例中,通入丙烷(C3H8)的流量包括160~170sccm。在一些实施例中,通入氢气(H2)的流量包括10~90L/分钟。在一些实施例中,通入氢气(H2)的流量包括20~80L/分钟。在一些实施例中,通入氢气(H2)的流量包括30~70L/分钟。在一些实施例中,通入氢气(H2)的流量包括40~60L/分钟。
在一些实施例中,控制模块101可以分别控制向生长腔体中通入硅烷、丙烷和氢气的流量使生长腔体的压力为第五压力区间。在生长腔体中,衬底在第六温度区间、第五压力区间以及反应物(硅烷、丙烷和氢气)的条件下进行晶体生长。
步骤1630,当目标晶体厚度达到目标厚度时,停止进行晶体生长。
在一些实施例中,目标厚度可以是200~600μm在一些实施例中,目标厚度可以是300~500μm。在一些实施例中,目标厚度可以是320~480μm。在一些实施例中,目标厚度可以是350~450μm。在一些实施例中,目标厚度可以是380~420μm。在一些实施例中,目标厚度可以是390~410μm。通过设置目标厚度为200~600μm,可以不用进行切割加工等后续处理,直接通过抛光即可获得指定厚度的晶片,提高了生产效率、节约加工成本,便于工业应用。
在一些实施例中,在晶体生长过程中,可以对晶体生长的厚度进行监控,并根据晶体生长的速度、厚度等参数,控制生长腔体的温度、压力以及硅烷、丙烷和氢气的流量比。在一些实施例中,可以采用反射式高能电子衍射装置(RHEED)对晶体生长厚度进行监控。在一些实施例中,可以通过调控加热体的发热功率,调整生长腔体的温度。在一些实施例中,可以通过分别调整硅烷、丙烷的流量,调整反应物中硅源和碳源的配比。在一些实施例中,通过调整通入硅烷、丙烷和氢气的流量,可以调整生长腔体的压力。
在一些实施例中,当晶体生长到目标厚度时,控制模块101可以控制停止进行晶体生长。在一些实施例中,控制模块101可以控制停止通入硅烷、丙烷和氢气,并且控制停止加热体对生长腔体进行加热。
图17是根据一些实施例所述的缓冲和降温处理的示例性流程示意图。
在一些实施例中,与生长腔体相邻还设置有缓冲腔体和末端腔体,以便进行晶体生长结束后的后续操作,例如,对制得的组合晶体进行冷却。通过传动组件将组合晶体从生长腔体传送至缓冲腔体,进行降温冷却至一定温度(例如,第七温度区间);然后将组合晶体传送至末端腔体中冷却至室温。通过设置缓冲腔体先将组合晶体在缓冲腔体中降温至第七温度区间(500~1200℃),再将组合晶体传送至末端腔体中冷却至室温,避免了环境温度骤降(将组合晶体从生长腔体中直接传送至末端腔体中)导致组合晶体开裂的情况出现。
在一些实施例中,该缓冲和降温处理过程1700可以由控制设备(例如,控制模块101)执行。例如,过程1700可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1700。在一些实施例中,过程1700可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图17所示的操作的顺序并非限制性的。
步骤1710,调整缓冲腔体温度至第六温度区间。
在一些实施例中,可以通过缓冲腔体内的加热体将缓冲腔体加热至第六温度区间。在一些实施例中,控制模块101可以控制加热模块103(如,加热体)使缓冲腔体升温至第六温度区间。关于加热体和第六温度区间的更多内容可以参见其他部分的描述。
将缓冲腔体加热至与生长腔体的温度相等或相近(温度差小于或等于5℃)时,避免由于缓冲腔体与生长腔体的温度差过大而形成温度骤变,从而导致组合晶体变形或变性。
步骤1720,通过传动组件将组合晶体传送至缓冲腔体中。
在一些实施例中,当缓冲腔体的温度达到第六温度区间时,可以将生长腔体和缓冲腔体之间的第五通道打开,启动传动组件(例如,传动组件208)将组合晶体传送至缓冲腔体中的特定位置,关闭第五通道并停止传动组件运转。第五通道是指生长腔体和缓冲腔体相邻的通道,例如,第五通道可以是生长腔体的出口通道602或缓冲腔体的进口通道501。在一些实施例中,生长腔体的出口通道602和缓冲腔体的进口通道501为同一个通道。在一些实施例中,缓冲腔体中的特定位置可以是缓冲腔体的底部中心区域。在一些实施例中,可以通过检测模块102(如,传感器)检测衬底的位置。在一些实施例中,当传感器检测到衬底处于缓冲腔体的底部中心区域时,可以将衬底的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止运转。
步骤1730,调整缓冲腔体温度至第七温度区间,保持第五时长进行冷却降温处理。
