WO2022205480A1 - 一种组合晶体制备方法和系统 - Google Patents

一种组合晶体制备方法和系统 Download PDF

Info

Publication number
WO2022205480A1
WO2022205480A1 PCT/CN2021/085469 CN2021085469W WO2022205480A1 WO 2022205480 A1 WO2022205480 A1 WO 2022205480A1 CN 2021085469 W CN2021085469 W CN 2021085469W WO 2022205480 A1 WO2022205480 A1 WO 2022205480A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
substrate
growth
crystal
cavity
Prior art date
Application number
PCT/CN2021/085469
Other languages
English (en)
French (fr)
Inventor
王宇
杨田
Original Assignee
眉山博雅新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眉山博雅新材料有限公司 filed Critical 眉山博雅新材料有限公司
Priority to JP2023561027A priority Critical patent/JP2024513870A/ja
Priority to PCT/CN2021/085469 priority patent/WO2022205480A1/zh
Priority to EP21934135.1A priority patent/EP4289993A4/en
Priority to US17/451,647 priority patent/US20220316093A1/en
Publication of WO2022205480A1 publication Critical patent/WO2022205480A1/zh
Priority to US18/482,847 priority patent/US20240110307A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0236Pretreatment of the material to be coated by cleaning or etching by etching with a reactive gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/025Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/005Transport systems

Definitions

  • the present specification relates to the technical field of crystal preparation, in particular to a combined crystal preparation method and system.
  • An aspect of the embodiments of the present specification provides a method for preparing a combined crystal, the preparation method being performed in a multi-chamber growth device, the multi-chamber growth device including a plurality of cavities; the method includes: placing at least one lining The substrates are sequentially transferred and processed among the plurality of cavities; in one of the plurality of cavities, a target crystal is grown by vapor deposition to obtain at least one combined crystal comprising the substrate and the target crystal.
  • the method prior to sequentially transferring and processing the at least one substrate between the plurality of cavities, the method further comprises: polishing the at least one substrate.
  • the method prior to sequentially transferring and processing the at least one substrate between the plurality of chambers, the method further includes: performing a cleaning process on the at least one substrate.
  • the method further includes: in a first temperature range, using an etching solution to ultrasonically clean the combined crystal for a first period of time to obtain the target with a basal plane dislocation density of 120-2000 cm ⁇ 2 crystal.
  • the multi-chamber growth apparatus at least includes: an in-situ etching chamber, a carbonization chamber, a growth chamber, a buffer chamber, and a transmission assembly; the transmission assembly sequentially passes at least one substrate through all the The in-situ etching chamber, the carbonization chamber, the growth chamber and the buffer chamber are processed.
  • the method further comprises: starting another batch of at least one substrate in the plurality of chambers before the at least one substrate completes the sequential transfer and processing between the plurality of chambers Transport and processing are performed between the two batches, and at least one substrate of the two batches is transported and processed in different chambers at the same time.
  • the multi-chamber growth apparatus includes a vacuum chamber; the method includes: prior to processing the at least one substrate in the in-situ etch chamber, removing the at least one substrate placed in the vacuum chamber; adjusting the pressure of the vacuum chamber and the in-situ etching chamber to a first pressure range; the transmission component transporting the at least one substrate to the in-situ etching cavity.
  • the processing of the at least one substrate in the in-situ etching chamber includes: maintaining the pressure of the in-situ etching chamber in a second pressure range for a second time period, a temperature In the second temperature interval; pass hydrogen gas to the in-situ etching chamber to normal pressure, maintain the temperature of the in-situ etching chamber within the third time range, and perform in-situ etching treatment in the third temperature interval .
  • the processing of the at least one substrate in the carbonization chamber includes: maintaining the pressure of the carbonization chamber at a third pressure range for a fourth time period, and performing the carbonization process at a temperature within the fourth temperature range .
  • the carbonization process includes: adjusting the temperature of the carbonization chamber to the third temperature range; transferring the at least one substrate into the carbonization chamber through the transmission assembly, adjusting the temperature of the carbonization chamber
  • the temperature of the carbonization chamber is to the fifth temperature range
  • the pressure is to the fourth pressure range
  • propane and hydrogen are introduced to the third pressure range at the same time
  • the pressure of the carbonization chamber is kept in the third pressure range for the fourth time period, and the temperature is in the third pressure range.
  • Carbonization treatment is performed in the fourth temperature range.
  • the processing of the at least one substrate in the growth chamber includes: maintaining the temperature of the growth chamber in a sixth temperature range, the pressure in the fourth pressure range, feeding reaction raw materials, adjusting The pressure performs the crystal growth process in the fifth pressure interval.
  • the crystal growth process includes: adjusting the temperature of the growth chamber to the fourth temperature range, and the pressure to the third pressure range; transferring the at least one substrate through the transmission assembly into the growth chamber, adjust the temperature of the growth chamber to the sixth temperature range, the pressure is in the fourth pressure range, and pass silane, propane and hydrogen into the fifth pressure range for crystal growth; when the target When the crystal thickness reaches the target thickness, the crystal growth is stopped.
  • the multi-chamber growth apparatus includes a positioner; the transferring the at least one substrate into the growth chamber by the transmission assembly includes: when the positioner determines the at least one substrate When a substrate is located at a predetermined position in the growth chamber, the transmission assembly is stopped.
  • the performing the processing in the buffer chamber includes: maintaining the temperature of the buffer chamber within a seventh temperature interval to perform cooling and cooling processing within a fifth time period.
  • the cooling process includes: adjusting the temperature of the buffer chamber to the sixth temperature range; transferring the combined crystal into the buffer chamber through the transmission component; adjusting the buffer chamber From the body temperature to the seventh temperature interval, the temperature of the buffer cavity is maintained in the seventh temperature interval for the fifth time period to perform cooling and cooling treatment.
  • the multi-chamber growth apparatus includes an end chamber; the method further includes: maintaining the temperature of the end chamber at room temperature; transferring the combined crystal to the end chamber through the transmission assembly in bulk; the combined crystals were cooled to room temperature.
  • An aspect of the embodiments of the present specification provides a combined crystal preparation system, which is applied to a crystal preparation process, wherein the system includes: at least one memory for storing computer instructions; at least one processor, the at least one processor is connected to The at least one memory communicates that when the at least one processor executes the computer instructions, the at least one processor causes the system to perform: sequentially transporting and processing at least one substrate between multiple chambers ; In one of the plurality of cavities, a target crystal is grown by vapor deposition to obtain at least one combined crystal comprising the substrate and the target crystal.
  • the at least one processor causes the system to perform: in a first temperature interval, ultrasonically clean the combined crystal with an etching solution for a first time period to obtain a basal plane dislocation density of 120-2000 cm -2 of the target crystal.
  • the multi-chamber growth apparatus includes at least an in-situ etching chamber, a carbonization chamber, a growth chamber, a buffer chamber, and a transmission assembly; the at least one processor causes the system to perform: At least one substrate is sequentially processed through the in-situ etching chamber, the carbonization chamber, the growth chamber and the buffer chamber through a transmission assembly.
  • the at least one processor causes the system to: initiate at least one of another batch before the at least one substrate completes the sequential transfer and processing between the plurality of chambers The substrates are transferred and processed between the plurality of chambers, and at least one substrate of the two batches is transferred and processed in different chambers simultaneously at the same time.
  • An aspect of the embodiments of the present specification provides a computer-readable storage medium, wherein the storage medium stores computer instructions, which, when executed by a processor, implement the method described in any of the embodiments of the present specification.
  • the multi-cavity growth apparatus includes: an in-situ etching cavity; a carbonization cavity; and a growth cavity, which is used for A target crystal is grown by vapor deposition to obtain at least one combined crystal including a substrate and a target crystal; a buffer cavity; a transmission assembly; the transmission assembly sequentially passes the at least one substrate through the in-situ etching cavity, the The carbonization chamber, the growth chamber and the buffer chamber are processed.
  • the multi-chamber growth apparatus further includes a vacuum chamber.
  • the multi-chamber growth device further includes a tip chamber.
  • the transmission assembly includes at least two rotatable cylindrical rollers arranged in parallel, and the rotatable cylindrical rollers are located side by side under each cavity.
  • the multi-chamber growth apparatus includes a tray; the tray is provided with at least one groove, and the at least one groove is used to place at least one substrate.
  • the growth chamber includes an axis of rotation.
  • the multi-chamber growth device includes a positioner.
  • each of the in-situ etching chamber, the carbonization chamber and the growth chamber includes at least one gas inlet pipe.
  • the vacuum chamber, the in-situ etching chamber, the carbonization chamber, and the growth chamber each include at least one gas pumping pipe.
  • heating bodies are respectively provided in the in-situ etching cavity, the carbonization cavity, the growth cavity and the buffer cavity.
  • FIG. 1 is a schematic diagram of exemplary hardware and/or software of a crystal preparation system according to some embodiments
  • FIG. 2A is a schematic diagram of an exemplary structure of a multi-chamber growth apparatus according to some embodiments.
  • 2B is a top view of an exemplary distribution of cavities in a multi-chamber growth apparatus according to some embodiments
  • 3A is a schematic diagram of an exemplary structure of a multi-chamber growth apparatus according to other embodiments.
  • 3B is a top view of an exemplary distribution of cavities in a multi-chamber growth apparatus according to further embodiments.
  • FIG. 4 is an exemplary structural schematic diagram of the first type of cavity according to some embodiments.
  • FIG. 5 is an exemplary structural schematic diagram of a second type of cavity according to some embodiments.
  • FIG. 6 is a schematic diagram of an exemplary structure of a third type of cavity according to some embodiments.
  • FIG. 7 is a schematic diagram of an exemplary structure of a tray according to some embodiments.
  • FIG. 8 is an exemplary structural schematic diagram of a transmission assembly according to some embodiments.
  • FIG. 9 is an exemplary schematic flow diagram of a method for preparing silicon carbide crystals according to some embodiments.
  • FIG. 10 is an exemplary flow diagram of a substrate surface treatment process according to some embodiments.
  • Figure 11 is a schematic flow diagram of an exemplary flow for transferring and processing substrates between chambers, according to some embodiments.
  • FIG. 12 is a schematic flow diagram of an exemplary vacuum process according to some embodiments.
  • FIG. 13 is a schematic flow diagram of an in-situ etching process according to some embodiments.
  • FIG. 14 is a schematic flow diagram of an exemplary carbonization process according to some embodiments.
  • 15 is a schematic diagram of an exemplary process flow for transferring a substrate from a carbonization chamber to a growth chamber in accordance with some embodiments
  • 16 is a schematic flow diagram of an exemplary crystal growth according to some embodiments.
  • 17 is a schematic flow diagram of an exemplary process for buffering and cooling according to some embodiments.
  • system means for distinguishing different components, elements, parts, sections or assemblies at different levels.
  • device means for converting signals to signals.
  • FIG. 1 is a schematic diagram of exemplary hardware and/or software of a crystal preparation system according to some embodiments.
  • the crystal preparation system 100 may include a control module 101 , a detection module 102 , a heating module 103 , a polishing module 104 , a cleaning module 105 , a vacuum module 106 , an etching module 107 , a carbonization module 108 , a growth module 109 , a driver Module 110 , mechanical structure 111 , communication module 112 , power supply module 113 and input/output module 114 .
  • the modules, units and sub-units mentioned in this specification can be implemented by hardware, software or a combination of software and hardware.
  • the implementation of hardware may include using circuits or structures composed of physical components to implement; the implementation of software may include storing operations corresponding to modules, units, and sub-units in a memory in the form of codes, and using appropriate hardware, such as, microprocessor to execute.
  • the modules, units and sub-units mentioned in this specification perform their operations, unless otherwise specified, it may mean that the software code containing the function is executed, or the hardware with the function is used.
  • the modules, units and sub-units mentioned in this specification do not limit the structure of their corresponding hardware when they correspond to hardware, as long as the hardware that can realize their functions is within the protection scope of this specification.
  • different modules, units and sub-units mentioned in this specification may correspond to the same hardware structure.
  • the same module, unit and sub-unit mentioned in this specification may also correspond to multiple independent hardware structures.
  • Control module 101 may be associated with other modules. In some embodiments, the control module 101 may control the operating states of other modules (eg, the detection module 102, the heating module 103, the driving module 110, the communication module 112, the power supply module 113, etc.). In some embodiments, the control module 101 may control the drive module 110 to start or stop. In some embodiments, the control module 101 may control the power supply power, power supply duration, and the like of the power supply module 113 . In some embodiments, the control module 101 may manage the data acquisition or transmission process in the communication module 112 .
  • the control module 101 may manage the data acquisition or transmission process in the communication module 112 .
  • the detection module 102 is used to detect process parameters of the system, such as temperature, pressure, gas flow rate, crystal growth thickness, and the like. In some embodiments, the detection module 102 may send the detection results of the system process parameters to the control module 101, and the control module 101 may execute subsequent operations or instructions according to the detection results. In some embodiments, the detection module 102 can monitor the temperature in the growth chamber and send the temperature data to the control module 101 , and the control module 101 determines whether to adjust the operating parameters of the heating module 103 (eg, according to the real-time feedback temperature data from the detection module 102 ) , heating current, heating power, etc.) to control the temperature in the growth chamber.
  • the detection module 102 can monitor the temperature in the growth chamber and send the temperature data to the control module 101 , and the control module 101 determines whether to adjust the operating parameters of the heating module 103 (eg, according to the real-time feedback temperature data from the detection module 102 ) , heating current, heating power, etc.) to control the temperature in the growth chamber.
  • the detection module 102 can monitor the pressure in the vacuum chamber and send the pressure data to the control module 101.
  • the control module 101 determines whether to continue to vacuum the vacuum chamber according to the pressure data fed back by the detection module 102 in real time.
  • the control module 101 can control the vacuum module 106 to evacuate the vacuum chamber; otherwise, the control module 101 can control the vacuum module 106 to stop evacuation to maintain the current vacuum degree.
  • the detection module 102 can monitor the flow of various types of gaseous raw materials and send the flow data to the control module 101 , and the control module 101 determines whether to adjust the flow of various types of gaseous raw materials according to the real-time feedback of the flow of gaseous raw materials from the detection module 102 . flow rate to control the composition ratio or crystal growth thickness of the gaseous feedstock.
  • the heating module 103 is used to provide the thermal energy required by the system.
  • the heating module 103 may heat the growth chamber or the in-situ etch chamber.
  • the heating module 103 may include heating components such as resistive heating bodies, induction coils, and the like. Resistive heaters may include graphite resistors or carbon silicon rod resistors.
  • the heating module 103 may be used in combination with one or more other modules or cavities, or installed in or outside of one or more other modules or cavities to provide the other modules or cavities required thermal energy.
  • subsystems of the heating module 103 are installed in the growth chamber and the in-situ etching chamber, respectively, to control the temperature in the growth chamber and the in-situ etching chamber, respectively.
  • the polishing module 104 controls the polishing process of the substrate.
  • the substrate surface needs to be pretreated to keep the substrate surface (especially the crystal growth surface) clean and flat.
  • the pretreatment may include polishing and cleaning.
  • the polishing process is accomplished in a polishing apparatus.
  • the polishing equipment may include a polishing machine.
  • the substrate is placed on a polishing apparatus by a mechanical structure 111 (eg, a robot), which polishes the substrate.
  • the polishing module can control the polishing equipment to first polish the back side of the substrate (the opposite side of the crystal growth surface) to make the surface flat; then finely polish the front side of the substrate (the crystal growth surface) to remove surface cuts Scratches and defects.
  • the cleaning module 105 controls the cleaning process of the substrate.
  • the cleaning process may be accomplished in a cleaning device.
  • the cleaning equipment may include an ultrasonic cleaner.
  • the substrate can be placed in the cleaning equipment by the mechanical structure 111 (eg, a manipulator), and the substrate is cleaned at least twice under the action of at least one cleaning solution and ultrasonic waves. After cleaning, the mechanical structure 111 is used to remove the substrate from the cleaning solution. Remove and gas dry the substrate surface.
  • the cleaning fluid may include acetone, alcohol, or deionized water.
  • the substrate may be cleaned sequentially with acetone, alcohol, and deionized water.
  • the gas used to dry the surface of the substrate is an inert gas. In some embodiments, the gas used to dry the surface of the substrate is nitrogen with a purity greater than 99%.
  • the cleaning module 105 may control the chemical etching process and the cleaning process of the combined crystal.
  • the chemical etching process and cleaning process may be performed in a cleaning apparatus.
  • the combined crystal can be placed in a cleaning device by a mechanical structure 111 (eg, a manipulator), and under the action of a certain temperature, an alkaline solution and ultrasonic waves, the substrate on the combined crystal can be dissolved and removed to obtain a target crystal (eg, , silicon carbide crystals).
  • the alkaline solution may include a NaOH solution or a KOH solution.
  • the silicon carbide crystal from which the substrate has been removed can continue to be placed in the cleaning equipment by the mechanical structure 111 (for example, a manipulator), and cleaned under the action of a cleaning solution (for example, isopropyl alcohol or deionized water) and ultrasonic waves to obtain a substrate-free crystal. of silicon carbide crystals.
  • the basal plane dislocation density (number of defects per unit area) can be used to characterize the quality of silicon carbide crystals.
  • the basal plane dislocation density of the silicon carbide crystal is 100 ⁇ 2200 cm ⁇ 2 .
  • the basal plane dislocation density of the silicon carbide crystal is 120 ⁇ 2000 cm ⁇ 2 .
  • the basal plane dislocation density of the silicon carbide crystal is 200 ⁇ 1800 cm ⁇ 2 . In some embodiments, the basal plane dislocation density of the silicon carbide crystal is 500 ⁇ 1500 cm ⁇ 2 . In some embodiments, the basal plane dislocation density of the silicon carbide crystal is 700 ⁇ 1300 cm ⁇ 2 . In some embodiments, the basal plane dislocation density of the silicon carbide crystal is 900 ⁇ 1100 cm ⁇ 2 .
  • the vacuum module 106 controls the evacuation process of the system.
  • each cavity eg, an in-situ etching cavity, a carbonization cavity, and a growth cavity
  • the vacuuming device may include a vacuum pump.
  • the detection module 102 can detect the pressure in each cavity respectively, and send the pressure data to the control module 101, and the control module 101 executes subsequent operations or instructions according to the pressure data.
  • the detection module 102 sends the pressure data in the in-situ etching cavity or the vacuum cavity to the control module 101, and the control module 101 judges that the in-situ etching cavity or vacuum cavity needs to be etched according to the pressure data.
  • the vacuuming device may include at least one vacuum pump, and the at least one vacuum pump may be respectively connected with each cavity requiring pressure control, so as to independently evacuate each cavity.
  • the etch module 107 controls the in-situ etch process of the substrate.
  • the in-situ etching process is performed in an in-situ etching chamber.
  • the in-situ etching chamber includes one or more channels, one or more gas inlets and outlets, a heating component, and a transmission component.
  • the substrate is transferred to the in-situ etching chamber by the mechanical structure 111, and under the action of a certain temperature, a certain pressure and gas, the in-situ etching process is performed on the surface of the substrate.
  • the vacuum module 106 can evacuate the in-situ etching chamber to a certain gas pressure, slowly raise the temperature to a certain temperature and hold for a certain period of time, introduce gas (eg, hydrogen) to normal pressure, and then raise the temperature to a certain temperature The temperature is maintained for a certain period of time for in-situ etching.
  • gas eg, hydrogen
  • the detection module 102 can monitor the temperature and pressure in the in-situ etching cavity in real time, and transmit the temperature and pressure data to the control module 101 .
  • the control module 101 may control the heating module 103 to adjust the operating parameters of the heating component according to the temperature transmitted by the detection module 102 , thereby adjusting the temperature of the in-situ etching cavity.
  • the control module 101 can control the vacuum module 106 to adjust the operating parameters of the vacuum pumping equipment according to the pressure data transmitted by the detection module 102, or control the mechanical structure 111 to adjust the gas flow, thereby adjusting the pressure in the in-situ etching cavity.
  • control module 101 may control the driving module 110 to open one or more channels on the in-situ etching chamber, and transfer the substrate to the outside of the in-situ etching chamber through the mechanical structure 111 (eg, a transmission assembly). .
  • the carbonization module 108 controls the carbonization process of the substrate.
  • the carbonization process is performed in a carbonization chamber.
  • the carbonization chamber includes one or more channels, one or more gas inlets and outlets, heating components, and transmission components.
  • the substrate is transferred to the carbonization chamber by the mechanical structure 111, and the substrate is carbonized under the action of a certain temperature, a certain pressure and a gas.
  • the temperature of the carbonization chamber may be pre-heated to a certain temperature, and after the transmission assembly transfers the substrate to the carbonization chamber, the temperature of the carbonization chamber is lowered to another temperature, and the temperature is started after vacuuming to a certain gas pressure At the same time, a gas (for example, propane, hydrogen) is introduced to a certain gas pressure, and the carbonization treatment is performed after the temperature rises to a certain temperature for a certain period of time.
  • a gas for example, propane, hydrogen
  • the detection module 102 can monitor the temperature and pressure data in the carbonization chamber in real time, and transmit the temperature and pressure data to the control module 101 .
  • the control module 101 may control the heating module 103 to adjust the operating parameters of the heating assembly according to the temperature transmitted by the detection module 102, thereby adjusting the temperature of the carbonization cavity.
  • the control module 101 can control the vacuum module 106 to adjust the operating parameters of the vacuum equipment according to the pressure data transmitted by the detection module 102, or control the mechanical structure 111 to adjust the gas flow, thereby adjusting the pressure in the carbonization chamber.
  • the substrate can be transferred out of the carbonization chamber.
  • the control module 101 can control the driving module 110 to open one or more channels on the carbonization chamber, and transfer the substrate out of the growth chamber through the mechanical structure 111 (eg, a transmission assembly).
  • the growth module 109 controls the crystal growth process.
  • the crystal growth method may include a vapor deposition method, a liquid deposition method, a pulling method, a hydrothermal method, a flame melting method, and the like.
  • the vapor deposition method introduces the gaseous reactants, the vapors of the liquid reactants or other gases required for the reaction into the reaction environment, the chemical reaction occurs on the surface of the substrate, and the solid product is deposited on the surface of the substrate. generate thin films.
  • Vapor deposition methods may include physical vapor deposition methods, chemical vapor deposition methods.
  • the chemical vapor deposition method may be metal organic compound chemical vapor deposition (MOCVD), plasma chemical vapor deposition (PCVD), laser chemical vapor deposition (LCVD), low pressure chemical vapor deposition (LPCVD), Ultra-vacuum chemical vapor deposition (UHVCVD), ultrasonic chemical vapor deposition (UWCVD), etc.
  • MOCVD metal organic compound chemical vapor deposition
  • PCVD plasma chemical vapor deposition
  • LCD laser chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • UHVCVD Ultra-vacuum chemical vapor deposition
  • UWCVD ultrasonic chemical vapor deposition
  • crystal growth is accomplished in a growth chamber.
  • the growth chamber can be a kettle-type growth chamber, a tubular growth chamber, a tower-type growth chamber, a fluidized bed or a fixed bed.
  • the growth chamber can include one or more channels, one or more gas inlets and outlets, a heating assembly, and a rotating assembly.
  • the substrate is transferred into the growth chamber by the mechanical structure 111, and the crystal growth process is performed on the surface of the substrate under a certain temperature and a certain pressure.
  • the growth chamber can be heated to a predetermined temperature, which varies with the crystal to be grown.
  • the temperature can be kept constant during the entire growth process, or can be adjusted during the growth process in combination with different crystal growth methods. .
  • the temperature can be monitored by the detection module 102 and controlled by the control module 101 to control the heating module 103 to achieve precise control. And pass certain types of gases.
  • the growth chamber will maintain a certain set pressure, which varies with the crystal to be grown. Adjustment.
  • the pressure can be monitored by the detection module 102 and precisely controlled by the control module 101 to control the drive module 110 .
  • the control module 101 controls the temperature and pressure of the growth chamber, and the flow of various gases.
  • the control module 101 can control the driving module 110 and then the mechanical structure 111 to stop the growth of the crystal.
  • the control module 101 can control the driving module 110 to open one or more channels, and transfer the substrate on which crystals are grown out of the growth chamber through the mechanical structure 111 (eg, a transmission assembly).
  • the crystal growth apparatus may include a buffer chamber for cooling the combined crystal.
  • the buffer cavity includes one or more channels, one or more gas inlets and outlets, a heating component, and a transmission component.
  • the combined crystals are transported into the buffer chamber by the mechanical structure 111 and cooled at a certain temperature.
  • the cooled combined crystals can be transported out of the buffer chamber.
  • the control module 101 may control the drive module 110 to open one or more channels on the buffer cavity, and transfer the combined crystals out of the buffer cavity through the mechanical structure 111 (eg, a transmission assembly).
  • the crystal growth apparatus may include an end cavity for further cooling of the combined crystal.
  • the end cavity includes one or more passages, one or more gas inlet and outlet, heating components, and transmission components.
  • the combined crystals cooled in the buffer cavity are transported to the end cavity by the mechanical structure 111 and further cooled at a certain temperature.
  • the cooled combined crystals can be delivered out of the end cavity.
  • the control module 101 can control the drive module 110 to open one or more channels on the end cavity, and transfer the combined crystal to the outside of the end cavity through the mechanical structure 111 (eg, a transmission assembly).
  • the drive module 110 may include one or more drive power sources.
  • the drive power source may include a drive motor that is powered by electricity.
  • the drive motor may be one or a combination of a DC motor, an AC induction motor, a permanent magnet motor, a switched reluctance motor, and the like.
  • the drive module 110 may include one or more drive motors.
  • the detection module 102 detects that the crystal growth thickness has reached a process requirement, and the control module 101 can control the driving module 110 to operate, so as to drive the mechanical structure 111 to perform corresponding operations.
  • the control module 101 issues an instruction that includes an electrical signal that includes the desired operating state and duration.
  • the driving force source of the driving module 110 is correspondingly configured according to the content of the electrical signal (for example, the driving motor in the driving module 110 rotates at a specific speed per minute for a specific period of time), and the rotation of the driving motor drives the state of the mechanical structure 111 connected to it. Changes (eg, advance, stop of drive assembly, opening and closing of chamber channels, opening and closing of gas inlet and outlet) to transfer the combined crystals out of the growth chamber.
  • the control module 101 may send a control instruction to the driving module 110, and the driving module 110 drives the polishing apparatus to operate according to the control instruction.
  • the mechanical structure 111 is not limited to the above-mentioned transmission components, channels, gas inlet and outlet, polishing equipment, etc., and may also be other structures. Any mechanical mechanism of equipment that can use the crystal preparation method contained in this specification is within the protection scope of this specification.
  • the communication module 112 may be used for the exchange of information or data. In some embodiments, communication module 112 may be used among components within crystal preparation system 100 (eg, control module 101 , detection module 102 , heating module 103 , vacuum module 106 , input/output module 114 , and/or drive module 110 ) communication between.
  • the detection module 102 can send system information (eg, data such as temperature, pressure, gas flow, etc.) to the communication module 112, and the communication module 112 can send the information to the control module 101 for the control module 101 to determine whether to Adjust the operating parameters of other modules (eg, the heating module 103 , the vacuum module 106 ); if it is determined that the operating parameters need to be adjusted, the control module 101 sends the adjusted operating parameters to the relevant modules through the communication module 112 .
  • the communication module 112 may also be used for communication between the crystal preparation system 100 and other external devices (eg, servers, user terminals, etc.).
  • the communication module 112 may send status information (e.g., operating parameters, etc.) of the crystal preparation system 100 to the user terminal, and the user terminal may monitor the crystal preparation system 100 based on the status information.
  • the communication module 112 may employ wired, wireless, and wired/wireless hybrid technologies. Wired technology may be based on a combination of one or more fiber optic cables such as metallic cables, hybrid cables, fiber optic cables, and the like. Wireless technologies may include Bluetooth, Wi-Fi, ZigBee, Near Field Communication (NFC), Radio Frequency Identification (RFID), cellular networks (including GSM) , CDMA, 3G, 4G, 5G, etc.), cellular-based Narrow Band Internet of Things (NBIoT), etc.
  • the communication module 112 may use one or more encoding methods to encode the transmitted information, for example, the encoding methods may include phase encoding, non-return-to-zero code, differential Manchester code, and the like. In some embodiments, the communication module 112 may select different transmission and encoding modes according to the data type or network type to be transmitted. In some embodiments, the communication module 112 may include one or more communication interfaces for different communication modes. In some embodiments, other modules in crystal preparation system 100 (eg, heating module 103 ) may be dispersed over multiple cavities, in which case each of the other modules may include one or more communication modules, respectively 112, to perform information transmission between modules. In some embodiments, the communication module 112 may include one receiver and one transmitter.
  • the encoding methods may include phase encoding, non-return-to-zero code, differential Manchester code, and the like.
  • the communication module 112 may select different transmission and encoding modes according to the data type or network type to be transmitted.
  • the communication module 112 may include one
  • the communication module 112 may be a transceiver. In some embodiments, the communication module 112 may also have a reminder or/and an alarm function. In some embodiments, when the crystal preparation system 100 fails to operate (eg, the temperature or pressure of crystal growth exceeds the limit), the communication module 112 can send a reminder message or alarm message to the field operator and/or the user terminal. In some embodiments, the alarm mode may include sound alarm, light alarm, remote alarm, etc., or any combination thereof. In some embodiments, when the alarm mode is remote alarm, the communication module 112 may send reminder information or alarm information to the associated user terminal, and the communication module 112 may also establish communication between the on-site operator and the associated user terminal (such as voice calls, video calls).
  • the communication module 112 can also send a prompt message to the field operator or/and the user terminal. In some embodiments, the communication module 112 may send prompt information that the temperature or pressure meets the process requirements to the associated user terminal.
  • power module 113 may provide power to other modules and components in crystal preparation system 100 (eg, detection module 102, control module 101, communication module 112, input/output module 114, drive module 110).
  • the power supply module 113 may receive control signals from the control module 101 to control the power output of the crystal preparation system 100 .
  • the power supply module 113 may only supply power to the modules that are running if no operation of the control module 101 on certain modules is received for a certain period of time (eg, 1s, 2s, 3s, or 4s) , so that the crystal preparation system 100 enters the power saving mode.
  • the power supply module 113 may disconnect the power supply to other modules, Data in the crystal preparation system 100 can be dumped to a hard disk.
  • the power supply module 113 may include at least one power supply.
  • the power source may include one or a combination of fuel-fired generators, gas-fired generators, coal-fired generators, solar power generators, wind power generators, water power generators, and the like.
  • the oil-fired generator, gas-fired generator, and coal-fired generator can convert chemical energy into electrical energy and store it in the power supply module 113 .
  • the solar generator can convert light energy into electrical energy and store it in the power supply module 113 .
  • the wind energy generator can convert wind energy into electrical energy and store it in the power supply module 113 .
  • the hydroelectric generator can convert mechanical energy into electrical energy and store it in the power supply module 113 .
  • the control module 101 may send a control signal to the communication module 112, and the control signal may control the communication module 112 to issue a voice reminder to the user terminal and/or the field operator.
  • the voice reminder may include information that the voltage of the power supply module 113 is unstable.
  • the power supply module 113 may include a backup power supply, and the power supply module 113 may use the backup power supply to temporarily supply power in an emergency (eg, circuit failure, power failure of an external power system).
  • the input/output module 114 may acquire, transmit and send signals. Input/output module 114 may interface or communicate with other components in crystal preparation system 100 . Other components in crystal preparation system 100 may be connected or communicated through input/output module 114 .
  • the input/output module 114 can be a wired USB interface, a serial communication interface, a parallel communication port, or a wireless Bluetooth, infrared, radio-frequency identification (RFID), wireless local area network authentication and security infrastructure (WLAN). Authentication and Privacy Infrastructure, WAPI), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division Multiple Access, CDMA), etc., or any combination thereof.
  • the input/output module 114 may be connected to a network and obtain information through the network.
  • the input/output module 114 may obtain crystal growth information from the detection module 102 through the network or the communication module 112 for output. In some embodiments, the input/output module 114 may obtain reminders or control instructions from the control module 101 through the network or the communication module 112 . In some embodiments, the input/output module 114 may include VCC, GND, RS-232, RS-485 (eg, RS485-A, RS485-B), general network interfaces, etc., or any combination thereof. In some embodiments, the input/output module 114 may use one or more encoding methods to encode the transmitted signal. The encoding manner may include phase encoding, non-return-to-zero code, differential Manchester code, etc., or any combination thereof.
  • system and its modules shown in FIG. 1 may be implemented in various ways.
  • the system and its modules may be implemented in hardware, software, or a combination of software and hardware.
  • the hardware part can be realized by using dedicated logic;
  • the software part can be stored in a memory and executed by a suitable instruction execution system, such as a microprocessor or specially designed hardware.
  • a suitable instruction execution system such as a microprocessor or specially designed hardware.
  • the methods and systems described above may be implemented using computer-executable instructions and/or embodied in processor control code, for example on a carrier medium such as a disk, CD or DVD-ROM, such as a read-only memory (firmware) ) or a data carrier such as an optical or electronic signal carrier.
  • the system and its modules of one or more embodiments of this specification may not only have semiconductors such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable logic devices such as field programmable gate arrays, programmable logic devices, etc.
  • a hardware circuit implementation of a programmed hardware device can also be implemented in software such as software executed by various types of processors, and can also be implemented in a combination of the above-described hardware circuit and software (eg, firmware).
  • the above description of the crystal preparation system and its modules is only for the convenience of description, and cannot limit one or more embodiments of the present specification to the scope of the illustrated embodiments. It can be understood that for those skilled in the art, after understanding the principle of the system, it is possible to arbitrarily combine each module, or form a subsystem to connect with other modules, or to connect the modules without departing from the principle. One or more of the modules are omitted.
  • the detection module 102 and the control module 101 may be one module, and the module may have the function of detecting and controlling crystal growth information. Variations such as these are within the scope of protection of one or more embodiments of this specification.
  • a multi-cavity growth apparatus may be used to prepare a combined crystal comprising a substrate and a target crystal.
  • the target crystals may include silicon carbide crystals, silicon nitride crystals, molybdenum disulfide crystals, boron nitride crystals, graphene crystals, and the like.
  • the combined crystal is a combined crystal comprising a substrate and a silicon carbide crystal.
  • at least one layer of silicon carbide crystals may be deposited on the surface of the substrate to produce composite crystals.
  • FIG. 2A is a schematic diagram of an exemplary structure of a multi-chamber growth apparatus according to some embodiments
  • FIG. 2B is a top view of an exemplary distribution of cavities in the multi-chamber growth apparatus according to some embodiments.
  • the cross-section of each cavity in the multi-cavity device in FIGS. 2A-2B is a rectangle (the corresponding cavity is a cube). It should be noted that the cross-section of each cavity may also be a circle or a polygon. or other shapes, the corresponding cavities are cylinders, polygonal prisms or other shapes.
  • the multi-chamber growth apparatus 200 may include an in-situ etching chamber 202, a carbonization chamber 203, a growth chamber 204, a buffer chamber 205, a tray 207, a drive assembly 208, and Control assembly (not shown in the figure).
  • the in-situ etching chamber 202 may be used to provide a space for in-situ etching processing, and under certain reaction conditions, gas is introduced into the in-situ etching processing to perform in-situ etching processing on the substrate.
  • the surface of the substrate can be vapor-deposited to form a thin film, and the substrate can support and improve the properties of the thin film deposited on the surface.
  • the substrate is transferred to the in-situ etching chamber 202 through the transmission assembly 208, and under the action of a certain temperature, a certain gas pressure and hydrogen, the in-situ etching process is performed on the surface of the substrate.
  • the in-situ etching chamber 202 can be evacuated to a set pressure, and the substrate is transferred to the in-situ etching chamber 202 through the transmission assembly 208; the in-situ etching chamber 202 is continued.
  • Evacuate to a set lower pressure slowly adjust the temperature to a certain temperature and keep it for a long time; feed etching gas (for example, hydrogen, tetrafluoromethane, sulfur hexafluoride, nitrogen trifluoride, etc.) to Under normal pressure, and the temperature is adjusted to a certain temperature and maintained for a period of time, the substrate is etched in-situ.
  • etching gas for example, hydrogen, tetrafluoromethane, sulfur hexafluoride, nitrogen trifluoride, etc.
  • the carbonization chamber 203 can be used to provide a space for carbonization treatment, and under certain reaction conditions, gas is introduced into the substrate for carbonization treatment.
  • the substrate is transferred to the carbonization chamber 203 through the transmission assembly 208, and carbonization is performed on the surface of the substrate under the action of carbonization gas (eg, methane, propane, butane, etc.) and hydrogen at a certain temperature deal with.
  • carbonization gas eg, methane, propane, butane, etc.
  • the temperature of the carbonization chamber 203 can be adjusted to a certain temperature, and then the third channel between the in-situ etching chamber 202 and the carbonization chamber 203 is controlled to open, and the substrate is transported through the transmission assembly 208 To the carbonization chamber 203, close the third channel; cool the carbonization chamber to a certain temperature, and evacuate to a set pressure, and then start to heat up, and at the same time, introduce a carbonization gas (for example, methane, propane, butane, etc. ) and hydrogen to a set pressure, and the temperature is adjusted to a certain temperature for a period of time for carbonization.
  • a carbonization gas for example, methane, propane, butane, etc.
  • the growth chamber 204 can be used to provide a reaction space for vapor deposition. Under certain reaction conditions, the reaction raw materials are subjected to vapor deposition to grow crystals on the surface of the substrate to obtain a combined crystal including the substrate and silicon carbide crystals. In some embodiments, the substrate is transferred into the growth chamber 204 by the transmission assembly 208, and crystallizes on the surface of the substrate under the action of carbonizing gas (eg, methane, propane, butane, etc.) and hydrogen at a certain temperature grow.
  • carbonizing gas eg, methane, propane, butane, etc.
  • the temperature of the growth chamber 204 can be adjusted to a certain temperature and pressurized to a set pressure; the fourth channel between the carbonization chamber 203 and the growth chamber 204 can be controlled to open through the transmission assembly 208, the substrate is transferred to the growth chamber 204, and the fourth channel is closed; then the temperature of the growth chamber 204 is adjusted to a certain temperature, silane, propane and hydrogen are introduced to a set pressure, and the process is carried out on the surface of the substrate. Crystal growth; when the crystal growth thickness reaches the target thickness, the crystal growth is stopped to obtain a combined crystal. More details on performing crystal growth can be found in the description of Figures 15-16.
  • the buffer cavity 205 can be used to cool down the combined crystal.
  • the combined crystal is transferred to the buffer chamber 205 through the transmission assembly 208, and the combined crystal is cooled under a certain temperature and a certain gas pressure.
  • the buffer chamber 205 is heated to a certain temperature; the fifth channel between the growth chamber 204 and the buffer chamber 205 is controlled to open, and the combined crystal is transferred into the buffer chamber 205 through the transmission assembly 208 , The fifth channel is closed; the buffer cavity 205 is cooled to a certain temperature and kept for a period of time to cool the combined crystal.
  • the combined crystal is transferred to the buffer cavity 205 through the transmission assembly 208, and the combined crystal is cooled under normal temperature and normal pressure.
  • FIG. 17 For more details about cooling the combined crystals, please refer to the description of FIG. 17 .
  • the transmission assembly 208 may be disposed at the lower end of each cavity (for example, the in-situ etching cavity 202, the carbonization cavity 203, the growth cavity 204, and the buffer cavity 205), and is used to sequentially transfer the substrate or the combined crystal to each cavity. transfer between cavities. Transmission assembly 208 may also be referred to as mechanical structure 111 . More information about the transmission assembly 208 can be found in the description of FIG. 8 .
  • the control assembly can be used to control the rotation of the transmission assembly 208 to sequentially move the substrate or the combined crystal between the chambers (the in-situ etching chamber 202 , the carbonization chamber 203 , the growth chamber 204 and the buffer chamber 205 ). send.
  • the control assembly may control the operation of the driving motor to drive the transmission assembly 208 to rotate, so as to sequentially transfer the substrate or the combined crystal between the chambers.
  • the control assembly may be the control module 101 , and the driving motor may be the driving module 110 .
  • the in-situ etching cavity 202 , the carbonization cavity 203 , the growth cavity 204 and the buffer cavity 205 may be arranged in a roughly “in-line” shape, and the transmission components 208 in each cavity are connected end-to-end.
  • the transfer path of the substrate or the assembled crystal between the cavities is substantially straight.
  • the in-situ etching cavity 202 , the carbonization cavity 203 , the growth cavity 204 and the buffer cavity 205 can be arranged in a “line-shaped” sequence, and the transmission components in each cavity 208 are connected end to end in sequence, and the transmission route of the substrate or the combined crystal between the cavities is a straight line.
  • the distribution diagram of each cavity in FIG. 2A may be rotated by any angle as a whole to set each cavity.
  • the in-situ etching cavity 202 , the carbonization cavity 203 , the growth cavity 204 and the buffer cavity 205 may be sequentially arranged in a “field shape”, and the in-situ etching cavity 202 is located on the adjacent side of the carbonization cavity 203, the growth cavity 204 is located on the other adjacent side of the carbonization cavity 203, and the buffer cavity 205 is adjacent to the in-situ etching cavity 202 and the growth cavity 204; the transmission components 208 in each cavity Connected end to end in sequence, the transmission assembly 208 can circulate among the cavities in sequence.
  • FIG. 3A is a schematic diagram of an exemplary structure of a multi-chamber growth apparatus according to other embodiments
  • FIG. 3B is a top view of an exemplary distribution of cavities in the multi-chamber growth apparatus according to other embodiments.
  • the cross-section of each cavity in the multi-cavity device in FIGS. 3A-3B is a rectangle (the corresponding cavity is a cube). It should be noted that the cross-section of each cavity may also be a circle or a polygon. or other shapes, the corresponding cavities are cylinders, polygonal prisms or other shapes.
  • the multi-chamber growth apparatus may also include a vacuum chamber.
  • the multi-chamber growth device may also include a tip chamber.
  • the multi-chamber growth apparatus 300 may include a vacuum chamber 201 , an in-situ etching chamber 202 , a carbonization chamber 203 , a growth chamber 204 , a buffer chamber 205 , and an end chamber
  • the body 206 , the tray 207 , the transmission assembly 208 and the control assembly (not shown in the figure), the vacuum chamber 201 is adjacent to the in-situ etching chamber 202 , and the end chamber 206 is adjacent to the buffer chamber 205 .
  • the vacuum chamber 201 can be used to place the substrate in a vacuum environment.
  • the substrate is placed in the vacuum chamber 201, and the vacuum chamber 201 is evacuated so that the substrate is in a vacuum environment.
  • the first channel of the vacuum chamber can be closed, and the vacuum chamber can be evacuated to a set pressure. More details on vacuuming the substrate can be found in the description of FIG. 12 .
  • the end cavity 206 can be used to cool the combined crystal to room temperature.
  • the combined crystal is transferred from the buffer cavity 205 to the end cavity 206 through the transmission assembly 208, and the combined crystal is cooled under normal temperature and pressure.