在一些实施例中,第七温度区间可以是500~1200℃。在一些实施例中,第七温度区间可以是550~1000℃。在一些实施例中,第七温度区间可以是600~800℃。在一些实施例中,第七温度区间可以是650~750℃。在一些实施例中,第七温度区间可以是680~720℃。在一些实施例中,第五时长可以是至少1h。在一些实施例中,第五时长可以是1-7h。在一些实施例中,第五时长可以是2-6h。在一些实施例中,第五时长可以是2.5-5.5h。在一些实施例中,第五时长可以是3-5h。在一些实施例中,第五时长可以是3.5-4.5h。
在一些实施例中,控制模块101可以控制缓冲腔体逐渐降温至第七温度区间。在一些实施例中,控制模块101可以控制进气管道504上的阀门开启并通过进气管道504向缓冲腔体中通入置换气体(例如,氢气、氮气、氩气或氦气);同时,还可以控制抽真空设备对缓冲腔体进行抽气,以保持缓冲腔体内的压力处于常压附近。在一些实施例中,当缓冲腔体的温度为第七温度区间时,控制模块101可以控制缓冲腔体的第七温度区间保持第五时长,以使得缓冲腔体内的部件或组合晶体的温度稳定于第七温度区间。
步骤1740,通过传动组件将组合晶体传送至末端腔体中。
在一些实施例中,可以将组合晶体传送至末端腔体中进行进一步冷却降温。在一些实施例中,末端腔体的温度可以为室温。在一些实施例中,控制模块101可以控制缓冲腔体和末端腔体之间的第六通道打开,启动传动组件(例如,传动组件208)将组合晶体传送至末端腔体中的特定位置,关闭第六通道并停止传动组件运转。第六通道是指缓冲腔体和末端腔体相邻的通道,例如,第六通道可以是缓冲腔体的出口通道502或末端腔体的进口通道401。在一些实施例中,缓冲腔体的出口通道502和末端腔体的进口通道401为同一个通道。在一些实施例中,缓冲腔体中的特定位置可以是缓冲腔体的底部中心区域或其他指定区域。在一些实施例中,可以通过检测模块102(如,传感器)检测组合晶体的位置。在一些实施例中,当传感器检测到组合晶体处于末端腔体的底部中心区域或其他指定区域时,可以将组合晶体的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止运转。
步骤1750,将组合晶体冷却至室温。
组合晶体可以在末端腔体内继续冷却至室温。在一些实施例中,可以在末端腔体中经过8~12h自然冷却,将组合晶体冷却至室温。在一些实施例中,可以向末端腔体中通入置换气体对组合晶体进行冷却。在一些实施例中,末端腔体上设置有进气管道和出气管道,控制模块101可以控制进气管道上的阀门开启并通过进气管道向末端腔体中通入置换气体(例如,氢气、氮气、氩气或氦气);同时,还可以控制抽真空设备对末端腔体进行抽气,以保持末端腔体内的压力处于常压附近。
在一些实施例中,组合晶体冷却至室温后,控制模块101可以控制末端腔体的出口通道402打开,并通过传动组件208将组合晶体传送至末端腔体的出口通道402附近,人工手动或通过机械手取出组合晶体。组合晶体取出后,可以对组合晶体进行化学刻蚀除去组合晶体上的衬底,得到碳化硅晶体。关于化学刻蚀的更多内容可以参见图9的描述。
在一些实施例中,过程1700可以不包括步骤1740和步骤1750,即没有末端腔体,直接在缓冲腔体中取出组合晶体后,在自然环境下进行冷却降温。
以下为本发明的一个具体实施例。通过多腔体生长装置制备碳化硅晶体的过程可以包括以下步骤:
(1)抛光处理和清洗处理:将晶体生长面为(111)面、厚度为100-400um、直径为1-10英寸的圆形单晶硅片在抛光机上进行抛光,先对(11-1)面进行抛光,使其表面平整;然后对(111)面进行精细抛光,去除表面切割划痕和缺陷。采用清洗液(例如,丙酮、酒精、去离子水)对抛光后的单晶硅片各超声清洗10-20分钟,然后用高纯氮气或氦气吹干。再将单晶硅片放入1%-3%的HF溶液中浸泡5-8分钟,然后用去离子水超声清洗5-10分钟。清洗完成后将单晶硅片用氮气或氦气吹干。
(2)真空处理:将至少一个单晶硅片放在托盘上的凹槽位置并固定,将单晶硅片的(111)面朝上。将托盘放入真空腔体中,将真空腔体抽真空至3-15Pa。在此期间,将原位刻蚀腔体抽真空至与真空腔体中压力相等或相近(差值不超过5Pa)。
(3)原位刻蚀处理:将放置有至少一个单晶硅片的托盘传送至原位刻蚀腔体中。继续将原位刻蚀腔体抽真空至5×10-3Pa以下,缓慢加热至400-900℃,保温10-90min,进行高温除气;然后向原位刻蚀腔体中通入氢气至常压,加热至1000-1200℃,保持常压并保温1-3分钟,进行原位刻蚀处理,去除晶体生长面的缺陷。
(4)碳化处理:将放置有至少一个单晶硅片的托盘传送至碳化腔体中,对晶体生长面进行碳化处理,制备碳化缓冲层。先将碳化腔体降温到800-1000℃,并进行抽真空;当真空压力小于1×10-5Pa后,开始升温,并向碳化腔体中通入5-20sccm的丙烷(C3H8)和1-20L/分钟的氢气,保持碳化腔体压力为1×103~6×104Pa。将碳化腔体升温至1100-1400℃,保温1~3分钟。在此期间,将生长腔体的温度调控为1100-1400℃。