  • the sixth channel between the buffer cavity 205 and the end cavity 206 is controlled to open, the combined crystal is transferred to the end cavity 206 through the transmission assembly 208, and the sixth channel is closed; the combined crystal is cooled down .
  • FIG. 17 For more details about cooling the combined crystals, please refer to the description of FIG. 17 .
  • the chambers of the multi-chamber growth device may be arranged in a straight line or a non-linear arrangement.
  • each of the chambers (vacuum chamber 201, in-situ etch chamber 202, carbonization chamber 203, growth chamber 204, buffer chamber 205, and end chamber 206) can be The transmission components 208 in each cavity are connected end to end in order, and the transmission route between each cavity is a straight line.
  • the vacuum chamber 201 , the in-situ etching chamber 202 , the carbonization chamber 203 , the growth chamber 204 , the buffer chamber 205 , and the end chamber 206 may also be arranged in sequence in a substantially “in-line” shape. ”, the transmission components 208 in each cavity are connected end to end in sequence, and the transmission route of the substrate or the combined crystal between the cavities is basically a straight line.
  • the distribution diagrams of the cavities in FIG. 3A and the above examples can be rotated by any angle as a whole to set the cavities.
  • the vacuum chamber 201 , the in-situ etching chamber 202 , the carbonization chamber 203 , the growth chamber 204 , the buffer chamber 205 , and the end chamber 206 may be stacked in sequence, and the vacuum chamber
  • the body 201 is located on the adjacent side of the in-situ etching cavity 202
  • the carbonization cavity 203 is located on the other adjacent side of the in-situ etching cavity 202
  • the growth cavity 204 is adjacent to the buffer cavity 205 and the carbonization cavity
  • the end cavity 206 It is located on the other adjacent side of the buffer cavity 205;
  • the transmission components 208 in each cavity are connected end to end in sequence, and the transmission components 208 can circulate among the various cavities in sequence.
  • each cavity may be set by rotating the overall distribution diagram of each cavity in FIG. 3B and the above example by any angle.
  • the vacuum chamber 201 , the in-situ etching chamber 202 , the carbonization chamber 203 , the growth chamber 204 , the buffer chamber 205 and the end chamber 206 can be arranged in order so that the substrate or the combined crystal can be placed in each Any shape sequentially transmitted between the cavities is within the protection scope of this specification.
  • the dimensions of the vacuum chamber 201 , the in-situ etching chamber 202 , the carbonization chamber 203 , the growth chamber 204 , the buffer chamber 205 and the end chamber 206 may be the same or different, which are not limited.
  • the various types of cavities involved in some embodiments of this specification include but are not limited to the first type of cavities, the second type of cavities, the third type of cavities, and the like.
  • the first type of cavity may provide a location for subjecting the substrate or assembled crystal to a set pressure or temperature.
  • the second type of cavity may provide a location where the substrate is processed, or where the combined crystal is exposed to a certain temperature.
  • a third type of cavity may provide a site for crystal growth on the surface of the substrate.
  • FIG. 4 is a schematic diagram of an exemplary structure of a first type of cavity according to some embodiments.
  • an inlet channel 401 and an outlet channel 402 are provided on the side wall of the first type cavity 400 , a transmission assembly 404 is installed inside the first type cavity 400 , and the transmission assembly 404 communicates with the inlet channel 401 and the outlet channel 402 to The substrate or assembled crystals are transferred between the inlet channel 501 and the outlet channel 502 .
  • the inlet channel 401 and the outlet channel 402 may be disposed on two opposite side walls of the first type cavity 400 , so that the inlet channel 401 , the transmission assembly 404 and the outlet channel 402 form a straight line.
  • the inlet channel 401 and the outlet channel 402 may be disposed on two adjacent side walls of the first type cavity 400 , and the inlet channel 401 , the transmission assembly 404 and the outlet channel 402 form an L-shaped fold line. In some embodiments, the inlet channel 401 and the outlet channel 402 may be disposed on the same side wall of the first type cavity 400 , and the inlet channel 401 , the transmission assembly 404 and the outlet channel 402 form a U-shaped fold line. In some embodiments, the inlet channel 401 and the outlet channel 402 are provided at the top, middle and bottom ends of the side walls of the first type of cavity 400. For example only, as shown in FIG.
  • the inlet channel 401 and the outlet channel 402 are respectively disposed at the bottom ends of the two opposite side walls of the first type cavity 400
  • the transmission assembly 404 is disposed at the bottom of the first type cavity 400 . More information about the transmission assembly 404 can be found in the description of FIG. 8 .
  • the shapes of the inlet channel 401 and the outlet channel 402 include, but are not limited to, rectangular, circular, oval, and any other regular or irregular shape.
  • the number of the inlet channel 401 and the number of the outlet channel 402 may be one, respectively, or two or more. In some embodiments, the number of inlet channels 401 and outlet channels 402 may be the same or different. In some embodiments, the number of inlet channels 401 and outlet channels 402 are the same and arranged in pairs.
  • two or more groups of inlet channels 401 and outlet channels 402 may be provided, and each group of inlet channels 401 and outlet channels 402 is provided with a transmission assembly 404 respectively, and the substrates or combined crystals may be transported from different routes at the same time. .
  • the number of inlet channels 401 and outlet channels 402 is different.
  • two or more inlet channels 401 may be provided, and one outlet channel 402 may be provided, and the substrate or composite crystal may be introduced into the first type cavity 400 from the plurality of inlet channels 401 and from one outlet channel 402 The first type of cavity 400 is obtained.
  • automatic control valves are installed at both the inlet channel 401 and the outlet channel 402 , so as to control the opening and closing of the inlet channel 401 and the outlet channel 402 by the control module 101 .
  • inlet channel 401 and outlet channel 402 may be used interchangeably.
  • the first type cavity 400 is provided with at least one gas pipeline 403 for discharging the gas in the first type cavity 400 or introducing gas into the first type cavity 400 , so that the first type cavity 400 is The desired pressure is reached in the cavity 400 .
  • the gas pipeline 403 can be communicated with a vacuum pumping device, and the speed and time of vacuum pumping can be adjusted by controlling the operating parameters of the vacuum device (eg, power, rotation speed, running time, etc.) to control the first type of cavity Pressure change within 400.
  • the vacuuming device may include a vacuum pump.
  • the number of gas conduits 403 may be one or more.
  • the number of vacuum pumps may be one vacuum pump or more than two.
  • the gas conduits 403 may be disposed on the top, side walls, and bottom of the first type of cavity 400. For example, as shown in FIG. 4 , the gas pipe 403 is disposed at the bottom of the first type of cavity 400 .
  • the gas conduit 403 is disposed on any side wall or top of the first type of cavity 400 .
  • the gas pipeline 403 can be communicated with the gas storage tank through a pipeline, and a flow regulating valve is arranged on the pipeline to control the flow rate and flow rate of the incoming gas.
  • the first type of cavity 400 may be the vacuum cavity 201 or the end cavity 206 .
  • the vacuum chamber 201 may be the first chamber of the multi-chamber crystal growth apparatus.
  • the vacuum chamber can be evacuated through the gas pipeline 403 .
  • the end chamber 206 may be the last chamber of the multi-chamber crystal growth apparatus.
  • the end cavity 206 may not use the gas conduit 403, ie the gas conduit 403 is in a closed state.
  • gas conduits 403 include two or more gas conduits 403 , and gas (eg, displacement gas) can be passed into tip cavity 206 through one or more of gas conduits 403 , and through another gas conduit 403 .
  • gas eg, displacement gas
  • the shape of the first type of cavity 400 may include, but is not limited to, cylindrical, prismatic, square, rectangular, etc. regular or irregular shapes.
  • the size of the first type of cavity 400 can be set according to actual production needs.
  • the height of the top wall of the first type of cavity 400 from the combined crystal growth surface may be 20 ⁇ 500 mm.
  • the height of the top wall of the first type of cavity 400 from the crystal growth surface of the composite crystal assembly may be 50-400 mm.
  • the height of the top wall of the first type of cavity 400 from the crystal growth surface of the composite crystal assembly may be 100-300 mm.
  • the height of the top wall of the first type of cavity 400 from the crystal growth surface of the composite crystal assembly may be 150-250 mm.
  • the material of the first type of cavity 400 may include high-strength stainless steel or high-strength aluminum alloy.
  • the strength of high-strength stainless steel or high-strength aluminum alloy can ensure safe production, and the first type of cavity 400 is not deformed or broken during the production process.
  • FIG. 5 is a schematic diagram of an exemplary structure of the second type of cavity according to some embodiments.
  • an inlet channel 501 and an outlet channel 502 are provided on the side wall of the second type cavity 500 , a transmission assembly 506 is installed inside the second type cavity 500 , and the transmission assembly 506 communicates with the inlet channel 501 and the outlet channel 502 to The substrate or assembled crystals are transferred between the inlet channel 501 and the outlet channel 502 .
  • the inlet channel 501 and the outlet channel 502 may be disposed on two opposite side walls of the second type cavity 500 , so that the inlet channel 501 , the transmission assembly 506 and the outlet channel 502 form a straight line.
  • the inlet channel 501 and the outlet channel 502 may be disposed on two adjacent side walls of the second type cavity 500 , and the inlet channel 501 , the transmission assembly 506 and the outlet channel 502 form an L-shaped fold line. In some embodiments, the inlet channel 501 and the outlet channel 502 may be disposed on the same sidewall of the second type cavity 500 , and the inlet channel 501 , the transmission assembly 506 and the outlet channel 502 form a U-shaped fold line. In some embodiments, the inlet channel 501 and the outlet channel 502 are disposed at the top, middle and bottom ends of the side walls of the second type cavity 500 . For example only, as shown in FIG.
  • the inlet channel 501 and the outlet channel 502 are respectively disposed at the bottom ends of the two opposite side walls of the second type cavity 500 , and the transmission assembly 506 is disposed at the bottom of the second type cavity 500 . More information about the transmission assembly 506 can be found in the description of FIG. 8 .
  • the shapes of the inlet channel 501 and the outlet channel 502 include, but are not limited to, rectangular, circular, oval, and any other regular or irregular shape.
  • the number of the inlet channel 501 and the number of the outlet channel 502 may be one, respectively, or two or more. In some embodiments, the number of inlet channels 501 and outlet channels 502 may be the same or different. In some embodiments, the inlet channels 501 and outlet channels 502 are the same in number and arranged in pairs.
  • two or more groups of inlet channels 501 and outlet channels 502 may be provided, and each group of inlet channels 501 and outlet channels 502 is provided with a transmission assembly 506 respectively, and the substrates or combined crystals may be transported from different routes at the same time. .
  • the number of inlet channels 501 and outlet channels 502 is different.
  • two or more inlet channels 501 may be provided, and one outlet channel 502 may be provided, and the substrate or composite crystal may be introduced into the second type of cavity 500 from the plurality of inlet channels 501 and from one outlet channel 502. A second type of cavity 500 is produced.
  • both the inlet channel 501 and the outlet channel 502 are equipped with automatic control valves, so that the control module 101 controls the opening and closing of the inlet channel 501 and the outlet channel 502 .
  • inlet channel 501 and outlet channel 502 may be used interchangeably.
  • the second type of cavity 500 includes at least one pumping pipe 503 for evacuating the second type of cavity 500 , so that the second type of cavity 500 reaches a desired pressure.
  • the exhaust duct 503 may be disposed at the bottom, top or sidewall of the second type of cavity 500 .
  • the air extraction pipe 503 is disposed at the bottom of the second type of cavity 500 .
  • the air extraction duct 503 is disposed on any side wall or top of the second type of cavity 500 .
  • the evacuation pipeline 503 can be communicated with the evacuation device, and the evacuation speed and time can be adjusted by controlling the operating parameters of the vacuum device (eg, power, rotation speed, operating time, etc.) to control the second type of cavity Pressure changes within body 500.
  • the vacuuming device may include a vacuum pump.
  • the number of the extraction conduits 503 may be one or more. In some embodiments, the number of vacuum pumps may be one or more than two.
  • the second type of cavity 500 includes at least one gas inlet duct 504 for introducing gas into the second type of cavity 500 .
  • the air intake duct 504 may be disposed at the bottom, top or sidewall of the second type of cavity 500 .
  • the air intake duct 504 is disposed on the top of the second type of cavity 500 .
  • the number of intake conduits 504 may be one or more.
  • an air inlet duct 504 may be provided, and all gases pass into the second type of cavity 500 from the same air inlet duct 504 .
  • two or more gas inlet pipes 504 may be provided, and different gases are respectively introduced into the second type of cavity 500 from different gas inlet pipes 504 .
  • a flow regulating valve may be set on each of the intake pipes 504 to control the flow of each gas, thereby controlling the ratio (eg, mass ratio or molar ratio) of each gas.
  • the second-type cavity 500 is further provided with a heating body 505 for adjusting the temperature of the second-type cavity 500 so as to control the inside of the second-type cavity 500 to reach a desired temperature.
  • the temperature in the second type of cavity 500 can be adjusted by controlling the heating power and heating time of the heating body 505 .
  • the heating body 505 may be disposed on the outer top wall, the outer side wall, the inner top wall, the inner side wall, or any combination thereof.
  • the heating body 505 is disposed on the inner sidewall of the second type cavity 500 .
  • the heating body 505 may include, but is not limited to, a resistance heating assembly and/or an electromagnetic induction heating assembly, and the like.
  • the resistive heating element may comprise a graphite resistor or a carbon silicon rod resistor. After the graphite resistor or the carbon silicon rod resistor is energized, the temperature of the second type of cavity 500 can be adjusted by using the heat energy generated by the Joule effect of the current flowing through the above-mentioned resistor.
  • the electromagnetic induction heating assembly may include an inductive coil. The induction coil can generate eddy currents on the second-type cavity 500 under the action of alternating currents of different frequencies. Make temperature adjustments.
  • the heating body 505 may include one or more heating elements.
  • the heating body 505 may include one or more resistance heating components, and each resistance heating component may be uniformly or non-uniformly disposed on the sidewall of the second type of cavity 500 .
  • the heating body 505 may include 5 graphite resistors, the second type cavity 500 may be cylindrical, and the 5 graphite resistors are circumferentially arranged on the sidewall of the second type cavity 500 at equal intervals, that is, each The graphite resistors are respectively located at one-fifth positions of the sidewall of the second type of cavity 500 .
  • the heating body 505 may include four graphite resistors
  • the second-type cavity 500 may be in the shape of a rectangular column
  • the four graphite resistors may be respectively disposed on four side walls of the second-type cavity 500
  • the four graphite resistors may be respectively disposed at four corner positions of the second type of cavity 500 .
  • the heating body 505 may include one or more induction heating components, and each induction heating component may be uniformly or non-uniformly disposed on the outer sidewall of the second-type cavity 500 .
  • the heating body 505 may include multiple coils of induction coils, and the induction coils may be spirally wound on the outer sidewall of the second type of cavity 500 . Further, the induction coil may be wound around the entire outer side wall of the second type cavity 500 , or may be wound around the outer side wall of the second type cavity 500 corresponding to the position of the tray.
  • the second type of cavity 500 may be the in-situ etching cavity 202 , the carbonization cavity 203 or the buffer cavity 205 .
  • the in-situ etching chamber 202 may be disposed adjacent to the vacuum chamber 201 .
  • the in-situ etching chamber 202 and the vacuum chamber 201 may share the same channel, that is, the outlet channel 402 of the vacuum chamber 201 and the inlet channel 501 of the in-situ etching chamber 202 are the same channel .
  • the in-situ etching chamber 202 and the vacuum chamber 201 may not share the same channel, the outlet channel 402 of the vacuum chamber 201 and the inlet channel 501 of the in-situ etching chamber 202 are two channels and Adjacent settings.
  • the temperature of the in-situ etching cavity 202 can be adjusted through the heating body 505 , the in-situ etching cavity 202 can be evacuated through the air extraction pipe 503 , and the in-situ etching can be evacuated through the air intake pipe 504 . Hydrogen gas is introduced into the etching chamber 202 to perform in-situ etching on the substrate.
  • the carbonization cavity 203 may be disposed adjacent to the in-situ etching cavity 202 .
  • the carbonization chamber 203 and the in-situ etching chamber 202 may share the same channel, that is, the outlet channel of the in-situ etching chamber 202 and the inlet channel of the carbonization chamber 203 are the same channel.
  • the carbonization chamber 203 and the in-situ etching chamber 202 may not share the same channel, and the outlet channel of the in-situ etching chamber 202 and the inlet channel of the carbonization chamber 203 are two adjacent channels. set up.
  • the temperature of the carbonization cavity 203 can be adjusted by the heating body 505 , the carbonization cavity 203 can be evacuated through the air suction pipe 503 , and the carbonization gas (for example, methane, propane, butane, etc.) and hydrogen are used to carbonize the substrate.
  • the carbonization gas For example, methane, propane, butane, etc.
  • hydrogen are used to carbonize the substrate.
  • the buffer cavity 205 may be disposed adjacent to the end cavity 206 .
  • the buffer cavity 205 and the end cavity 206 may share the same channel, that is, the outlet channel 502 of the buffer cavity 205 and the inlet channel 401 of the end cavity 206 are the same channel.
  • the buffer cavity 205 and the end cavity 206 may not share the same channel, and the outlet channel 502 of the buffer cavity 205 and the inlet channel 401 of the end cavity 206 are two channels and are arranged adjacently.
  • the temperature of the buffer cavity 205 may be adjusted by the heating body 505 .
  • the buffer chamber 205 may not use the exhaust pipe 503 and the intake pipe 504 , that is, the exhaust pipe 503 and the intake pipe 504 are in a closed state.
  • gas may be introduced into the buffer chamber 205 through the air inlet pipe 504 , and gas in the buffer chamber 205 may be exhausted through the air suction pipe 503 , so as to speed up the cooling rate in the buffer chamber 205 .
  • the shape of the second type of cavity 500 includes, but is not limited to, cylindrical, prismatic, square, rectangular, etc. regular or irregular shapes.
  • the size of the second type of cavity 500 can be set according to actual production needs.
  • the height of the top wall of the second type of cavity 500 from the combined crystal growth surface may be 20 ⁇ 300 mm.
  • the height of the top wall of the second type of cavity 500 from the combined crystal growth surface may be 50-200 mm.
  • the height of the top wall of the second type of cavity 500 from the combined crystal growth surface may be 70-180 mm.
  • the height of the top wall of the second type of cavity 500 from the combined crystal growth surface may be 100-150 mm.
  • the cavity wall of the second type cavity 500 may be made of high-strength stainless steel or aluminum alloy with a double-layer hollow cavity, and the cavity wall is cooled by cooling water in the hollow cavity, which plays the role of heat insulation and heat dissipation.
  • the inner side of the cavity wall of the second type of cavity 500 is provided with one or more layers of thermal insulation materials.
  • the thermal insulation material may include graphite felt, zirconia felt.
  • FIG. 6 is a schematic diagram of an exemplary structure of a third type of cavity according to some embodiments.
  • the third type of cavity 600 may be the growth cavity 204 .
  • an inlet channel 601 and an outlet channel 602 are provided on the side wall of the third type cavity 600 (or called the growth cavity 204 ), and a transmission assembly 608 is installed inside the third type cavity 600 , and the transmission assembly 608 communicates with each other.
  • Inlet channel 601 and outlet channel 602 to transfer substrates or combined crystals between inlet channel 601 and outlet channel 602 .
  • the inlet channel 601 and the outlet channel 602 may be disposed on two opposite side walls of the third type cavity 600 , so that the inlet channel 601 , the transmission assembly 608 and the outlet channel 602 form a straight line.
  • the inlet channel 601 and the outlet channel 602 may be disposed on two adjacent side walls of the third type cavity 600 , and the inlet channel 601 , the transmission assembly 608 and the outlet channel 602 form an L-shaped fold line. In some embodiments, the inlet channel 601 and the outlet channel 602 may be disposed on the same side wall of the third type cavity 600 , and the inlet channel 601 , the transmission assembly 608 and the outlet channel 602 form a U-shaped fold line. In some embodiments, the inlet channel 601 and the outlet channel 602 are provided at the top, middle and bottom ends of the side walls of the third type cavity 600 . For example only, as shown in FIG.
  • the inlet channel 601 and the outlet channel 602 are respectively disposed at the bottom ends of the two opposite side walls of the third type cavity 600 , and the transmission assembly 608 is disposed at the bottom of the third type cavity 600 . More information about the transmission assembly 608 can be found in the description of FIG. 8 .
  • the shapes of the inlet channel 601 and the outlet channel 602 include, but are not limited to, rectangular, circular, oval, and any other regular or irregular shape.
  • the number of the inlet channel 601 and the outlet channel 602 may be one, respectively, or two or more. In some embodiments, the number of inlet channels 601 and outlet channels 602 may be the same or different. In some embodiments, the inlet channels 601 and outlet channels 602 are the same in number and arranged in pairs.
  • two or more groups of inlet channels 601 and outlet channels 602 can be provided, and a transmission assembly 608 is respectively provided between each group of inlet channels 601 and outlet channels 602, so that substrates or combined crystals can be transported from different routes at the same time .
  • the number of inlet channels 601 and outlet channels 602 is different.
  • two or more inlet channels 601 may be provided, and one outlet channel 602 may be provided, and the substrate or composite crystal may be introduced into the third type cavity 600 from the plurality of inlet channels 601 and from one outlet channel 602. A third type of cavity 600 is produced.
  • automatic control valves are installed at both the inlet channel 601 and the outlet channel 602 , so that the control module 101 can control the opening and closing of the inlet channel 601 and the outlet channel 602 .
  • inlet channel 601 and outlet channel 602 may be used interchangeably.