(5)晶体生长:将放置有至少一个单晶硅片的托盘传送至生长腔体中,将生长腔体的温度调控至1400-1700℃。向生长腔体中通入400-600sccm的SiH4、133-200sccm的C3H8、20-80L/分钟的H2,将生长腔体的压力保持在30-90Pa,在生长腔体中进行晶体生长。在此期间,将缓冲腔体的温度调控为1400-1700℃。当在生长腔体中生长10-12h后,将托盘传送至缓冲腔体中。
(6)冷却降温:托盘传送到缓冲腔体后,经过2-6h将缓冲腔体降温冷却至500-1200℃。然后将托盘传送至末端腔体中,经过8-12h冷却至室温。取出组合晶体。
(7)化学刻蚀处理:将组合晶体取出后,使用10%-25%的NaOH溶液,在65~80℃条件下,进行超声清洗以进行快速刻蚀,持续时长为50-80分钟,得到化学刻蚀后的碳化硅晶体。
(8)清洗处理:将碳化硅晶体放入清洗液(例如,异丙醇)中,在50-80℃条件下,超声清洗3-10分钟。然后使用去离子水超声清洗3~10分钟,得到碳化硅晶体。
(9)测试:经过测试,制得的碳化硅晶体厚度为300-500um,晶片无明显翘曲,表面光滑。
需要注意的是,以上对碳化硅晶体的制备方法的描述,仅为描述方便,并不能把本说明书限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解本说明书的原理后,可以在不背离这一原理的情况下,对实施上述流程及系统、装置、设备进行形式和细节上的各种修正和改变。然而,这些变化和修改不脱离本说明书的范围。
本说明书实施例可能带来的有益效果包括但不限于:(1)采用多腔体生长装置进行晶体制备,至少一个衬底或组合晶体在各腔体之间进行传送,在每个腔体中分别独立进行不同的工艺处理过程,实现了流水线批量生产晶体;(2)在生长过程中,可以对目标晶体厚度进行监控,制备目标厚度的目标晶体,经过化学刻蚀后可以得到单个目标晶片成品,不需要切割,晶体制备周期短,加工成本较低、效率高;(3)使用单晶硅片作为衬底,采用气相沉积法在衬底上制备目标晶体得到组合晶体,可以使用其他工艺(例如,光伏或半导体器件生产过程)中使用过的酸液或碱液对组合晶体进行化学刻蚀去除衬底,节约了生产成本,实现了资源循环利用,使得生产方式更加环保。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
以上内容描述了本说明书和/或一些其他的示例。根据上述内容,本说明书还可以做出不同的变形。本说明书披露的主题能够以不同的形式和例子所实现,并且本说明书可以被应用于大量的应用程序中。后文权利要求中所要求保护的所有应用、修饰以及改变都属于本说明书的范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”、或“一个实施例”、或“一替代性实施例”、或“另一实施例”或“另一个实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
本领域技术人员能够理解,本说明书所披露的内容可以出现多种变型和改进。例如,以上所描述的不同系统组件都是通过硬件设备所实现的,但是也可能只通过软件的解决方案得以实现。例如:在现有的服务器上安装系统。此外,这里所披露的位置信息的提供可能是通过一个固件、固件/软件的组合、固件/硬件的组合或硬件/固件/软件的组合得以实现。
所有软件或其中的一部分有时可能会通过网络进行通信,如互联网或其他通信网络。此类通信能够将软件从一个计算机设备或处理器加载到另一个。例如:从放射治疗系统的一个管理服务器或主机计算机加载至一个计算机环境的硬件平台,或其他实现系统的计算机环境,或与提供确定轮椅目标结构参数所需要的信息相关的类似功能的系统。因此,另一种能够传递软件元素的介质也可以被用作局部设备之间的物理连接,例如光波、电波、电磁波等,通过电缆、光缆或者空气实现传播。用来载波的物理介质如电缆、无线连接或光缆等类似设备,也可以被认为是承载软件的介质。在这里的用法除非限制了有形的“储存”介质,其他表示计算机或机器“可读介质”的术语都表示在处理器执行任何指令的过程中参与的介质。
本说明书各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,例如,局域网(LAN)或广域网(WAN)、或连接至外部计算机(例如通过因特网)、或在云计算环境中、或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述属性、数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档、物件等,特将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不限于本说明书明确介绍和描述的实施例。

Claims (10)

1.一种碳化硅晶体制备方法,其特征在于,所述方法包括:
(1)选取至少一个衬底,对所述至少一个衬底进行抛光处理和清洗处理;
(2)在第一条件下,通入氢气对所述至少一个衬底进行原位刻蚀处理;
(3)在第二条件下,通入丙烷和氢气对所述至少一个衬底进行碳化处理;
(4)在第三条件下,通入硅烷、丙烷和氢气,在所述至少一个衬底上通过气相沉积生长碳化硅晶体,得到包括衬底和碳化硅晶体的至少一个组合晶体;
(5)将所述组合晶体置于温度为500~1200℃的环境中至少冷却降温至少1h,其中,步骤(2)-(5)在多腔体生长装置中进行,所述多腔体生长装置包括多个腔体和传动组件,将所述至少一个衬底依次在所述多个腔体之间进行传送和处理,其中,各腔体内的所述传动组件首尾依次连接,在每个腔体中分别独立进行不同的工艺处理过程;
(6)将所述组合晶体置于室温环境中降温;
(7)将所述组合晶体加热到50~100℃内,使用刻蚀溶液在50~100℃下对所述组合晶体进行超声清洗第一时长,得到基面位错密度为120-2000cm-2的所述碳化硅晶体。
2.如权利要求1所述的方法,其特征在于,所述刻蚀溶液5%-30%的NaOH溶液。
3.如权利要求1所述的方法,其特征在于,所述第一条件包括在10~90分钟范围内保持压力小于5×10-3 Pa,温度为400~900℃。
4.如权利要求1所述的方法,其特征在于,所述通入氢气对所述至少一个衬底进行原位刻蚀处理包括:
通入氢气至常压,在第三时长范围内保持所述至少一个衬底处于第三温度区间进行原位刻蚀处理。
5.如权利要求1所述的方法,其特征在于,所述第二条件包括温度为700~1100℃,压力小于5×10-5 Pa。
6.如权利要求1所述的方法,其特征在于,所述通入丙烷和氢气对所述至少一个衬底进行碳化处理包括:
同时通入丙烷和氢气至第三压力区间,并在第四时长内保持所述至少一个衬底处于压力为第三压力区间,温度在第四温度区间内进行碳化处理。
7.如权利要求1所述的方法,其特征在于,所述第三条件包括温度为1300~1750℃,压力小于5×10-5 Pa。
8.如权利要求1所述的方法,其特征在于,所述通入硅烷、丙烷和氢气,在所述至少一个衬底上通过气相沉积生长碳化硅晶体包括:
通入硅烷、丙烷和氢气至第五压力区间,保持所述至少一个衬底处于1300~1750℃内进行晶体生长;
当所述碳化硅晶体厚度达到目标厚度时,停止进行晶体生长。
9.如权利要求8所述的方法,其特征在于,所述目标厚度包括200~600μm。
10.如权利要求1所述的方法,其特征在于,所述冷却降温还包括:
通入置换气体对所述组合晶体进行冷却降温处理。
CN202110362787.6A 2021-04-02 2021-04-02 一种碳化硅晶体制备方法 Active CN113113290B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110362787.6A CN113113290B (zh) 2021-04-02 2021-04-02 一种碳化硅晶体制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110362787.6A CN113113290B (zh) 2021-04-02 2021-04-02 一种碳化硅晶体制备方法