  • the third type of cavity 600 includes at least one evacuation pipeline 603 for evacuating the third type of cavity 600 so that the pressure in the third type of cavity 600 reaches a desired pressure.
  • the exhaust duct 603 may be disposed at the bottom, top or sidewall of the third type of cavity 600 .
  • the exhaust pipe 603 is disposed at the bottom of the third type of cavity 600 .
  • the exhaust duct 603 is disposed on any side wall or top of the third type of cavity 600 .
  • the evacuation pipeline 603 can be communicated with the evacuation device, and the evacuation speed and time can be adjusted by controlling the operating parameters of the vacuum device (eg, power, rotation speed, operating time, etc.) to control the third type of cavity Pressure changes within body 600.
  • the vacuuming device may include a vacuum pump.
  • the number of the extraction conduits 603 may be one or more. In some embodiments, the number of vacuum pumps can be set to one or more than two.
  • the third type of cavity 600 includes at least one gas inlet duct 604 for introducing reactive gases.
  • the air intake duct 604 may be disposed on the top, bottom or side walls of the third type of cavity 600 .
  • the air intake duct 604 is disposed on the top of the third type of cavity 600 .
  • the number of intake conduits 604 may be one or more.
  • an air inlet duct 604 may be provided, and all gases pass into the third type of cavity 600 from the same air inlet duct 604 .
  • two or more gas inlet pipes 604 may be provided, and different gases are respectively introduced into the third type of cavity 600 from different gas inlet pipes 604 .
  • a flow regulating valve may be provided on each of the intake pipes 604 to control the flow of each gas, thereby controlling the ratio (eg, mass ratio or molar ratio) of each gas.
  • the third type of cavity 600 (or referred to as the growth cavity 204 ) is provided with a heating body 605 for adjusting the temperature of the growth cavity 204 to control the temperature in the growth cavity 204 to a desired temperature .
  • the heating body 605 may be disposed on the outer top wall, the outer side wall, the inner top wall, the inner side wall, or any combination thereof of the growth chamber 204 .
  • the heating body 605 is disposed on the inner sidewall of the growth chamber 204 .
  • the heating body 605 may include, but is not limited to, a resistance heating assembly and/or an electromagnetic induction heating assembly, and the like.
  • the resistive heating element may comprise a graphite resistor or a carbon silicon rod resistor.
  • the electromagnetic induction heating assembly may include an inductive coil.
  • the growth chamber 204 further includes a rotation shaft 606 (also referred to as a rotation shaft 207 ), and the rotation shaft 606 is disposed at the bottom of the growth chamber 204 for lifting the tray 607 to the middle of the growth chamber 204 . More information about the tray can be found in the description of FIG. 7 .
  • the height of the rotational axis 606 may comprise 10-200 mm.
  • the height of the axis of rotation 606 may comprise 20-180 mm.
  • the height of the axis of rotation 606 may comprise 30-150 mm.
  • the height of the axis of rotation 606 may comprise 40-130 mm.
  • the height of the axis of rotation 606 may comprise 50-100 mm. In some embodiments, the height of the axis of rotation 606 may comprise 60-80 mm. In some embodiments, the height of the rotation axis 606 may be the height of the growth chamber 204 In some embodiments, the height of the rotation axis 606 may be the height of the growth chamber 204 In some embodiments, the height of the rotation axis 606 may be the height of the growth chamber 204 In some embodiments, the height of the rotation axis 606 may be the height of the growth chamber 204 In some embodiments, the height of the rotation axis 606 may be the height of the growth chamber 204 In some embodiments, the height of the rotation axis 606 may be the height of the growth chamber 204
  • a positioner (not shown in the figure) is installed on the rotating shaft 606 for detecting the position of the tray 607 .
  • the positioner may be a displacement sensor.
  • a positioner can be provided at the top of the rotating shaft 606 , the position of the tray 607 can be detected in real time, and the tray 607 can be lifted to the middle of the growth cavity 204 through the rotating shaft 606 .
  • the positioner detects the position of the tray 607 in real time and sends the position information of the tray 607 to the control module 101.
  • the control module 101 can control the transmission assembly 608 to stop rotating, and the drive module 110 can control the rotation shaft 606 to smoothly lift the tray 607 to the middle of the growth cavity 204 .
  • the rotation axis 606 may continue to rotate during the growth process to uniformly react across the substrate.
  • the locator may also be a GPS locator.
  • a GPS locator can be mounted on the tray 607 for sending the position information of the tray 607 to the control module 101 in real time.
  • FIG. 7 is a schematic diagram of an exemplary structure of a tray according to some embodiments.
  • the multi-chamber growth device includes a tray 207 .
  • the tray 207 is provided with at least one groove 207-1, and each groove 207-1 can accommodate a substrate.
  • the shape of the tray 207 includes, but is not limited to, a circle, an ellipse, a triangle, a rectangle, a polygon, or any other regular or irregular shape.
  • the upper surface of each tray 207 may be provided with one or more grooves 207-1.
  • the number of grooves 207-1 may be 1, 2, 4, 7, 11, and the like.
  • the arrangement of the grooves 207-1 may be uniform or non-uniform.
  • the tray 207 is circular, and the six grooves 207 - 1 are evenly arranged on the upper surface of the tray 207 in the circumferential direction.
  • the center of the tray 207 is further provided with a lifting structure that cooperates with the rotating shaft 606.
  • the rotating shaft 606 cooperates with the lifting structure, so as to stabilize the tray 207 Raise to desired height.
  • the jacking structure can be connected with the rotating shaft 606 by snap connection.
  • the jacking structure can be the positioning hole 207-2 in the center of the tray 207, the top of the rotating shaft 606 is a shaft with a cross-sectional area smaller than the middle or bottom end, and the top of the rotating shaft 606 can be inserted into the positioning hole 207-2, so that the rotating shaft 606 can be inserted into the positioning hole 207-2. 606 can lift the tray 207 smoothly.
  • FIG. 8 is a schematic diagram of an exemplary structure of a transmission assembly according to some embodiments.
  • the transmission assembly 208 includes at least two cylindrical rollers 208-1 arranged in parallel and two transmission frames 208-2 arranged in parallel at the upper and lower ends of the cylindrical roller 208-1, and the two transmission frames 208-2 are fixedly arranged Below each cavity (not shown in FIG. 8 ), the cylindrical roller 208-1 is limited in its axial direction between the two transmission frames 208-2 and can rotate around its own axis.
  • the upper and lower ends of the cylindrical roller 208-1 are cylindrical, and the cross-sectional area of the upper and lower ends is smaller than that of the middle portion. Holes, so that the upper and lower ends of the cylindrical roller 208-1 can be inserted between the two transmission frames 208-2 and can be rotated around its own axis.
  • the tray 207 can be placed on the cylindrical roller 208-1. As the cylindrical roller 208-1 rotates, the static friction between the bottom of the tray 207 and the cylindrical roller 208-1 makes the tray 207 be forwarded.
  • the number of the cylindrical rollers 208-1 may be determined according to the length of the transmission frame 208-2 and the diameters of the upper and lower ends of the cylindrical rollers 208-1. In some embodiments, the product of the diameter of the upper and lower ends of the cylindrical roller 208-1 and the number of the cylindrical rollers 208-1 is less than or equal to the length of the transmission frame 208-2. In some embodiments, the number of cylindrical rollers 208-1 may be 7, 8, 9, or 10. In some embodiments, the spacing between the cylindrical rollers 208-1 can be set according to actual production needs, so as to ensure that the tray 207 can be forwarded as the cylindrical rollers 208-1 rotate.
  • the transmission frame 208-2 may be configured as a straight line, or may be configured with a curved angle. In some embodiments, the two transmission frames 208-2 are respectively arranged as 90° L-shaped frames and are arranged in parallel between the cylindrical rollers 208-1. It should be noted that the setting form of the transmission frame 208-2 is not limited, and it is ensured that the transmission assembly 208 can communicate with the inlet channel and the outlet channel of each cavity, so that the tray 207 can be transmitted in and out between the various cavities. .
  • the vacuum chamber 201 , the in-situ etching chamber 202 , the carbonization chamber 203 , the growth chamber 204 , the buffer chamber 205 , and the end chamber 206 are all provided with an inlet channel, an outlet channel and a transmission assembly 208 , and the transmission assembly 208 communicates with each other.
  • the tray 207 is placed on the transmission assembly 208 , and the tray 207 can be transferred between the various cavities through the transmission assembly 208 .
  • automatic control valves are installed at the positions of the inlet channel and the outlet channel, and the inlet channel and the outlet channel can be opened or closed through the automatic control valve to control the tray 207 entering and leaving the corresponding cavity.
  • the number of trays 207 may be one or multiple. If multiple trays 207 on which substrates are placed are placed on the transmission assembly 208, a pipelined batch can be implemented between the chambers The tray 207 is transferred and a combined crystal comprising the substrate and the silicon carbide crystal is grown.
  • FIG. 9 is an exemplary schematic flow diagram of a method for preparing silicon carbide crystals according to some embodiments.
  • the silicon carbide crystal preparation process 900 may be performed by a control device (eg, control module 101 ).
  • a control device eg, control module 101
  • process 900 may be stored in a storage device in the form of programs or instructions, and process 900 may be implemented when control module 101 executes the program or instructions.
  • process 900 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 9 is not limiting.
  • the silicon carbide crystal preparation method may be performed in a multi-chamber growth apparatus (eg, multi-chamber growth apparatus 200, multi-chamber growth apparatus 300), the multi-chamber growth apparatus including a plurality of chambers arranged in sequence
  • a multi-chamber growth apparatus eg, multi-chamber growth apparatus 200, multi-chamber growth apparatus 300
  • the multi-chamber growth apparatus including a plurality of chambers arranged in sequence
  • FIGS. 2A-2B and 3A-3B please refer to FIGS. 2A-2B and 3A-3B.
  • the silicon carbide crystal preparation method may be performed in a single chamber or one reaction chamber, which has all the functions corresponding to a multi-chamber growth apparatus (eg, vacuuming, heating, replacement gas, etc.), that is, the various steps in the preparation process of silicon carbide crystals (for example, vacuum treatment process, in-situ etching treatment process, carbonization treatment process, crystal growth process, cooling and cooling process, etc.) can be in the same reaction chamber. conduct.
  • the silicon carbide crystal preparation process 900 includes:
  • step 910 the substrate is sequentially transferred and processed between multiple cavities. In some embodiments, this step 910 may be performed by the control module 101 .
  • Substrates are single crystal flakes with specific crystal planes and appropriate electrical, optical and mechanical properties that can be used to grow epitaxial layers (eg, target crystals) to support and improve the properties of the target crystal.
  • the following conditions can be comprehensively considered: structural characteristics (the lattice structure of the target crystal and the substrate is the same or similar, the lattice constant mismatch is small, and the crystallization performance is good), interface characteristics (conducive to the growth and adhesion of the target crystal) strong), chemical stability (not easy to decompose and corrode in the temperature and atmosphere of the target crystal growth), thermal properties (good thermal conductivity and small thermal mismatch), good electrical conductivity, good optical properties (to light low absorption), good mechanical properties (easy to polish and cut, etc.), size (not less than 2 inches in diameter).
  • the material of the substrate may include sapphire (Al 2 O 3 ), silicon (Si), silicon carbide (SiC), gallium arsenide (GaAs), aluminum nitride (AIN), zinc oxide (ZnO) .
  • the substrate may comprise single crystal silicon.
  • Monocrystalline silicon is photovoltaic grade monocrystalline silicon.
  • the single crystal silicon is greater than 99.9999% pure.
  • the single crystal silicon is greater than 99.99999% pure.
  • the single crystal silicon is greater than 99.999999% pure.
  • the single crystal silicon is greater than 99.9999999% pure.
  • the dimensions of the substrate in one direction (referred to as the X-direction) may be smaller than the dimensions of the cross-section in another direction perpendicular to the X-direction.
  • the cross-sectional shape of the substrate perpendicular to the X direction may be circular, elliptical, polygonal, regular or irregular.
  • the shape of the cross section of the substrate perpendicular to the X direction is circular, and the size of the cross section of the substrate perpendicular to the X direction can be set according to actual production needs.
  • the dimension of the cross-section of the substrate perpendicular to the X-direction may be the linear distance between the two most distant points on the edge of the substrate.
  • the cross-sectional shape of the substrate perpendicular to the X-direction is circular, and the diameter of the circle includes 1-10 inches. In some embodiments, the diameter of the circle includes 1.5-8 inches. In some embodiments, the diameter of the circle includes 2-6 inches. In some embodiments, the diameter of the circle includes 3-5 inches. In some embodiments, the diameter of the circle includes 3-4 inches.
  • the size of the cross section of the substrate perpendicular to the X direction can be selected according to the size of the target crystal to be prepared.
  • the dimension in the X direction may be referred to as the thickness of the substrate.
  • the substrate has the same thickness in different regions. The same thickness may be that the difference in thickness between the regions of maximum thickness and the region of minimum thickness on the substrate is less than a thickness threshold (eg, 10 um or 15 um).
  • a thickness threshold eg, 10 um or 15 um.
  • a flat substrate with the same thickness can make the stress uniform during the crystal growth process and form a crystal with the same crystal form.
  • the thickness of the substrate is 100um-400um.
  • the thickness of the substrate is 160um-300um.
  • the thickness of the substrate may be 180um-280um. In some embodiments, the thickness of the substrate may be 200um-260um. In some embodiments, the thickness of the substrate may be 220um-240um.
  • the thickness of the above-mentioned substrate is similar to the thickness of the mass-produced photovoltaic single crystal wafer, so it is easy to obtain, and the substrate is thinner and the cost is lower.
  • the multi-chamber growth apparatus includes at least an in-situ etching chamber, a carbonization chamber, a growth chamber, a buffer chamber and a transmission assembly, and the in-situ etching chamber, carbonization chamber, growth chamber and The buffer chambers are arranged in sequence.
  • the multi-chamber growth apparatus may include a vacuum chamber, an in-situ etching chamber, a carbonization chamber, a growth chamber, a buffer chamber, an end chamber and a transmission assembly, the in-situ etching chamber, The carbonization cavity, the growth cavity, the buffer cavity and the end cavity are arranged in sequence.
  • each cavity is provided with an inlet channel and an outlet channel, and substrates can be transferred to or from each cavity through a transmission assembly (eg, transmission assembly 208 ).
  • a transmission assembly eg, transmission assembly 208
  • FIGS. 2A-2B and FIGS. 3A-3B For more content about the multi-chamber device, please refer to the content of FIGS. 2A-2B and FIGS. 3A-3B .
  • the substrate may be transferred and processed sequentially between multiple chambers to perform different processes on the substrate or the combined crystal, respectively. For example, in-situ etching treatment, carbonization treatment, crystal growth, buffer treatment, cooling and other processes are performed on the substrate or the combined crystal.
  • in-situ etching treatment, carbonization treatment, crystal growth, buffer treatment, cooling and other processes are performed on the substrate or the combined crystal.
  • multiple substrates can be transported simultaneously in a multi-chamber device for crystal growth to enable mass production of combined crystals.
  • multiple groups or batches of substrates may be sequentially transported in a multi-chamber device for crystal growth to achieve continuous in-line production of combined crystals.
  • the transfer of at least one substrate of another batch between the plurality of cavities is initiated before the at least one group or batch of substrates has been transferred and processed in turn between the plurality of cavities and processing, at least one substrate of the two batches is transported and processed in different chambers at the same time.
  • Step 920 in one of the multiple chambers, a target crystal is grown on the surface of the substrate by vapor deposition to obtain a combined crystal including the substrate and the target crystal.
  • this step 920 may be performed by the control module 101 .
  • one chamber in a multi-chamber growth apparatus may be a growth chamber.
  • a target crystal growth process is performed on the surface of the substrate by vapor deposition within the growth chamber, thereby producing a combined crystal comprising the substrate and the target crystal.
  • the vapor deposition method introduces the gaseous reactants, the vapors of the liquid reactants or other gases required for the reaction into the reaction environment, the chemical reaction occurs on the surface of the substrate, and the solid product is deposited on the surface of the substrate to form a thin film.
  • the target crystals may include silicon carbide crystals, silicon nitride crystals, molybdenum disulfide crystals, boron nitride crystals, graphene crystals, and the like.
  • silicon carbide crystals silicon nitride crystals, molybdenum disulfide crystals, boron nitride crystals, graphene crystals, and the like.
  • the reactants for making the combined crystals can include a silicon source and a carbon source.
  • the silicon source may include silane (SiH 4 ), chlorosilane, trimethylchlorosilane.
  • the carbon source may include propane (C 3 H 8 ), butane, ethane, acetylene.
  • silane and propane may be passed into the growth chamber to perform the crystal growth process on the surface of the substrate.
  • a carrier gas may be used to carry reactant gases into the growth chamber. The carrier gas does not participate in the reaction and only acts as a carrier gas for the reactant, so an inert gas or a gas with higher chemical stability can be selected.
  • the carrier gas may be H2 , N2 , Ar, or He.
  • the carrier gas may be H 2 , N 2 in consideration of price and chemical stability.
  • the combined crystal may be chemically etched to remove the substrate on the combined crystal to obtain a silicon carbide crystal. Since the hardness of the silicon carbide crystal is different from that of the substrate, the silicon carbide crystal is more resistant to acidity or alkali. Therefore, the substrate can be removed by dissolving in an acid solution or an alkaline solution, while the silicon carbide crystal is retained.
  • the combined crystal may be ultrasonically cleaned with an etching solution in a first temperature range for a first period of time, and the substrate may be dissolved and removed to obtain a silicon carbide crystal.
  • the first temperature interval may be 50°C to 100°C. In some embodiments, the first temperature interval may be 65°C to 80°C. In some embodiments, the first temperature interval may be 67-78°C. In some embodiments, the first temperature interval may be 70-76°C. In some embodiments, the first temperature interval may be 72-74°C.
  • the etching solution may be an alkaline solution or an acid solution.
  • the alkaline solution may include NaOH solution, KOH solution, or NH4OH solution.
  • the alkaline solution may be a 5% to 30% NaOH solution.
  • the alkaline solution may be a 10%-25% NaOH solution.
  • the alkaline solution may be a 15%-20% NaOH solution.
  • the alkaline solution may be a 10%-25% NaOH solution.
  • the alkaline solution may be a 12%-23% NaOH solution.
  • the alkaline solution may be a 14%-21% NaOH solution.
  • the alkaline solution may be a 16%-18% NaOH solution.
  • the acid solution may include a hydrochloric acid solution, a dilute sulfuric acid solution, a nitric acid solution, a hydrofluoric acid solution, or a hypochlorous acid solution.
  • the purity of the above-mentioned alkali solution or acid solution may not be limited.
  • the above-mentioned alkaline solutions and acid solutions can use acid solutions and alkaline solutions recovered in other processes (eg, photovoltaic or semiconductor device production processes), which can recycle resources, save costs, and produce environmentally friendly methods.
  • the first duration is positively related to the thickness of the substrate, and the thicker the substrate, the longer the first duration required to etch and remove the substrate.
  • the first period of time may be at least 40 minutes. In some embodiments, the first period of time may be 40-90 minutes. In some embodiments, the first period of time may be 50-80 minutes. In some embodiments, the first period of time may be 55-75 minutes. In some embodiments, the first period of time may be 60-70 minutes. In some embodiments, the first duration may be 63-68 minutes.
  • whether the substrate is etched can be determined by human eye observation or composition detection.
  • the basal plane dislocation density (number of defects per unit area) can be used to characterize the quality of silicon carbide crystals.
  • the silicon carbide crystals from which the substrate is removed may be cleaned.
  • the substrate-free silicon carbide crystals can be cleaned with a cleaning solution (eg, isopropanol or deionized water) at 50°C to 80°C under the action of ultrasonic waves for a certain period of time (eg, 3- 10 minutes).
  • a cleaning solution eg, isopropanol or deionized water
  • FIG. 10 is an exemplary flow diagram of a substrate surface treatment process according to some embodiments.
  • the substrate surface may also be performed to keep the substrate surface, especially the crystal growth surface, clean and flat before the substrate is sequentially transferred and processed between multiple chambers.
  • the substrate surface treatment process 1000 may be performed by a control device (e.g., control module 101).
  • a control device e.g., control module 101
  • process 1000 may be stored in a storage device in the form of programs or instructions, and process 1000 may be implemented when control module 101 executes the program or instructions.
  • process 1000 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 10 is not limiting.
  • Step 1010 polishing the surface of the substrate. In some embodiments, this step 1010 may be performed by the polishing module 104 .
  • the substrate is placed on a polishing apparatus (eg, a polisher) for polishing.
  • a polishing apparatus eg, a polisher
  • the backside of the substrate may be polished first, and then the substrate front side (the crystal growth side) may be finely polished.
  • the substrate front side (crystal growth side) may be finely polished.
  • the backside of the substrate opposite the crystal growth plane
  • the substrate By polishing the backside of the substrate to remove cutting scratches and defects on the backside of the substrate, the substrate can be made flat, and the levelness of the crystal growth surface can be maintained during the transfer of the substrate.
  • finely polishing the front surface (crystal growth surface) of the substrate to make the surface flat, it is convenient for the reaction product to crystallize uniformly on the crystal growth surface during crystal growth.
  • the polished substrate may be dried.
  • the various surfaces of the substrate are blown dry with nitrogen or helium.
  • Step 1020 cleaning the surface of the substrate.
  • this step 1010 may be performed by the cleaning module 105 .
  • a cleaning device eg, ultrasonic cleaning equipment
  • the substrate surface may be cleaned at least once with at least one cleaning fluid.
  • acetone, alcohol, and deionized water may be used in sequence to ultrasonically clean the surface of the substrate once.
  • the duration of one wash may be at least 5 minutes. In some embodiments, the duration of one wash may be 5-30 minutes. In some embodiments, the duration of one wash may be 10-20 minutes. In some embodiments, the duration of one wash may be 15-18 minutes.
  • the cleaned substrate may be dried. For example, after cleaning the substrate, the various surfaces of the substrate are blown dry with nitrogen or helium.
  • the substrate may be further cleaned.
  • the polished and cleaned substrate may be soaked in a strong acid solution for a certain period of time, and then further cleaned.
  • the strong acid solution may include a solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, or hypochlorous acid.
  • the strong acid solution may include a 30%-40% hydrofluoric acid (HF) solution.
  • the substrate after diluting the strong acid solution, the substrate can be soaked in the diluted acid solution, so as to avoid damage to the substrate due to the high concentration of the acid solution.
  • 30%-40% HF solution can be diluted to 1% HF solution, and then the substrate can be soaked in 1%-3% HF solution for a certain period of time, and then the ultrasonic cleaning equipment can be used for further cleaning process.
  • the single crystal silicon substrate may be soaked in a 1%-3% HF solution for 5-8 minutes, and then further ultrasonically cleaned with deionized water for 5-10 minutes.
  • the substrate after further cleaning may be dried. For example, the substrate after further cleaning is blown dry with nitrogen gas or helium gas on each surface of the substrate.
  • FIG. 11 is a schematic flow diagram of an exemplary flow for transferring and processing substrates between chambers, according to some embodiments.
  • the transfer and processing process 1100 between chambers may be performed by a control device (eg, control module 101).
  • the process 1100 may be stored in a storage device in the form of programs or instructions, and the process 1100 may be implemented when the control module 101 executes the program or instructions.
  • process 1100 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 11 is not limiting.
  • the process 1100 of transferring and processing substrates between chambers includes:
  • step 1110 in-situ etching is performed on the substrate in the in-situ etching chamber.
  • At least one substrate may be etched in-situ.
  • one or more substrates may be placed on a tray and transferred to an in-situ etching chamber for an in-situ etching process.
  • the substrate may be etched in situ under certain gas pressure, certain temperature and reaction conditions of the processing gas.
  • the pressure of the in-situ etching cavity can be kept in the second pressure range and the temperature in the second temperature range for the second time period; and then hydrogen gas is introduced until the in-situ etching cavity is at normal pressure,
  • the in-situ etching process is performed on the substrate in a third temperature interval while maintaining the temperature of the in-situ etching chamber within a third time period. More details on in-situ processing of substrates can be found in the description of FIG. 13 .
  • defects on the crystal growth surface of the substrate can be removed, so that silicon carbide crystals with consistent crystal form and high quality can be grown on the surface of the substrate.
  • step 1120 the substrate is transferred from the in-situ etching chamber to the carbonization chamber through the transmission assembly for carbonization.
  • the substrate after the in-situ etching treatment can be further carbonized.
  • the substrate may be transferred from the in-situ etching chamber to the carbonization chamber for carbonization through a drive assembly (eg, drive assembly 208 ).
  • the substrate can be carbonized under certain gas pressure, certain temperature and reaction conditions of the processing gas.
  • the pressure of the carbonization chamber can be maintained in the third pressure range for the fourth time period, and the temperature of the in-situ etching chamber is equal to or similar to that of the in-situ etching chamber (the temperature difference is less than or equal to 5°C);
  • the third channel between the etching chamber and the carbonization chamber is opened, the substrate is transferred to the carbonization chamber through the transmission assembly 208, and the third channel is closed; then the carbonization chamber is cooled to the fifth temperature range, and vacuumized
  • the carbonization chamber is gradually heated to the fourth temperature interval, and carbonization gas (eg, methane, propane, butane, etc.) and hydrogen are introduced to the third pressure for carbonization treatment.
  • carbonization gas eg, methane, propane, butane, etc.
  • a carbonized buffer layer can be prepared on the crystal growth surface of the substrate, which is beneficial to the crystallization of silicon carbide crystals on the surface of the substrate.
  • step 1130 the substrate is transferred from the carbonization chamber to the growth chamber through the transmission assembly for vapor deposition to obtain a composite crystal.
  • silicon carbide crystals can be grown on the crystal growth surface of the substrate.
  • the substrate may be transferred from the carbonization chamber into the growth chamber by a drive assembly (eg, drive assembly 208).
  • the growth chamber can be heated to a fourth temperature range and pressurized to a third pressure range; then the fourth channel between the carbonization chamber and the growth chamber is controlled to open, and the lining is moved by the transmission assembly 208 The bottom is transferred into the growth chamber, closing the fourth channel. See the description of FIG. 15 for more details on transferring the substrate from the carbonization chamber to the growth chamber.
  • crystal growth is performed by vapor deposition on the crystal growth plane of the substrate in a growth chamber to produce a combined crystal comprising the substrate and the silicon carbide crystal.
  • the temperature of the growth chamber is increased to a sixth temperature range, and silane, propane and hydrogen are fed to a fifth pressure range for crystal growth; when the target crystal growth thickness reaches the target thickness, the crystal growth is stopped. More details about crystal growth in the growth chamber can be found in the description of FIG. 16 .
  • step 1140 the combined crystal is transferred from the growth chamber to the buffer chamber through the transmission assembly for cooling down.
  • the grown combined crystal can be further cooled.
  • the combined crystals may be transferred from the growth chamber to the buffer chamber through the transmission assembly 208, where temperature reduction and cooling are performed in the buffer chamber.
  • the temperature of the buffer chamber is raised to a sixth temperature range, and the fifth channel between the growth chamber and the buffer chamber is controlled to open, the combined crystal is transferred into the buffer chamber through the transmission component 208, and the first channel is closed. Five channels; then gradually cool down the buffer chamber to the seventh temperature range for the fifth time.
  • FIG. 17 For more details on cooling down in the buffer cavity, please refer to the description of FIG. 17 .
  • the substrate may be vacuum processed prior to the in-situ etch process.
  • the vacuum processing process 1200 may be performed by a control device (eg, control module 101).
  • process 1200 may be stored in a storage device in the form of programs or instructions, and process 1200 may be implemented when control module 101 executes the program or instructions.
  • process 1200 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 12 is not limiting.
  • the substrate may be vacuum processed in a vacuum chamber.
  • Process 1200 of vacuuming a substrate includes:
  • Step 1210 placing the substrate in a vacuum chamber.
  • the polished and cleaned substrates may be subjected to vacuum processing.
  • the substrate can be manually placed in the vacuum chamber, or the substrate can be manually placed on the transmission assembly 208 through which the substrate is transported into the vacuum chamber.
  • the substrate may be placed in the vacuum chamber by the mechanical structure 111 (eg, a manipulator), or the substrate may be placed on the transmission assembly 208 by the mechanical structure 111 , and the substrate may be moved by the transmission assembly 208 into the vacuum chamber.
  • one or more substrates may be placed in a vacuum chamber.
  • groups of substrates may be placed in a vacuum chamber in a continuous sequence.
  • step 1220 the first channel of the vacuum chamber is closed, and the pressure of the vacuum chamber and the in-situ etching chamber is adjusted to a first pressure range.
  • the first channel is an inlet channel (eg, inlet channel 401 ) of the vacuum chamber.
  • the pressure of the in-situ etching chamber and the vacuum chamber may be adjusted to be equal or similar (the difference is not more than 5 Pa), and then the substrate is transferred to the in-situ etching chamber.
  • the first channel of the vacuum chamber is closed, and the vacuum chamber and the in-situ etching chamber are respectively evacuated to the first pressure range.
  • the first pressure interval may be 3-15 Pa.
  • the first pressure interval may be 5-10 Pa.
  • the first pressure interval may be 6-9 Pa.
  • the first pressure interval may be 7-8 Pa.
  • the vacuum chamber and the in-situ etching chamber may be evacuated simultaneously.
  • the vacuum chamber is connected to the evacuation pipeline (eg, the evacuation pipeline 403 and the evacuation pipeline 503 ) of the in-situ etching chamber, and then connected to a vacuum device to control the operation of the vacuum device Speed and time to evacuate.
  • the vacuum chamber and the in-situ etching chamber can be evacuated respectively, and the pressure can be monitored in real time.
  • the pumping pipes of the vacuum chamber and the in-situ etching chamber are respectively connected to a plurality of vacuuming devices, the operation speed and time of the vacuuming devices are controlled, and the vacuum chamber and the in-situ etching chamber are respectively connected to the vacuum chamber and the in-situ etching chamber.
  • the body is evacuated and the pressure is monitored in real time.
  • a combination of mechanical and molecular pumps can be used to evacuate.
  • the vacuum chamber and/or the in-situ etching chamber may be evacuated to a certain degree of vacuum by a mechanical pump, and then the vacuum chamber and/or the in-situ etching chamber may be continuously pumped by a molecular pump Vacuum to the first pressure range.
  • Step 1230 the transmission assembly transfers the substrate to the in-situ etching chamber through the second channel between the vacuum chamber and the in-situ etching chamber.
  • the control module 101 can control the second channel between the vacuum chamber and the in-situ etching chamber to open, activate the transmission assembly 208 to transfer the substrate to a specific position in the in-situ etching chamber, and close the second channel. Second passage, and stop transmission assembly 208.
  • the second channel refers to a channel adjacent to the vacuum chamber and the in-situ etching chamber.
  • the second channel may be the inlet channel 501 of the in-situ etching chamber or the outlet channel 402 of the vacuum chamber.
  • the inlet channel 501 of the in-situ etching chamber and the outlet channel 402 of the vacuum chamber are the same channel.
  • the specific location in the in-situ etch chamber may be the bottom center region of the in-situ etch chamber.
  • the position of the substrate may be detected by a detection module 102 (eg, a sensor).
  • the detection module 102 detects that the substrate is in the bottom center region of the in-situ etching cavity
  • the position information of the substrate can be sent to the control module 101, and the control module 101 can control the mechanical structure 111 (eg, , the transmission assembly 208) stops running.
  • FIG. 13 is a schematic flow diagram of an in-situ etching process according to some embodiments.
  • the in-situ etching process 1300 may be performed by a control device (eg, control module 101).
  • process 1300 may be stored in a storage device in the form of programs or instructions, and process 1300 may be implemented when control module 101 executes the program or instructions.
  • process 1300 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 13 is not limiting.
  • the substrate may be etched in-situ in an in-situ etch chamber.
  • the process 1300 of performing an in-situ etching process on a substrate includes:
  • step 1310 the pressure of the in-situ etching chamber is kept within the second pressure range and the temperature within the second temperature range within the second time period.
  • the substrate may be etched in-situ by passing hydrogen gas under the first condition.
  • the first condition may include maintaining the pressure in the second pressure interval and the temperature in the second temperature interval for the second time period.
  • the second pressure interval is in the range where the pressure is less than 5 ⁇ 10 ⁇ 3 Pa. In some embodiments, the second pressure interval is within a range where the pressure is less than 1 ⁇ 10 ⁇ 3 Pa. In some embodiments, the second pressure interval may be in a range where the pressure is less than 0.8 ⁇ 10 ⁇ 3 Pa. In some embodiments, the second pressure interval may be in a range where the pressure is less than 0.5 ⁇ 10 ⁇ 3 Pa.
  • the second pressure interval may be in a range where the pressure is less than 1 ⁇ 10 ⁇ 4 Pa. In some embodiments, the second pressure interval is within a range where the pressure is less than 1 ⁇ 10 ⁇ 5 Pa.
  • the second temperature interval may include 400-900°C. In some embodiments, the second temperature interval may include 500-800°C. In some embodiments, the second temperature interval may include 550-750°C. In some embodiments, the second temperature interval may include 600-700°C. In some embodiments, the second temperature interval may include 630-680°C. In some embodiments, the temperature of the in-situ etching chamber may be adjusted by the heating body 505 . More details about the heating body 505 can be found in the description of FIG. 5 .
  • the second period of time may be at least 10 minutes. In some embodiments, the second period of time may be 10-90 minutes. In some embodiments, the second period of time may be 20-80 minutes. In some embodiments, the second period of time may be 25-75 minutes. In some embodiments, the second period of time may be 30-70 minutes. In some embodiments, the second period of time may be 40-60 minutes.
  • control module 101 may control the vacuuming device to evacuate the in-situ etching chamber so that the pressure in the in-situ etching chamber reaches the second pressure range, The temperature is slowly raised to the second temperature range for a second period of time, so as to fully discharge the gas in the in-situ etching cavity.
  • step 1320 hydrogen gas is introduced to normal pressure, and the temperature of the in-situ etching cavity is maintained within a third time period to perform in-situ etching treatment in a third temperature range.
  • the third temperature interval may include 900-1300°C. In some embodiments, the third temperature interval may include 1000-1200°C. In some embodiments, the third temperature interval may include 1050-1150°C. In some embodiments, the third temperature interval may include 1080-1130°C.
  • the third period of time may be at least 0.5 minutes. In some embodiments, the third period of time may be 0.5-5 minutes. In some embodiments, the third period of time may be 1-3 minutes. In some embodiments, the third period of time may be 1.5-2.8 minutes. In some embodiments, the third period of time may be 1.8-2.5 minutes. In some embodiments, the third period of time may be 2 minutes.
  • the substrate can be sufficiently etched by etching for a third period of time under normal pressure and a third temperature range.
  • the control module 101 may control the introduction of hydrogen into the in-situ etching chamber to perform the in-situ etching process.
  • the control module 101 can control the valve on the intake pipe 504 to open, and pass hydrogen gas into the in-situ etching cavity to normal pressure, and then control the heating body 505 to heat, so that the in-situ etching cavity is heated
  • the temperature of the substrate is raised to a third temperature range and maintained for a third period of time, and the crystal growth surface of the substrate is etched in-situ to remove defects on the crystal growth surface.
  • the in-situ etched substrate may be transferred to a carbonization chamber to carbonize the crystal growth surface of the substrate, so as to form a carbonization buffer layer on the crystal growth surface.
  • the carbonization process 1400 may be performed by a control device (eg, control module 101).
  • a control device eg, control module 101
  • process 1400 may be stored in a storage device in the form of programs or instructions, and process 1400 may be implemented when control module 101 executes the program or instructions.
  • process 1400 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 14 is not limiting.
  • Process 1400 of carbonization may include:
  • Step 1410 Adjust the temperature of the carbonization chamber to a third temperature range.
  • the carbonization cavity may be heated to a third temperature range by a heating body in the carbonization cavity.
  • a heating body in the carbonization cavity.
  • the control module 101 may control the heating module 103 (eg, a heating body) to increase the temperature of the carbonization chamber to a third temperature range.
  • the substrate is transferred to the carbonization chamber, which avoids the deformation of the substrate or the deformation of the substrate due to the sudden temperature change. transsexual.
  • step 1420 the substrate is transferred into the carbonization chamber through the transmission assembly.
  • the substrate may be transferred into the carbonization chamber when the temperatures of both the in-situ etching chamber and the carbonization chamber are maintained within the third temperature interval.
  • the control module 101 can control the opening of the third channel between the in-situ etching chamber and the carbonization chamber, and activate the transmission assembly (eg, the transmission assembly 208 ) to transfer the substrate to a specific location in the carbonization chamber. position, close the third channel and stop the transmission assembly.
  • the third channel refers to a channel adjacent to the in-situ etching chamber and the carbonization chamber.
  • the third channel may be the outlet channel 502 of the in-situ etching chamber or the inlet channel 501 of the carbonization chamber.
  • the outlet channel 502 of the in-situ etching chamber and the inlet channel 501 of the carbonization chamber are the same channel.
  • the specific location in the carbonization cavity may be the bottom center region of the carbonization cavity.
  • the position of the substrate may be detected by a detection module 102 (eg, a sensor). In some embodiments, when the sensor detects that the substrate is in the bottom center area of the in-situ etching cavity, the position information of the substrate can be sent to the control module 101, and the control module 101 can control the mechanical structure 111 (eg, the transmission Assembly 208) is deactivated.
  • Step 1430 Adjust the temperature of the carbonization chamber to the fifth temperature interval, and the pressure to the fourth pressure interval, while feeding propane and hydrogen to the third pressure interval, and keep the carbonization chamber pressure at the third pressure interval for the fourth time period , and the temperature is in the fourth temperature range for carbonization treatment.
  • the temperature of the substrate after in-situ etching in the in-situ etching chamber is relatively high (900-1300°C). If the substrate is directly transferred to the carbonization chamber, the substrate may react directly with the carbonization process gas. In addition, the pressure and gas components will be unstable, so the temperature in the carbonization chamber can be lowered first, and then the temperature can be raised to the temperature required for carbonization after the pressure and gas components are stabilized.
  • the carbonization process of the substrate may be performed by passing propane and hydrogen gas under the second conditions.
  • the second condition may include a pressure in a fourth pressure interval and a temperature in a fifth temperature interval.
  • the fifth temperature interval may be 700-1100°C. In some embodiments, the fifth temperature interval may be 800-1000°C. In some embodiments, the fifth temperature interval may be 850-980°C. In some embodiments, the fifth temperature interval may be 900-950°C. In some embodiments, the fourth pressure interval may be less than 5 ⁇ 10 ⁇ 5 Pa. In some embodiments, the fourth pressure interval may be less than 1 ⁇ 10 ⁇ 5 Pa. In some embodiments, the fourth pressure interval may be less than 0.5 ⁇ 10 ⁇ 5 Pa. In some embodiments, the fourth pressure interval may be less than 10 ⁇ 6 Pa. After the substrate is transferred to the carbonization chamber, the temperature of the carbonization chamber is lowered to the fifth temperature range, and the vacuum is pumped to the fourth pressure range, so that the gas in the carbonization chamber can be further discharged.
  • the third pressure interval may be 1 ⁇ 10 3 to 1 ⁇ 10 5 Pa. In some embodiments, the third pressure interval may be 1 ⁇ 10 3 -6 ⁇ 10 4 Pa. In some embodiments, the third pressure interval may be 2 ⁇ 10 3 -6 ⁇ 10 3 Pa. In some embodiments, the fourth temperature interval may be 1000-1500°C. In some embodiments, the fourth temperature interval may be 1100-1400°C. In some embodiments, the fourth temperature interval may be 1200-1350°C. In some embodiments, the fourth temperature interval may be 1250-1300°C. In some embodiments, the fourth period of time may be at least 0.5 minutes. In some embodiments, the fourth period of time may be 0.5-5 minutes. In some embodiments, the fourth period of time may be 1-3 minutes.
  • the fourth period of time may be 1.5-2.5 minutes. In some embodiments, the fourth period of time may be 2 minutes. In some embodiments, the flow rate of propane (C 3 H 8 ) comprises 3-25 seem. In some embodiments, the flow rate of propane (C 3 H 8 ) comprises 5-20 seem. In some embodiments, the flow rate of propane (C 3 H 8 ) comprises 7-18 seem. In some embodiments, the flow rate of propane (C 3 H 8 ) comprises 10-15 seem. In some embodiments, the flow rate of hydrogen includes 0.5 to 25 L/min. In some embodiments, the flow rate of hydrogen gas comprises 1-20 L/min. In some embodiments, the flow rate of hydrogen includes 5-15 L/min. In some embodiments, the flow rate of hydrogen gas comprises 7-12 L/min.
  • control module 101 controls the carbonization chamber to cool down to the fifth temperature range, evacuate to the fourth pressure range, and then start to heat up, and simultaneously feed propane and hydrogen until the pressure reaches the third pressure range, and then heat up to the fourth pressure range.
  • the carbonization treatment is carried out for a fourth period of time at constant temperature and pressure.
  • the in-situ etched substrate may be transferred to a growth chamber to grow silicon carbide crystals on the crystal growth plane of the substrate.
  • the process 1500 of transferring the substrate from the carbonization chamber to the growth chamber may be performed by a control device (eg, control module 101 ).
  • a control device eg, control module 101
  • process 1500 may be stored in a storage device in the form of programs or instructions, and process 1500 may be implemented when control module 101 executes the program or instructions.
  • process 1500 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 15 is not limiting.
  • the process 1500 of transferring a substrate from a carbonization chamber to a growth chamber may include:
  • Step 1510 Adjust the temperature of the growth chamber to the fourth temperature range and the pressure to the third pressure range.
  • the growth chamber may be heated to the fourth temperature range by a heating body in the growth chamber.
  • the control module 101 may control the heating module 103 (eg, a heating body) to increase the temperature of the growth chamber to the fourth temperature range.
  • the control module 101 may control the vacuuming device to pump the growth chamber so that the pressure in the growth chamber is adjusted to the third pressure range. For more information about the third pressure interval, please refer to the description of FIG. 14 .
  • the temperature difference is less than or equal to 5°C
  • the vacuum is evacuated to the same or similar pressure (the pressure difference does not exceed 10Pa)
  • the substrate is transferred into the growth chamber , avoiding substrate deformation or denaturation due to sudden changes in temperature or pressure.
  • step 1520 the fourth channel between the carbonization chamber and the growth chamber is controlled to open, and the substrate is transferred into the growth chamber through the transmission component.
  • the substrate when the temperature of the growth chamber and the carbonization chamber are both in the fourth temperature range and the pressure is in the third pressure range, the substrate may be transferred into the growth chamber.
  • the control module 101 may control the fourth channel between the growth chamber and the carbonization chamber to open, and start the transmission assembly ( For example, the drive assembly 208) transfers the substrate to a specific location in the growth chamber, closes the fourth channel and stops the drive assembly.
  • the fourth channel refers to a channel adjacent to the growth chamber and the carbonization chamber.
  • the fourth channel may be the outlet channel 502 of the carbonization chamber or the inlet channel 601 of the growth chamber.