Publications (2)

Publication Number Publication Date
CN113113290A CN113113290A (zh) 2021-07-13
CN113113290B true CN113113290B (zh) 2021-12-24

Family

ID=76713888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110362787.6A Active CN113113290B (zh) 2021-04-02 2021-04-02 一种碳化硅晶体制备方法

Country Status (1)

Country Link
CN (1) CN113113290B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150055A (zh) * 2006-09-18 2008-03-26 中国科学院半导体研究所 用于MEMS器件的大面积3C-SiC薄膜的制备方法
JP2009218575A (ja) * 2008-02-12 2009-09-24 Toyota Motor Corp 半導体基板の製造方法
CN105140102A (zh) * 2015-07-08 2015-12-09 中国电子科技集团公司第五十五研究所 一种优化的在硅衬底上外延生长β-碳化硅薄膜的方法
CN106169497A (zh) * 2015-05-19 2016-11-30 精工爱普生株式会社 碳化硅基板以及碳化硅基板的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150055A (zh) * 2006-09-18 2008-03-26 中国科学院半导体研究所 用于MEMS器件的大面积3C-SiC薄膜的制备方法
JP2009218575A (ja) * 2008-02-12 2009-09-24 Toyota Motor Corp 半導体基板の製造方法
CN106169497A (zh) * 2015-05-19 2016-11-30 精工爱普生株式会社 碳化硅基板以及碳化硅基板的制造方法
CN105140102A (zh) * 2015-07-08 2015-12-09 中国电子科技集团公司第五十五研究所 一种优化的在硅衬底上外延生长β-碳化硅薄膜的方法

Also Published As

Publication number Publication date
CN113113290A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
KR101882773B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
US9589819B1 (en) Substrate processing apparatus
CN102016119B (zh) 热处理装置
US9543220B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, substrate processing method, and recording medium
US9023429B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP5158068B2 (ja) 縦型熱処理装置及び熱処理方法
US20120225308A1 (en) Multilayer substrate and method for producing the same, diamond film and method for producing the same
CN113089089B (zh) 一种碳化硅晶体制备装置及其生长方法
JP2008159947A (ja) 成膜装置および成膜方法
KR100985835B1 (ko) 반도체장치의 제조방법, 막생성방법 및 기판처리장치
JP2015067878A (ja) 熱処理装置及び熱処理方法
US20220170160A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP2002158175A (ja) 化学気相成長装置および半導体膜の成長方法
CN113113290B (zh) 一种碳化硅晶体制备方法
US11289350B2 (en) Method of manufacturing semiconductor device
WO2022205480A1 (zh) 一种组合晶体制备方法和系统
JP2014027028A (ja) SiCエピタキシャル基板製造装置、SiCエピタキシャル基板の製造方法、SiCエピタキシャル基板
US20240110307A1 (en) Methods and systems for producing composite crystals
KR20060046489A (ko) 피처리체의 산화 방법, 산화 장치 및 기억 매체
JP5333804B2 (ja) 成膜装置および成膜方法
JP4324632B2 (ja) 半導体装置の製造方法および基板処理装置
KR102492343B1 (ko) 성막 장치 및 성막 방법
KR102581343B1 (ko) 성막 장치
CN113745131A (zh) 多层外延工艺及其线性平台设备
US20230187243A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No.3 junle Road, Jinxiang Chemical Industrial Park, Dongpo District, Meishan City, Sichuan Province, 620010

Applicant after: Meishan Boya New Material Co.,Ltd.

Address before: No.3 junle Road, Jinxiang Chemical Industrial Park, Dongpo District, Meishan City, Sichuan Province, 620010

Applicant before: Meishan Boya new materials Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220531

Address after: 620010 No. 3, junle Road, high tech Industrial Park, Dongpo District, Meishan City, Sichuan Province

Patentee after: Meishan Tianle semiconductor material Co.,Ltd.

Address before: No.3 junle Road, Jinxiang Chemical Industrial Park, Dongpo District, Meishan City, Sichuan Province, 620010

Patentee before: Meishan Boya New Material Co.,Ltd.

TR01 Transfer of patent right