  • the outlet channel 502 of the carbonization chamber and the inlet channel 601 of the growth chamber are the same channel.
  • the particular location in the growth chamber may be directly above the axis of rotation 606 at the bottom of the growth chamber.
  • the position of the substrate may be detected by a detection module 102 (eg, a positioner).
  • the position information of the substrate can be sent to the control module 101, and the control module 101 can control the mechanical structure 111 (eg, the transmission assembly 208) to stop running.
  • the positioner when the positioner determines that the substrate is at a preset position of the growth chamber, the position information of the substrate can be sent to the control module 101, and the control module 101 can control the mechanical structure 111 (eg, the transmission assembly 208) Stop transmission.
  • the predetermined position of the growth chamber may be directly above the rotation axis 606 .
  • the positioner may be provided on the axis of rotation.
  • the control module 101 can control the rotation axis 606 to rise to lift the substrate to the middle of the growth chamber.
  • the rotating shaft can rotate the substrate clockwise or counterclockwise. In some embodiments, the rotational speed of the rotating shaft can be adjusted.
  • Figure 16 is a schematic flow diagram of an exemplary crystal growth according to some embodiments.
  • vapor deposition may be performed on the crystal growth face of the substrate in a growth chamber to produce a combined crystal comprising the substrate and the silicon carbide crystal.
  • a growth chamber For more content about the growth cavity, please refer to the content of FIGS. 2A-2B , FIGS. 3A-3B and FIG. 6 .
  • the crystal growth process 1600 may be performed by a control device (eg, control module 101).
  • process 1600 may be stored in a storage device in the form of programs or instructions, and process 1600 may be implemented when control module 101 executes the program or instructions.
  • process 1600 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 16 is not limiting.
  • Crystal growth process 1600 may include:
  • step 1610 the temperature of the growth chamber is increased to the sixth temperature range, and the pressure is adjusted to the fourth pressure range.
  • target crystals eg, silicon carbide crystals
  • the third condition may include a pressure in a fourth pressure interval and a temperature in a sixth temperature interval.
  • the sixth temperature interval varies according to the type of crystal to be grown.
  • the sixth temperature interval may be 1300-1750°C.
  • the sixth temperature interval may be 1400-1700°C.
  • the sixth temperature interval may be 1450-1650°C.
  • the sixth temperature interval may be 1500-1600°C.
  • the sixth temperature interval may be 1520-1570°C.
  • the sixth temperature interval may be constant throughout the growth process, or may be adjusted according to different stages of the crystal growth process.
  • control module 101 may control the heating module 103 (eg, a heating body in the growth chamber) to heat the growth chamber to a sixth temperature range. More information about the heating body can be found in the descriptions in other sections.
  • the growth chamber may be evacuated to the fourth pressure interval by a vacuum device (eg, a vacuum pump). More content about the fourth pressure interval can be described in FIG. 14 .
  • a vacuum device eg, a vacuum pump
  • Step 1620 feeding silane, propane and hydrogen into a fifth pressure range for crystal growth.
  • the fifth pressure interval varies according to the type of crystal to be grown. For a specific crystal (for example, silicon carbide crystal), if the fifth pressure interval is too small, the crystal growth rate is low; if the fifth pressure is too large, crystal growth is easy to form. defect.
  • the fifth pressure interval may be 20-100 Pa. In some embodiments, the fifth pressure interval may be 30-90 Pa. In some embodiments, the fifth pressure interval may be 40 ⁇ 80 Pa. In some embodiments, the fifth pressure interval may be 50 ⁇ 70 Pa. In some embodiments, the fifth pressure interval may be 55-65 Pa. In some embodiments, the fifth pressure interval may be constant throughout the growth process, or may be adjusted according to different stages of the crystal growth process.
  • the flow rate of the silane (SiH 4 ) introduced includes 300-800 seem. In some embodiments, the flow rate of the silane (SiH 4 ) introduced includes 400-600 seem. In some embodiments, the flow rate of the silane (SiH 4 ) introduced includes 450-550 seem. In some embodiments, the flow rate of the silane (SiH 4 ) introduced includes 480-520 seem. In some embodiments, the flow rate of propane (C 3 H 8 ) introduced comprises 100-250 seem. In some embodiments, the flow rate of propane (C 3 H 8 ) passed in comprises 133-200 seem. In some embodiments, the flow rate of propane (C 3 H 8 ) introduced comprises 150-180 seem.
  • the flow rate of propane (C 3 H 8 ) introduced comprises 160-170 seem.
  • the flow rate of hydrogen (H 2 ) introduced includes 10 to 90 L/min.
  • the flow rate of hydrogen (H 2 ) introduced includes 20 to 80 L/min.
  • the flow rate of hydrogen (H 2 ) introduced includes 30 to 70 L/min.
  • the flow rate of hydrogen (H 2 ) introduced includes 40-60 L/min.
  • control module 101 can respectively control the flow rates of silane, propane and hydrogen into the growth chamber so that the pressure of the growth chamber is in the fifth pressure range.
  • the substrate undergoes crystal growth under conditions of a sixth temperature interval, a fifth pressure interval, and reactants (silane, propane, and hydrogen).
  • Step 1630 when the target crystal thickness reaches the target thickness, the crystal growth is stopped.
  • the target thickness may be 200-600 ⁇ m. In some embodiments, the target thickness may be 300-500 ⁇ m. In some embodiments, the target thickness may be 320-480 ⁇ m. In some embodiments, the target thickness may be 350-450 ⁇ m. In some embodiments, the target thickness may be 380-420 ⁇ m. In some embodiments, the target thickness may be 390-410 ⁇ m.
  • the thickness of the crystal growth can be monitored, and the temperature and pressure of the growth chamber and the flow ratio of silane, propane and hydrogen can be controlled according to parameters such as the speed and thickness of the crystal growth.
  • a reflection high energy electron diffraction device RHEED
  • the temperature of the growth chamber can be adjusted by adjusting the heating power of the heating body.
  • the proportions of the silicon source and the carbon source in the reactants can be adjusted by adjusting the flow rates of silane and propane respectively.
  • the pressure of the growth chamber can be adjusted by adjusting the flow rates of silane, propane and hydrogen.
  • control module 101 may control to stop the crystal growth. In some embodiments, the control module 101 may control to stop the introduction of silane, propane and hydrogen, and control to stop the heating body from heating the growth chamber.
  • 17 is a schematic flow diagram of an exemplary process for buffering and cooling according to some embodiments.
  • a buffer cavity and an end cavity are further disposed adjacent to the growth cavity, so as to perform subsequent operations after the crystal growth is completed, for example, to cool the obtained combined crystal.
  • the combined crystal is transferred from the growth chamber to the buffer chamber through the transmission assembly, and cooled to a certain temperature (for example, the seventh temperature range); and then the combined crystal is transferred to the end chamber and cooled to room temperature.
  • the buffer cavity By setting the buffer cavity, the combined crystal is first cooled in the buffer cavity to the seventh temperature range (500-1200°C), and then the combined crystal is transferred to the end cavity to cool to room temperature, which avoids the sudden drop in the ambient temperature (the combined crystal is crystals from the growth chamber directly into the end chamber) resulting in cracking of the combined crystals.
  • the buffering and cooling process 1700 may be performed by a control device (eg, control module 101).
  • a control device eg, control module 101
  • process 1700 may be stored in a storage device in the form of a program or instructions, and process 1700 may be implemented when control module 101 executes the program or instructions.
  • process 1700 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 17 is not limiting.
  • Step 1710 Adjust the temperature of the buffer chamber to a sixth temperature range.
  • the buffer cavity may be heated to the sixth temperature range by the heating body in the buffer cavity.
  • the control module 101 may control the heating module 103 (eg, a heating body) to increase the temperature of the buffer cavity to the sixth temperature range.
  • the heating module 103 eg, a heating body
  • the temperature difference is less than or equal to 5°C
  • step 1720 the combined crystal is transferred into the buffer cavity through the transmission assembly.
  • a fifth channel between the growth chamber and the buffer chamber may be opened, and the transmission assembly (eg, transmission assembly 208 ) is activated to transfer the combined crystal To a specific position in the buffer cavity, the fifth channel is closed and the transmission assembly is stopped.
  • the fifth channel refers to a channel adjacent to the growth chamber and the buffer chamber.
  • the fifth channel may be the outlet channel 602 of the growth chamber or the inlet channel 501 of the buffer chamber.
  • the outlet channel 602 of the growth chamber and the inlet channel 501 of the buffer chamber are the same channel.
  • the particular location in the buffer cavity may be the bottom center region of the buffer cavity.
  • the position of the substrate may be detected by a detection module 102 (eg, a sensor).
  • a detection module 102 eg, a sensor
  • the position information of the substrate can be sent to the control module 101, and the control module 101 can control the mechanical structure 111 (eg, the transmission assembly 208) Stop running.
  • Step 1730 Adjust the temperature of the buffer chamber to the seventh temperature range, and keep the temperature for the fifth time period to perform the cooling and cooling process.
  • the seventh temperature interval may be 500-1200°C. In some embodiments, the seventh temperature interval may be 550-1000°C. In some embodiments, the seventh temperature interval may be 600 ⁇ 800°C. In some embodiments, the seventh temperature interval may be 650-750°C. In some embodiments, the seventh temperature interval may be 680-720°C.
  • the fifth period of time may be at least 1 h. In some embodiments, the fifth duration may be 1-7h. In some embodiments, the fifth duration may be 2-6h. In some embodiments, the fifth duration may be 2.5-5.5h. In some embodiments, the fifth duration may be 3-5h. In some embodiments, the fifth duration may be 3.5-4.5h.
  • the control module 101 may control the temperature of the buffer chamber to gradually decrease to the seventh temperature range.
  • the control module 101 can control the valve on the inlet pipe 504 to open and pass a replacement gas (eg, hydrogen, nitrogen, argon or helium) into the buffer chamber through the inlet pipe 504; at the same time, It is also possible to control the vacuuming device to pump the buffer cavity, so as to keep the pressure in the buffer cavity near normal pressure.
  • the control module 101 may control the seventh temperature interval of the buffer chamber to maintain a fifth period of time, so as to stabilize the temperature of the components in the buffer chamber or the combined crystals in the seventh temperature range.
  • step 1740 the combined crystal is transferred into the end cavity through the transmission assembly.
  • the combined crystals may be delivered to the end cavity for further cooling.
  • the temperature of the end cavity may be room temperature.
  • the control module 101 may control the sixth passage between the buffer cavity and the end cavity to open, activate the transmission assembly (eg, transmission assembly 208 ) to deliver the combined crystal to a specific location in the end cavity, and close Channel 6 and stop the transmission assembly.
  • the sixth channel refers to a channel adjacent to the buffer cavity and the end cavity.
  • the sixth channel may be the outlet channel 502 of the buffer cavity or the inlet channel 401 of the end cavity.
  • the outlet channel 502 of the buffer chamber and the inlet channel 401 of the end chamber are the same channel.
  • the specific location in the buffer cavity may be the bottom center area or other designated area of the buffer cavity.
  • the position of the combined crystal can be detected by the detection module 102 (eg, a sensor). In some embodiments, when the sensor detects that the combined crystal is in the bottom central area of the end cavity or other designated areas, the position information of the combined crystal can be sent to the control module 101, and the control module 101 can control the mechanical structure 111 (eg, The transmission assembly 208) is stopped.
  • Step 1750 cooling the combined crystal to room temperature.
  • the combined crystals can continue to cool to room temperature in the end cavity.
  • the combined crystals can be cooled to room temperature after 8-12 hours of natural cooling in the end cavity.
  • the combined crystals may be cooled by passing a displacement gas into the end cavity.
  • the terminal cavity is provided with an air inlet pipe and an air outlet pipe, and the control module 101 can control the valve on the air inlet pipe to open and pass a replacement gas (eg, hydrogen, nitrogen, argon or helium); at the same time, the vacuum device can also be controlled to pump the end cavity to keep the pressure in the end cavity near normal pressure.
  • a replacement gas eg, hydrogen, nitrogen, argon or helium
  • the control module 101 can control the outlet channel 402 of the terminal cavity to open, and transmit the combined crystal to the vicinity of the outlet channel 402 of the terminal cavity through the transmission assembly 208, manually or by The manipulator takes out the combined crystal.
  • the combined crystal can be chemically etched to remove the substrate on the combined crystal to obtain a silicon carbide crystal. More details about chemical etching can be found in the description of FIG. 9 .
  • the process 1700 may not include steps 1740 and 1750, that is, there is no end cavity, and after the combined crystal is directly taken out in the buffer cavity, cooling is performed in a natural environment.
  • the process of preparing silicon carbide crystals by a multi-cavity growth apparatus may include the following steps:
  • Polishing treatment and cleaning treatment Polish the circular monocrystalline silicon wafer with the crystal growth surface of the (111) surface, a thickness of 100-400um, and a diameter of 1-10 inches on a polishing machine. Polishing is performed to make the surface flat; then the (111) surface is finely polished to remove surface cutting scratches and defects.
  • the polished single-crystal silicon wafers are ultrasonically cleaned for 10-20 minutes each with a cleaning solution (eg, acetone, alcohol, deionized water), and then blown dry with high-purity nitrogen or helium.
  • the single crystal silicon wafer is then soaked in a 1%-3% HF solution for 5-8 minutes, and then ultrasonically cleaned with deionized water for 5-10 minutes. After cleaning, the single crystal silicon wafer is blown dry with nitrogen or helium.
  • Vacuum treatment place at least one single crystal silicon wafer in the groove position on the tray and fix it, with the (111) side of the single crystal silicon wafer facing up. Put the tray into the vacuum chamber, and evacuate the vacuum chamber to 3-15Pa. During this period, the in-situ etching chamber is evacuated to be equal to or close to the pressure in the vacuum chamber (the difference is not more than 5Pa).
  • In-situ etching treatment the tray on which at least one single-crystal silicon wafer is placed is transferred to the in-situ etching chamber.
  • the tray on which at least one single-crystal silicon wafer is placed is transferred to the in-situ etching chamber.
  • the tray on which at least one single crystal silicon wafer is placed is transferred to the carbonization chamber, and the crystal growth surface is carbonized to prepare a carbonization buffer layer.
  • the carbonization chamber was cooled to 800-1000°C, and vacuumed; when the vacuum pressure was less than 1 ⁇ 10 -5 Pa, the temperature was raised, and 5-20sccm of propane (C 3 H 8 was introduced into the carbonization chamber ) and 1-20L/min of hydrogen, and keep the carbonization chamber pressure at 1 ⁇ 10 3 to 6 ⁇ 10 4 Pa.
  • the temperature of the carbonization chamber was raised to 1100-1400°C, and the temperature was maintained for 1 to 3 minutes. During this period, the temperature of the growth chamber was adjusted to 1100-1400°C.
  • Crystal growth transfer the tray on which at least one single crystal silicon wafer is placed into the growth chamber, and adjust the temperature of the growth chamber to 1400-1700°C. Pour 400-600 sccm of SiH 4 , 133-200 sccm of C 3 H 8 , and 20-80 L/min of H 2 into the growth chamber, keep the pressure of the growth chamber at 30-90 Pa, and carry out in the growth chamber crystal growth. During this period, the temperature of the buffer chamber was adjusted to 1400-1700°C. After 10-12 h of growth in the growth chamber, the trays were transferred to the buffer chamber.
  • Chemical etching treatment after taking out the combined crystals, use 10%-25% NaOH solution, and perform ultrasonic cleaning at 65-80°C for rapid etching, and the duration is 50-80 minutes to obtain Silicon carbide crystals after chemical etching.
  • Cleaning treatment put the silicon carbide crystals into a cleaning solution (for example, isopropanol), and perform ultrasonic cleaning for 3-10 minutes at 50-80° C. Then use deionized water to ultrasonically clean for 3 to 10 minutes to obtain silicon carbide crystals.
  • a cleaning solution for example, isopropanol
  • the possible beneficial effects of the embodiments of the present specification include, but are not limited to: (1) Crystal preparation is performed by using a multi-cavity growth device, and at least one substrate or combined crystal is transferred between the cavities, and in each cavity Different processing processes are carried out independently to realize the mass production of crystals in the pipeline; (2) During the growth process, the thickness of the target crystal can be monitored, and the target crystal of the target thickness can be prepared. After chemical etching, a single finished target wafer can be obtained.
  • the crystal preparation cycle is short, the processing cost is low, and the efficiency is high;
  • All or part of the software may sometimes communicate over a network, such as the Internet or other communication network.
  • a network such as the Internet or other communication network.
  • Such communications enable the loading of software from one computer device or processor to another.
  • another medium that can transmit software elements can also be used as a physical connection between local devices, such as light waves, radio waves, electromagnetic waves, etc., which are propagated through cables, optical cables, or air.
  • the physical medium used for the carrier wave such as a cable, wireless connection, or fiber optic cable, etc., can also be considered to be the medium that carries the software.
  • tangible "storage” media other terms referring to computer or machine "readable media” refer to media that participate in the execution of any instructions by a processor.
  • the computer program coding required for the operation of the various parts of this manual may be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C ++ , C # , VB. NET, Python, etc., conventional programming languages such as C language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may run entirely on the user's computer, or as a stand-alone software package on the user's computer, or partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any network, such as a local area network (LAN) or wide area network (WAN), or to an external computer (eg, through the Internet), or in a cloud computing environment, or as a Service usage such as Software as a Service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS Software as a Service

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

一种组合晶体制备方法,在多腔体生长装置(200)中进行,多腔体生长装置(200)包括多个腔体;组合晶体制备方法包括:将衬底依次在多个腔体之间进行传送和处理;在多个腔体中的一个内,通过气相沉积生长晶体,得到包含衬底和目标晶体的组合晶体。

Description

一种组合晶体制备方法和系统 技术领域
本说明书涉及晶体制备技术领域,特别涉及一种组合晶体制备方法和系统。
背景技术
随着科学技术的发展,半导体晶体的需求越来越大。由于半导体晶体的尺寸小、薄等特点,因此对晶体的切割和抛光工艺有较高的要求,例如,若切割的晶体尺寸厚度不均匀或抛光不平整将不满足半导体晶体的要求。
因此,有必要提供一种组合晶体制备方法和系统,以制备无需加工切割的目标晶体。
发明内容
本说明书实施例的一个方面提供一种组合晶体制备方法,所述制备方法在多腔体生长装置中进行,所述多腔体生长装置包括多个腔体;所述方法包括:将至少一个衬底依次在多个腔体之间进行传送和处理;在所述多个腔体中的一个腔体内,通过气相沉积生长目标晶体,得到包含所述衬底和目标晶体的至少一个组合晶体。
在一些实施例中,在将所述至少一个衬底依次在多个腔体之间进行传送和处理之前,所述方法还包括:对所述至少一个衬底进行抛光处理。
在一些实施例中,在将所述至少一个衬底依次在多个腔体之间进行传送和处理之前,所述方法还包括:对所述至少一个衬底进行清洗处理。
在一些实施例中,所述方法还包括:在第一温度区间,使用刻蚀溶液对所述组合晶体进行超声清洗第一时长,得到基面位错密度为120-2000cm -2的所述目标晶体。
在一些实施例中,所述多腔体生长装置至少包括:原位刻蚀腔体、碳化腔 体、生长腔体、缓冲腔体和传动组件;所述传动组件将至少一个衬底依次通过所述原位刻蚀腔体、所述碳化腔体、所述生长腔体和所述缓冲腔体进行处理。
在一些实施例中,所述方法还包括:在所述至少一个衬底完成所述依次在多个腔体之间进行传送和处理前,启动另一个批次的至少一个衬底在多个腔体之间进行传送和处理,所述两个批次的至少一个衬底同时分别在不同的腔体进行传送和处理。
在一些实施例中,所述多腔体生长装置包括真空腔体;所述方法包括:所述至少一个衬底在所述原位刻蚀腔体中进行处理之前,将所述至少一个衬底放置于所述真空腔体中;调整所述真空腔体和所述原位刻蚀腔体压力至第一压力区间;所述传动组件将所述至少一个衬底传送至所述原位刻蚀腔体。
在一些实施例中,所述至少一个衬底在所述原位刻蚀腔体中进行处理包括:在第二时长范围内保持所述原位刻蚀腔体的压力在第二压力区间,温度在第二温度区间;通入氢气至所述原位刻蚀腔体至常压,在第三时长范围内保持所述原位刻蚀腔体的温度在第三温度区间进行原位刻蚀处理。
在一些实施例中,所述至少一个衬底在所述碳化腔体中进行处理包括:在第四时长内保持碳化腔体的压力为第三压力区间,温度在第四温度区间内进行碳化处理。
在一些实施例中,所述碳化处理包括:调整所述碳化腔体温度至所述第三温度区间;通过所述传动组件将所述至少一个衬底传送至所述碳化腔体中,调整所述碳化腔体温度至第五温度区间,压力至第四压力区间,同时通入丙烷和氢气至第三压力区间,并在第四时长内保持碳化腔体的压力为第三压力区间,温度在第四温度区间内进行碳化处理。
在一些实施例中,所述至少一个衬底在所述生长腔体中进行处理包括:保持生长腔体的温度在第六温度区间,压力在所述第四压力区间,通入反应原料,调整压力在第五压力区间进行晶体生长过程。
在一些实施例中,所述晶体生长过程包括:调整所述生长腔体温度至所述 第四温度区间,压力至所述第三压力区间;通过所述传动组件将所述至少一个衬底传送至所述生长腔体中,调整所述生长腔体温度至第六温度区间,压力在所述第四压力区间,通入硅烷、丙烷和氢气至第五压力区间进行晶体生长;当所述目标晶体厚度达到目标厚度时,停止进行晶体生长。
在一些实施例中,所述多腔体生长装置包括定位器;所述通过所述传动组件将所述至少一个衬底传送至所述生长腔体中包括:当所述定位器确定所述至少一个衬底位于所述生长腔体中的预设位置时,停止所述传动组件。
在一些实施例中,所述在所述缓冲腔体中进行处理包括:在第五时长内保持缓冲腔体的温度为第七温度区间内进行冷却降温处理。
在一些实施例中,冷却降温处理包括:调整所述缓冲腔体温度至所述第六温度区间;通过所述传动组件将所述组合晶体传送至所述缓冲腔体中;调整所述缓冲腔体温度至第七温度区间,保持第五时长内缓冲腔体的温度为第七温度区间内进行冷却降温处理。
在一些实施例中,所述多腔体生长装置包括末端腔体;所述方法还包括:保持所述末端腔体温度为室温;通过所述传动组件将所述组合晶体传送至所述末端腔体中;将所述组合晶体冷却至室温。
本说明书实施例的一个方面提供一种组合晶体制备系统,应用于晶体制备过程,其中,所述系统包括:至少一个存储器,用于存储计算机指令;至少一个处理器,所述至少一个处理器与所述至少一个存储器通讯,当所述至少一个处理器执行所述计算机指令时,所述至少一个处理器使所述系统执行:将至少一个衬底依次在多个腔体之间进行传送和处理;在所述多个腔体中的一个腔体内,通过气相沉积生长目标晶体,得到包含所述衬底和目标晶体的至少一个组合晶体。
在一些实施例中,所述至少一个处理器使所述系统执行:在第一温度区间,使用刻蚀溶液对所述组合晶体进行超声清洗第一时长,得到基面位错密度为120-2000cm -2的所述目标晶体。
在一些实施例中,所述多腔体生长装置至少包括:原位刻蚀腔体、碳化腔 体、生长腔体、缓冲腔体和传动组件;所述至少一个处理器使所述系统执行:通过传动组件将至少一个衬底依次通过所述原位刻蚀腔体、所述碳化腔体、所述生长腔体和所述缓冲腔体进行处理。
在一些实施例中,所述至少一个处理器使所述系统执行:在所述至少一个衬底完成所述依次在多个腔体之间进行传送和处理前,启动另一个批次的至少一个衬底在多个腔体之间进行传送和处理,所述两个批次的至少一个衬底同时分别在不同的腔体进行传送和处理。
本说明书实施例的一个方面提供一种计算机可读存储介质,其中,所述存储介质存储计算机指令,当所述计算机指令被处理器执行时,实现如本说明书任一实施例所述的方法。
本说明书实施例的一个方面提供一种一种多腔体生长装置,应用于晶体制备过程,所述多腔体生长装置包括:原位刻蚀腔体;碳化腔体;生长腔体,用于通过气相沉积生长目标晶体,得到包括衬底和目标晶体的至少一个组合晶体;缓冲腔体;传动组件;所述传动组件将所述至少一个衬底依次通过所述原位刻蚀腔体、所述碳化腔体、所述生长腔体和所述缓冲腔体进行处理。
在一些实施例中,所述多腔体生长装置还包括真空腔体。
在一些实施例中,所述多腔体生长装置还包括末端腔体。
在一些实施例中,所述传动组件包括至少两个平行排列的可转动圆柱滚轮,所述可转动圆柱滚轮并排位于各个腔体下方。
在一些实施例中,所述多腔体生长装置包括托盘;所述托盘上设有至少一个凹槽,所述至少一个凹槽用于放置至少一个衬底。
在一些实施例中,所述生长腔体包括旋转轴。
在一些实施例中,所述多腔体生长装置包括定位器。
在一些实施例中,所述原位刻蚀腔体、所述碳化腔体和所述生长腔体中分别包括至少一个进气管道。
在一些实施例中,所述真空腔体、所述原位刻蚀腔体、所述碳化腔体和所 述生长腔体中分别包括至少一个抽气管道。
在一些实施例中,所述原位刻蚀腔体、所述碳化腔体、所述生长腔体和所述缓冲腔体中分别设置加热体。
附图说明
图1是根据一些实施例所述的晶体制备系统的示例性硬件和/或软件的示意图;
图2A是根据一些实施例所述的多腔体生长装置的示例性结构示意图;
图2B是根据一些实施例所述的多腔体生长装置中各腔体的示例性分布的俯视图;
图3A是根据另一些实施例所述的多腔体生长装置的示例性结构示意图;
图3B是根据另一些实施例所述的多腔体生长装置中各腔体的示例性分布的俯视图;
图4是根据一些实施例所述的第一类腔体的示例性结构示意图;
图5是根据一些实施例所述的第二类腔体的示例性结构示意图;
图6是根据一些实施例所述的第三类腔体的示例性结构示意图;
图7是根据一些实施例所述的托盘的示例性结构示意图;
图8是根据一些实施例所述的传动组件的示例性结构示意图;
图9是根据一些实施例所述的碳化硅晶体制备方法的示例性流程示意图;
图10是根据一些实施例所述的衬底表面处理过程的示例性流程示意图;
图11是根据一些实施例所述的将衬底在各腔体之间传送和处理的示例性流程示意图;
图12是根据一些实施例所述的真空处理的示例性流程示意图;
图13是根据一些实施例所述的原位刻蚀处理的示例性流程示意图;
图14是根据一些实施例所述的碳化处理的示例性流程示意图;
图15是根据一些实施例所述的将衬底从碳化腔体传送至生长腔体的示例 性流程示意图;
图16是根据一些实施例所述的晶体生长的示例性流程示意图;
图17是根据一些实施例所述的缓冲和降温处理的示例性流程示意图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本说明书使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是根据一些实施例所述的晶体制备系统的示例性硬件和/或软件的示意图。
如图1所示,晶体制备系统100可以包括控制模块101、检测模块102、加热模块103、抛光模块104、清洗模块105、真空模块106、刻蚀模块107、碳化模块108、生长模块109、驱动模块110、机械结构111、通信模块112、供电 模块113以及输入/输出模块114。本说明书中提到的模块、单元、子单元可以通过硬件、软件或者软件和硬件的结合的方式来实现。其中,硬件的实现方式可以包括利用实体部件组成的电路或结构来实现;软件的实现方式可以包括将模块、单元、子单元对应的操作以代码的形式存储在存储器中,由适当的硬件例如,微处理器来执行。在本说明书提到的模块、单元、子单元执行其操作时,如果没有特殊说明,既可以指包含该功能的软件代码被执行,也可以指具有该功能的硬件被使用。同时,本说明书中所提到的模块、单元、子单元在对应硬件的时候并不限定其对应硬件的结构,只要能实现其功能的硬件都在本说明书保护范围内。例如,本说明书中所提到的不同模块、单元、子单元可以对应同一个硬件结构。又例如,本说明书中所提到的同一个模块、单元、子单元也可以对应多个独立的硬件结构。
控制模块101可以与其他模块相关联。在一些实施例中,控制模块101可以控制其它模块(例如,检测模块102、加热模块103、驱动模块110、通信模块112、供电模块113等)的运行状态。在一些实施例中,控制模块101可以控制驱动模块110启动或停止。在一些实施例中,控制模块101可以控制供电模块113的供电功率、供电时长等。在一些实施例中,控制模块101可以管理通信模块112中的数据获取或发送过程。
检测模块102用于检测系统的工艺参数,例如,温度、压力、气体流速、晶体生长厚度等。在一些实施例中,检测模块102可以将系统工艺参数的检测结果发送给控制模块101,控制模块101可以根据检测结果执行后续的操作或指令。在一些实施例中,检测模块102可以监测生长腔体内的温度并将温度数据发送给控制模块101,控制模块101根据检测模块102实时反馈的温度数据,确定是否调整加热模块103的运行参数(例如,加热电流、加热功率等)以控制生长腔体内的温度。在一些实施例中,检测模块102可以监测真空腔体内的压力并将压力数据发送给控制模块101,控制模块101根据检测模块102实时反馈的压力数据,确定是否继续对真空腔体抽真空,若是,控制模块101可以控制真空 模块106对真空腔体抽真空;反之,控制模块101可以控制真空模块106停止抽真空,以保持当前真空度。在一些实施例中,检测模块102可以监测各类气体原料的流量并将流量数据发送给控制模块101,控制模块101根据检测模块102实时反馈的气体原料的流量,确定是否调整各类气体原料的流量,以控制气体原料的组分比例或晶体生长厚度。
加热模块103用于提供系统所需的热能。在一些实施例中,加热模块103可以对生长腔体或原位刻蚀腔体进行加热。在一些实施例中,加热模块103可以包括电阻式加热体、感应线圈等加热组件。电阻式加热体可以包括石墨电阻或碳硅棒电阻。在一些实施例中,加热模块103可以与一个或多个其他模块或腔体进行组合使用,或安装于一个或多个其他模块或腔体中或腔体外,用于提供该其他模块或腔体所需的热能。在一些实施例中,生长腔体和原位刻蚀腔体中分别安装加热模块103的子系统,以分别控制生长腔体和原位刻蚀腔体中的温度。
在一些实施例中,抛光模块104对衬底的抛光处理过程进行控制。在一些实施例中,在利用衬底制备晶体之前,需要对衬底表面进行预处理,以使衬底表面(尤其是晶体生长面)保持洁净和平整。在一些实施例中,预处理可以包括抛光处理和清洗处理。在一些实施例中,抛光处理在抛光设备中完成。抛光设备可以包括抛光机。在一些实施例中,衬底由机械结构111(例如,机械手)放置于抛光设备上,对衬底进行抛光。在一些实施例中,抛光模块可以控制抛光设备先对衬底背面(晶体生长面的相对面)进行抛光,使其表面平整;然后对衬底正面(晶体生长面)进行精细抛光,去除表面切割划痕和缺陷。
在一些实施例中,清洗模块105对衬底的清洗过程进行控制。在一些实施例中,清洗处理可以在清洗设备中完成。在一些实施例中,清洗设备可以包括超声波清洗机。衬底可以由机械结构111(例如,机械手)放置于清洗设备中,在至少一种清洗液和超声波作用下,对衬底进行至少两次清洗,清洗完成后,使用机械结构111从清洗液中取出并用气体吹干衬底表面。在一些实施例中,清洗液可以包括丙酮、酒精或去离子水。在一些实施例中,可以采用丙酮、酒精和 去离子水依次对衬底进行清洗。在一些实施例中,用于吹干衬底表面的气体是惰性气体。在一些实施例中,用于吹干衬底表面的气体是纯度超过99%的氮气。
在一些实施例中,清洗模块105可以对组合晶体进行化学刻蚀过程和清洗过程进行控制。在一些实施例中,化学刻蚀过程和清洗过程可以在清洗设备中完成。在一些实施例中,组合晶体可以由机械结构111(例如,机械手)放置于清洗设备中,在一定温度、碱溶液和超声波作用下,将组合晶体上的衬底溶解去除,得到目标晶体(例如,碳化硅晶体)。在一些实施例中,碱溶液可以包括NaOH溶液或KOH溶液。去除衬底的碳化硅晶体可以继续由机械结构111(例如,机械手)放置于清洗设备中,在清洗液(例如,异丙醇或去离子水)和超声波作用下,进行清洗得到不含衬底的碳化硅晶体。可以用基面位错密度(单位面积的缺陷数量)表征碳化硅晶体的质量。在一些实施例中,碳化硅晶体的基面位错密度为100~2200cm -2。在一些实施例中,碳化硅晶体的基面位错密度为120~2000cm - 2。在一些实施例中,碳化硅晶体的基面位错密度为200~1800cm -2。在一些实施例中,碳化硅晶体的基面位错密度为500~1500cm -2。在一些实施例中,碳化硅晶体的基面位错密度为700~1300cm -2。在一些实施例中,碳化硅晶体的基面位错密度为900~1100cm -2
在一些实施例中,真空模块106对系统的抽真空过程进行控制。抽真空过程通过控制抽真空设备分别对各腔体(例如,原位刻蚀腔体、碳化腔体、生长腔体)进行抽真空至一定气体压力。在一些实施例中,抽真空设备可以包括真空泵。在一些实施例中,检测模块102可以分别检测各腔体中的压力,并将压力数据发送给控制模块101,控制模块101根据压力数据执行后续的操作或指令。在一些实施例中,检测模块102将原位刻蚀腔体或真空腔体中的压力数据发给控制模块101,控制模块101根据该压力数据判断需要对原位刻蚀腔体或真空腔体继续抽真空,则会控制抽真空设备对原位刻蚀腔体或真空腔体继续抽真空。在一些实施例中,抽真空设备可以包括至少一个真空泵,至少一个真空泵可以分别与需要进行压力控制的各腔体进行连接,以独立对每个腔体进行抽真空。
在一些实施例中,刻蚀模块107对衬底的原位刻蚀处理进行控制。在一些实施例中,原位刻蚀处理在原位刻蚀腔体中进行。原位刻蚀腔体包括一个或多个通道、一个或多个气体进出口、加热组件、传动组件。在一些实施例中,衬底由机械结构111传送至原位刻蚀腔体中,在一定温度、一定压力和气体作用下,在衬底表面进行原位刻蚀处理。在一些实施例中,真空模块106可以将原位刻蚀腔体抽真空至一定气体压力,缓慢升温至一定温度并保持一定时长,通入气体(例如,氢气)至常压,再升温至一定温度并保持一定时长进行原位刻蚀处理。
在原位刻蚀处理过程中,检测模块102可以实时监测原位刻蚀腔体内的温度和压力,并将温度和压力数据传输给控制模块101。在一些实施例中,控制模块101可以根据检测模块102传输的温度,控制加热模块103调整加热组件的运行参数,从而调整原位刻蚀腔体的温度。控制模块101可以根据检测模块102传输的压力数据,控制真空模块106调整抽真空设备的运行参数,或控制机械结构111调整气体的流量,从而调整原位刻蚀腔体内的压力。原位刻蚀处理完成后,可以将衬底传送至原位刻蚀腔体外。在一些实施例中,控制模块101可以控制驱动模块110开启原位刻蚀腔体上的一个或者多个通道,通过机械结构111(例如,传动组件)将衬底传送至原位刻蚀腔体外。
在一些实施例中,碳化模块108对衬底的碳化处理过程进行控制。在一些实施例中,碳化处理在碳化腔体中进行。碳化腔体包括一个或多个通道、一个或多个气体进出口、加热组件、传动组件。在一些实施例中,衬底由机械结构111传送至碳化腔体,在一定温度、一定压力和气体作用下,对衬底进行碳化处理。在一些实施例中,可以预先将碳化腔体升温至一定温度,待传动组件将衬底传送至碳化腔体后,将碳化腔体降温至另一温度,并抽真空至一定气体压力后开始升温,同时通入气体(例如,丙烷、氢气)至一定气体压力,待温度升至一定温度后保持一定时长进行碳化处理。
在碳化处理过程中,检测模块102可以实时监测碳化腔体内的温度和压力数据,并将温度和压力数据传输给控制模块101。在一些实施例中,控制模块 101可以根据检测模块102传输的温度,控制加热模块103调整加热组件的运行参数,从而调整碳化腔体的温度。控制模块101可以根据检测模块102传输的压力数据,控制真空模块106调整真空设备的运行参数,或控制机械结构111调整气体的流量,从而调整碳化腔体内的压力。碳化处理完成后,可以将衬底传送至碳化腔体外。在一些实施例中,控制模块101可以控制驱动模块110开启碳化腔体上的一个或者多个通道,通过机械结构111(例如,传动组件)将衬底传送至生长腔体外。
在一些实施例中,生长模块109对晶体生长过程进行控制。晶体生长方法可以包括气相沉积法、液相沉积法、提拉法、水热法、焰熔法等。特别的,气相沉积法把含有构成薄膜元素的气态反应物、液态反应物的蒸气或反应所需的其它气体引入反应环境内,在衬底表面发生化学反应,并把固体产物沉积到衬底表面生成薄膜。气相沉积法可以包括物理气相沉积法、化学气相沉积法。在一些实施例中,化学气相沉积法可以是金属有机化合物化学气相沉积法(MOCVD)、等离子化学气相沉积法(PCVD)、激光化学气相沉积法(LCVD)、低压化学气相沉积法(LPCVD)、超真空化学气相沉积法(UHVCVD)、超声波化学气相沉积法(UWCVD)等。
在一些实施例中,晶体生长在生长腔体中完成。生长腔体可以是釜式生长腔体,也可以是管式生长腔体、塔式生长腔体、流化床或固定床。
在一些实施例中,生长腔体可以包括一个或者多个通道、一个或多个气体进出口、加热组件和旋转组件。
在一些实施例中,衬底由机械结构111传送至生长腔体中,在一定温度、一定压力时在衬底表面进行晶体生长过程。具体地,可以将生长腔体升温至某一预定温度,该温度随所生长的晶体不同而不同,该温度可以是在整个生长过程中保持恒定,也可以结合晶体生长方法不同而在生长过程中调整。该温度可以由检测模块102监控,并通过控制模块101控制加热模块103实现精确控制。并通入某几类气体。在生长过程中,生长腔体会保持某一设定的压力,该压力随所生 长的晶体不同而不同,该压力可以是在整个生长过程中保持恒定,也可以结合压力生长方法不同而在生长过程中调整。该压力可以由检测模块102监控,并通过控制模块101控制驱动模块110实现精确控制。在控制温度和压力的情况下,在生长腔体内,衬底表面进行气相沉积生长晶体。检测模块102可以对晶体生长的厚度进行监控,并根据晶体生长的速度、厚度等参数,控制模块101控制生长腔体的温度、压力,以及各类气体的流量。当晶体达到预设的厚度时,控制模块101可以通过控制驱动模块110,进而控制机械结构111,停止晶体的生长。具体地,控制模块101可以通过控制驱动模块110,驱动模块110控制一个或者多个通道开启,通过机械结构111(例如,传动组件)将生长有晶体的衬底传送出生长腔体。
在一些实施例中,晶体生长装置可以包括缓冲腔体,缓冲腔体用于对组合晶体进行冷却。缓冲腔体包括一个或多个通道、一个或多个气体进出口、加热组件、传动组件。在一些实施例中,组合晶体由机械结构111传送至缓冲腔体中,在一定温度下进行冷却。冷却后的组合晶体可以传送至缓冲腔体外。在一些实施例中,控制模块101可以控制驱动模块110开启缓冲腔体上的一个或者多个通道,通过机械结构111(例如,传动组件)将组合晶体传送出缓冲腔体。
在一些实施例中,晶体生长装置可以包括末端腔体,末端腔体用于对组合晶体进行进一步冷却。末端腔体包括一个或多个通道、一个或多个气体进出口、加热组件、传动组件。在缓冲腔体中冷却后的组合晶体由机械结构111传送至末端腔体中,在一定温度下进行进一步冷却。冷却后的组合晶体可以传送至末端腔体外。在一些实施例中,控制模块101可以控制驱动模块110开启末端腔体上的一个或者多个通道,通过机械结构111(例如,传动组件)将组合晶体传送至末端腔体外。
在一些实施例中,驱动模块110可以包括一个或多个驱动力源。在一些实施例中,驱动力源可以包括采用电力驱动的驱动电机。在一些实施例中,驱动电机可以是直流电机、交流感应电机、永磁电机和开关磁阻电机等中的一种或几 种的组合。在一些实施例中,驱动模块110可以包括一个或多个驱动电机。在一些实施例中,检测模块102检测晶体生长厚度已达到工艺要求,控制模块101可以控制驱动模块110进行运转,用于驱动机械结构111执行相应的操作。在一些实施例中,控制模块101发出指令,该指令包含一个电信号,电信号包含了所需工作状态和持续时长。驱动模块110的驱动力源根据电信号内容进行相应配置(如驱动模块110中的驱动电机相应以每分钟特定的转速转动特定的时长),驱动电机的转动带动与之相连的机械结构111状态的改变(如,传动组件的前进、停止,腔体通道的开关,气体进出口的开关),以将组合晶体传送出生长腔体。在一些实施例中,抛光模块104对衬底进行抛光处理时,控制模块101可以发出控制指令给驱动模块110,驱动模块110根据该控制指令,驱动抛光设备运行。
机械结构111并不限于上述的传动组件、通道、气体进出口、抛光设备等,还可以为其它结构,具体结构以晶体制备系统100中所需要的结构类型为准,在此不做限定。任何可以使用本说明书所包含的晶体制备方法的设备的机械机构都在本说明书的保护范围内。
在一些实施例中,通信模块112可以用于信息或数据的交换。在一些实施例中,通信模块112可以用于晶体制备系统100内部组件(例如,控制模块101、检测模块102、加热模块103、真空模块106、输入/输出模块114和/或驱动模块110)之间的通信。在一些实施例中,检测模块102可以发送系统的信息(例如,温度、压力、气体流量等数据)到通信模块112,通信模块112可以将该信息发送给控制模块101,供控制模块101确定是否调整其他模块(如,加热模块103、真空模块106)的运行参数;若确定需要调整运行参数,控制模块101通过通信模块112将调整后的运行参数发送给相关模块。在一些实施例中,通信模块112还可以用于晶体制备系统100和其他外接设备(例如,服务器、用户终端等)之间的通信。在一些实施例中,通信模块112可以将晶体制备系统100的状态信息(例如,运行参数等)发送到用户终端,用户终端可以基于该状态信 息对晶体制备系统100进行监控。通信模块112可以采用有线、无线以及有线/无线混合技术。有线技术可以基于诸如金属电缆、混合电缆、光缆等一种或多种光缆组合的方式。无线技术可以包括蓝牙(Bluetooth)、无线网(Wi-Fi)、紫蜂(ZigBee)、近场通信(Near Field Communication,NFC)、射频识别技术(Radio Frequency Identification,RFID)、蜂窝网络(包括GSM、CDMA、3G、4G、5G等)、基于蜂窝的窄带物联网(Narrow Band Internet of Things,NBIoT)等。在一些实施例中,通信模块112可以采用一种或多种编码方式对传输的信息进行编码处理,例如,编码方式可以包括相位编码、不归零制码、差分曼彻斯特码等。在一些实施例中,通信模块112可以根据需要传输的数据类型或网络类型,选择不同的传输和编码方式。在一些实施例中,通信模块112可以包括一个或多个通信接口,用于不同的通信方式。在一些实施例中,晶体制备系统100中的其他模块(如,加热模块103)可以是分散在多个腔体上的,在这种情况下,其他各个模块可以分别包括一个或多个通信模块112,来进行模块之间的信息传输。在一些实施例中,通信模块112可以包括一个接收器和一个发送器。在另一些实施例中,通信模块112可以是一个收发器。在一些实施例中,通信模块112还可以具有提醒或/和报警功能。在一些实施例中,晶体制备系统100运行故障(如,晶体生长的温度或压力超限)时,通信模块112可以向现场操作者和/或用户终端发出提醒信息或报警信息。在一些实施例中,报警方式可以包括声音报警、灯光报警、远程报警等,或其任意组合。在一些实施例中,当报警方式为远程报警,通信模块112可以向相关联的用户终端发送提醒信息或报警信息,通信模块112还可以建立现场操作者与相关联的用户终端之间的通讯(如,语音通话、视频通话)。在一些实施例中,晶体制备系统100运行良好时,通信模块112也可以向现场操作者或/和用户终端发出提示信息。在一些实施例中,通信模块112可以向相关联的用户终端发送温度或压力满足工艺要求的提示信息。
在一些实施例中,供电模块113可以为晶体制备系统100中的其他模块和组件(例如,检测模块102、控制模块101、通信模块112、输入/输出模块114、 驱动模块110)提供电力。供电模块113可以从控制模块101接收控制信号以控制晶体制备系统100的电力输出。在一些实施例中,在一定时间段(例如,1s、2s、3s或4s)内没有接收到控制模块101对某些模块的任何操作的情况下,供电模块113可以仅向正在运行的模块供电,使晶体制备系统100进入省电模式。在一些实施例中,晶体制备系统100的所有模块在一定时间段(例如,1s、2s、3s或4s)内没有接收到任何操作的情况下,供电模块113可以断开对其它模块的供电,将晶体制备系统100中的数据可以转存到硬盘中。在一些实施例中,供电模块113可以包括至少一个电源。所述电源可以包括燃油发电机、燃气发电机、燃煤发电机、太阳能发电机、风能发电机、水力发电机等中的一种或几种的组合。所述燃油发电机、燃气发电机、燃煤发电机可以将化学能转化为电能并存储在供电模块113中。所述太阳能发电机可以将光能转化为电能并存储在供电模块113中。所述风能发电机可以将风能转化为电能并存储在供电模块113中。所述水力发电机可以将机械能转化为电能并存储在供电模块113中。在一些实施例中,当供电模块113的电压不稳时,控制模块101可以向通信模块112发送控制信号,该控制信号可以控制通信模块112向用户终端和/或现场操作者发出语音提醒。该语音提醒可以包括所述供电模块113电压不稳的信息。在一些实施例中,供电模块113可以包含备用电源,供电模块113在紧急情况(如电路故障、外部电力系统停电无法供电)下,可以使用备用电源进行临时供电。
输入/输出模块114可以获取、传输和发送信号。输入/输出模块114可以与晶体制备系统100中的其他组件进行连接或通信。晶体制备系统100中的其他组件可以通过输入/输出模块114实现连接或通信。输入/输出模块114可以是有线的USB接口、串行通信接口、并行通信口,或是无线的蓝牙、红外、无线射频识别(Radio-frequency identification,RFID)、无线局域网鉴别与保密基础结构(Wlan Authentication and Privacy Infrastructure,WAPI)、通用分组无线业务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)等,或其任意组合。在一些实施例中,输入/输出模块114可以与网络 连接,并通过网络获取信息。在一些实施例中,输入/输出模块114可以通过网络或通信模块112从检测模块102中获取晶体生长信息进行输出。在一些实施例中,输入/输出模块114可以通过网络或通信模块112从控制模块101获取提醒或控制指令。在一些实施例中,输入/输出模块114可以包括VCC、GND、RS-232、RS-485(例如,RS485-A,RS485-B)和通用网络接口等,或其任意组合。在一些实施例中,输入/输出模块114可以采用一种或多种编码方式对传输的信号进行编码处理。所述编码方式可以包括相位编码、不归零制码、差分曼彻斯特码等,或其任意组合。
应当理解,图1所示的系统及其模块可以利用各种方式来实现。例如,在一些实施例中,系统及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本说明书的一个或多个实施例的系统及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
需要注意的是,以上对于晶体制备系统及其模块的描述,仅为描述方便,并不能把本说明书的一个或多个实施例限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个模块进行任意组合,或者构成子系统与其他模块连接,或者对其中的一个或多个模块进行省略。在一些实施例中,检测模块102和控制模块101可以为一个模块,该模块可以具有检测和控制晶体生长信息的功能。诸如此类的 变形,均在本说明书的一个或多个实施例的保护范围之内。
在一些实施例中,多腔体生长装置可以用于制备包含衬底和目标晶体的组合晶体。在一些实施例中,目标晶体可以包括碳化硅晶体、氮化硅晶体、二硫化钼晶体、氮化硼晶体、石墨烯晶体等。在一些实施例中,组合晶体是包含衬底和碳化硅晶体的组合晶体。在一些实施例中,可以在衬底表面沉积至少一层碳化硅晶体以制得组合晶体。
图2A是根据一些实施例所述的多腔体生长装置的示例性结构示意图;图2B是根据一些实施例所述的多腔体生长装置中各腔体的示例性分布的俯视图。为了便于说明,图2A-2B中多腔体装置中各腔体的横截面为矩形(对应的各腔体为立方体),需要说明的是,各腔体的横截面还可以为圆形、多边形或其他形状,对应的各腔体为圆柱体、多棱柱体或其他形状。
在一些实施例中,如图2A所示,多腔体生长装置200可以包括原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205、托盘207、传动组件208和控制组件(图中未示出)。
原位刻蚀腔体202可以用于提供原位刻蚀处理的空间,在一定反应条件下、向其中通入气体对衬底进行原位刻蚀处理。衬底的表面可以进行气相沉积生成薄膜,衬底可以支撑和改善表面沉积的薄膜的特性。在一些实施例中,通过传动组件208将衬底传送至原位刻蚀腔体202中,在一定温度、一定气体压力和氢气作用下,在衬底表面进行原位刻蚀处理。在一些实施例中,可以将原位刻蚀腔体202抽真空至一设定的压力,通过传动组件208将衬底传送至原位刻蚀腔体202;将原位刻蚀腔体202继续抽真空至一设定的更低压力,缓慢将温度调节至某一温度并保持一段时长;通入刻蚀气体(例如,氢气、四氟甲烷、六氟化硫、三氟化氮等)至常压,并将温度调节至某一温度并保持一段时长,对衬底进行原位刻蚀处理。关于对衬底进行原位刻蚀处理的更多内容可以参见图13的描述。
碳化腔体203可以用于提供碳化处理的空间,在一定反应条件下、向其中通入气体对衬底进行碳化处理。在一些实施例中,通过传动组件208将衬底 传送至碳化腔体203中,在一定温度、在碳化气体(例如,甲烷、丙烷、丁烷等)和氢气作用下,在衬底表面进行碳化处理。在一些实施例中,可以将碳化腔体203的温度调节至某一温度,然后控制原位刻蚀腔体202和碳化腔体203之间的第三通道打开,通过传动组件208将衬底传送至碳化腔体203中,关闭第三通道;将碳化腔体降温至某一温度,并抽真空至一设定的压力后开始升温,同时通入碳化气体(例如,甲烷、丙烷、丁烷等)和氢气至一设定的压力,将温度调节至某一温度保持一段时间进行碳化处理。关于对衬底进行碳化处理的更多内容可以参见图14的描述。
生长腔体204可以用于提供气相沉积的反应空间,在一定反应条件下、反应原料在衬底表面进行气相沉积生长晶体,得到包括衬底和碳化硅晶体的组合晶体。在一些实施例中,通过传动组件208将衬底传送至生长腔体204中,在一定温度、在碳化气体(例如,甲烷、丙烷、丁烷等)和氢气作用下,在衬底表面进行晶体生长。在一些实施例中,可以将生长腔体204的温度调节至某一温度,加压至一设定的压力;控制碳化腔体203和生长腔体204之间的第四通道打开,通过传动组件208将衬底传送至生长腔体204中,关闭第四通道;然后将生长腔体204的温度调节至某一温度,通入硅烷、丙烷和氢气至一设定的压力,在衬底表面进行晶体生长;当晶体生长厚度达到目标厚度时,停止进行晶体生长,得到组合晶体。关于进行晶体生长的更多内容可以参见图15-图16的描述。
缓冲腔体205可以用于对组合晶体进行降温冷却。在一些实施例中,通过传动组件208将组合晶体传送至缓冲腔体205中,在一定温度、一定气体压力下,对组合晶体进行降温冷却。在一些实施例中,将缓冲腔体205加热至某一温度;控制生长腔体204和缓冲腔体205之间的第五通道打开,通过传动组件208将组合晶体传送至缓冲腔体205中,关闭第五通道;将缓冲腔体205降温至某一温度,保持一段时间,对组合晶体进行冷却降温。在一些实施例中,通过传动组件208将组合晶体传送至缓冲腔体205中,在常温、常压下,对组合晶体进行降温冷却。关于进行组合晶体进行冷却降温的更多内容可以参见图17的描述。
传动组件208可以设置在各腔体(例如,原位刻蚀腔体202、碳化腔体203、生长腔体204和缓冲腔体205)内部的下端,用于将衬底或组合晶体依次在各腔体之间进行传送。传动组件208也可以称为机械结构111。关于传动组件208的更多内容可以参见图8的描述。
控制组件可以用于控制传动组件208转动,以将衬底或组合晶体依次在各腔体(原位刻蚀腔体202、碳化腔体203、生长腔体204和缓冲腔体205)之间进行传送。在一些实施例中,控制组件可以通过控制驱动电机运转,以驱动传动组件208转动,以将衬底或组合晶体依次在各腔体之间进行传送。控制组件可以是控制模块101,驱动电机可以是驱动模块110。
在一些实施例中,原位刻蚀腔体202、碳化腔体203、生长腔体204和缓冲腔体205可以依次排列大致成“一字型”,各腔体内的传动组件208首尾依次连接,衬底或组合晶体在各腔体之间的传送路线基本上为直线。在一些实施例中,如图2A所示,原位刻蚀腔体202、碳化腔体203、生长腔体204和缓冲腔体205可以依次排列成“一字型”,各腔体内的传动组件208首尾依次连接,衬底或组合晶体在各腔体之间的传送路线为直线。在一些替代性实施例中,可以将图2A中各腔体的分布图整体旋转任意角度对各腔体进行设置。
在一些实施例中,如图2B所示,原位刻蚀腔体202、碳化腔体203、生长腔体204和缓冲腔体205可以依次排列成“田字型”,原位刻蚀腔体202位于碳化腔体203邻侧,生长腔体204位于碳化腔体203另一邻侧,缓冲腔体205与原位刻蚀腔体202和生长腔体204相邻;各腔体内的传动组件208首尾依次连接,传动组件208可以依次在各个腔体间循环。
图3A是根据另一些实施例所述的多腔体生长装置的示例性结构示意图;图3B是根据另一些实施例所述的多腔体生长装置中各腔体的示例性分布的俯视图。为了便于说明,图3A-3B中多腔体装置中各腔体的横截面为矩形(对应的各腔体为立方体),需要说明的是,各腔体的横截面还可以为圆形、多边形或其他形状,对应的各腔体为圆柱体、多棱柱体或其他形状。
在一些实施例中,多腔体生长装置还可以包括真空腔体。在一些实施例中,多腔体生长装置还可以包括末端腔体。在一些实施例中,如图3A所示,多腔体生长装置300可以包括真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205、末端腔体206、托盘207、传动组件208和控制组件(图中未示出),真空腔体201与原位刻蚀腔体202相邻,末端腔体206与缓冲腔体205相邻。
真空腔体201可以用于使衬底处于真空环境。在一些实施例中,将衬底置于真空腔体201中,对真空腔体201抽真空使得衬底处于真空环境中。在一些实施例中,可以关闭真空腔体的第一通道,对真空腔体抽真空至一设定的压力。关于对衬底进行真空处理的更多内容可以参见图12的描述。
末端腔体206可以用于将组合晶体降温至室温。在一些实施例中,通过传动组件208将组合晶体从缓冲腔体205传送至末端腔体206中,在常温、常压下,对组合晶体进行降温冷却。在一些实施例中,控制缓冲腔体205和末端腔体206之间的第六通道打开,通过传动组件208将组合晶体传送至末端腔体206中,关闭第六通道;对组合晶体进行冷却降温。关于进行组合晶体进行冷却降温的更多内容可以参见图17的描述。
在一些实施例中,多腔体生长装置的各个腔体可以直线排布,也可以非直线排布。在一些实施例中,如图3A所示,各腔体(真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205和末端腔体206)可以依次直线排列成“一字型”,各腔体内的传动组件208首尾依次连接,各个腔体之间的传送路线为直线。在一些替代性实施例中,真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205、末端腔体206也可以依次排列大致成“一字型”,各腔体内的传动组件208首尾依次连接,衬底或组合晶体在各腔体之间的传送路线基本上为直线。在一些替代性实施例中,可以将图3A以及上述示例中各腔体的分布图整体旋转任意角度对各腔体进行设置。
在一些实施例中,如图3B所示,真空腔体201、原位刻蚀腔体202、碳 化腔体203、生长腔体204、缓冲腔体205、末端腔体206可以依次堆叠,真空腔体201位于原位刻蚀腔体202邻侧,碳化腔体203位于原位刻蚀腔体202另一邻侧,生长腔体204与缓冲腔体205和碳化腔体相邻,末端腔体206位于缓冲腔体205另一邻侧;各个腔体内的传动组件208首尾依次连接,传动组件208可以依次在各个腔体间循环。在一些替代性实施例中,可以将图3B以及上述示例中各腔体的分布图整体旋转任意角度对各腔体进行设置。
需要说明的是,真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205和末端腔体206可以依次排列成能够将衬底或组合晶体在各腔体之间依次传送的任何形状,均在本说明书的保护范围之内。真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205和末端腔体206的尺寸可以相同,也可以不同,对此不作限制。
本说明书一些实施例中涉及的各类腔体,包括且不限于第一类腔体、第二类腔体和第三类腔体等。在一些实施例中,第一类腔体可以提供使衬底或组合晶体处于一设定的压力或某一温度下的场所。在一些实施例中,第二类腔体可以提供对衬底进行处理的场所,或者使组合晶体处于某一温度下的场所。在一些实施例中,第三类腔体可以提供在衬底表面进行晶体生长的场所。
图4是根据一些实施例的第一类腔体的示例性结构示意图。
如图4所示,第一类腔体400侧壁设置有进口通道401和出口通道402,第一类腔体400内部安装有传动组件404,传动组件404连通进口通道401和出口通道402,以在进口通道501和出口通道502之间传送衬底或组合晶体。在一些实施例中,进口通道401和出口通道402可以设置于第一类腔体400相对的两个侧壁,使得进口通道401、传动组件404和出口通道402构成直线。在一些实施例中,进口通道401和出口通道402可以设置于第一类腔体400相邻的两个侧壁,进口通道401、传动组件404和出口通道402构成L型折线。在一些实施例中,进口通道401和出口通道402可以设置于第一类腔体400的同一个侧壁,进口通道401、传动组件404和出口通道402构成U型折线。在一些实施 例中,进口通道401和出口通道402设置于第一类腔体400侧壁的顶部、中部、底端。仅作为示例,如图4所示,进口通道401和出口通道402分别设置于第一类腔体400相对的两个侧壁的底端,传动组件404设置于第一类腔体400的底部。关于传动组件404的更多内容可以参见图8的描述。
在一些实施例中,进口通道401和出口通道402的形状包括但不限于矩形、圆形、椭圆形,以及其他任何规则或不规则形状。在一些实施例中,进口通道401和出口通道402的数量可以分别是一个,也可以分别是两个或多个。在一些实施例中,进口通道401和出口通道402的数量可以相同,也可以不同。在一些实施例中,进口通道401和出口通道402数量相同且成对设置。在一些实施例中,可以设置两组或多组进口通道401和出口通道402,每组进口通道401和出口通道402之间都分别设置传动组件404,可以同时从不同路线传送衬底或组合晶体。在一些实施例中,进口通道401和出口通道402的数量不同。在一些实施例中,可以设置两个或多个进口通道401,设置一个出口通道402,衬底或组合晶体可以从多个进口通道401传入第一类腔体400,从一个出口通道402传出第一类腔体400。
在一些实施例中,进口通道401和出口通道402处均安装有自动控制阀,以便于通过控制模块101控制进口通道401和出口通道402的开闭。在一些实施例中,进口通道401和出口通道402可以互换使用。
如图4所示,第一类腔体400设置有至少一个气体管道403,用于使第一类腔体400中的气体排出或向第一类腔体400通入气体,以使第一类腔体400内到达所需压力。
在一些实施例中,气体管道403可以与抽真空设备连通,通过控制真空设备的运行参数(例如,功率、转速、运行时间等)可以调整抽真空的速度和时间,以控制第一类腔体400内的压力变化。在一些实施例中,抽真空设备可以包括真空泵。在一些实施例中,气体管道403的数量可以为一个或多个。在一些实施例中,真空泵的数量可以为一台真空泵或两台以上。在一些实施例中,气体管 道403可以设置于第一类腔体400的顶部、侧壁、底部。例如,如图4所示,气体管道403设置于第一类腔体400的底部。在一些实施例中,气体管道403设置于第一类腔体400的任一侧壁或顶部。在一些实施例中,气体管道403可以与气体储罐通过管道连通,并在管道上设置流量调节阀,以控制通入气体的流量和流速。
在一些实施例中,第一类腔体400可以是真空腔体201,也可以是末端腔体206。
真空腔体201可以是多腔体晶体生长装置的第一个腔体。通过气体管道403可以对真空腔体抽真空。
末端腔体206可以是多腔体晶体生长装置的最后一个腔体。在一些实施例中,末端腔体206可以不使用气体管道403,即气体管道403处于关闭状态。在一些实施例中,气体管道403包括两个或多个,可以通过气体管道403中的一个或多个向末端腔体206中通入气体(例如,置换气体),通过气体管道403中的另外一个或多个排出末端腔体206中的气体,以加快末端腔体206中的降温速度。
在一些实施例中,第一类腔体400的形状可以包括但不限于圆柱形、棱柱形、正方体、长方柱形等等规则或不规则形状。第一类腔体400的尺寸可以根据实际生产需要进行设置。在一些实施例中,第一类腔体400的顶壁距离组合晶体生长面的高度可以为20~500mm。在一些实施例中,第一类腔体400的顶壁距离复合晶体组合晶体生长面的高度可以为50~400mm。在一些实施例中,第一类腔体400的顶壁距离复合晶体组合晶体生长面的高度可以为100~300mm。在一些实施例中,第一类腔体400的顶壁距离复合晶体组合晶体生长面的高度可以为150~250mm。
在一些实施例中,第一类腔体400的材质可以包括高强度不锈钢或高强度铝合金。其中,高强度不锈钢或高强度铝合金的强度能够确保安全生产,在生产过程中第一类腔体400不变形、不破裂。
图5是一些实施例所述的第二类腔体的示例性结构示意图。
如图5所示,第二类腔体500侧壁设置有进口通道501和出口通道502,第二类腔体500内部安装有传动组件506,传动组件506连通进口通道501和出口通道502,以在进口通道501和出口通道502之间传送衬底或组合晶体。在一些实施例中,进口通道501和出口通道502可以设置于第二类腔体500相对的两个侧壁,使得进口通道501、传动组件506和出口通道502构成直线。在一些实施例中,进口通道501和出口通道502可以设置于第二类腔体500相邻的两个侧壁,进口通道501、传动组件506和出口通道502构成L型折线。在一些实施例中,进口通道501和出口通道502可以设置于第二类腔体500的同一个侧壁,进口通道501、传动组件506和出口通道502构成U型折线。在一些实施例中,进口通道501和出口通道502设置于第二类腔体500侧壁的顶部、中部、底端。仅作为示例,如图5所示,进口通道501和出口通道502分别设置于第二类腔体500相对的两个侧壁的底端,传动组件506设置于第二类腔体500的底部。关于传动组件506的更多内容可以参见图8的描述。
在一些实施例中,进口通道501和出口通道502的形状包括但不限于矩形、圆形、椭圆形,以及其他任何规则或不规则形状。在一些实施例中,进口通道501和出口通道502的数量可以分别是一个,也可以分别是两个或多个。在一些实施例中,进口通道501和出口通道502的数量可以相同,也可以不同。在一些实施例中,进口通道501和出口通道502数量相同且成对设置。在一些实施例中,可以设置两组或多组进口通道501和出口通道502,每组进口通道501和出口通道502之间都分别设置传动组件506,可以同时从不同路线传送衬底或组合晶体。在一些实施例中,进口通道501和出口通道502的数量不同。在一些实施例中,可以设置两个或多个进口通道501,设置一个出口通道502,衬底或组合晶体可以从多个进口通道501传入第二类腔体500,从一个出口通道502传出第二类腔体500。
在一些实施例中,进口通道501和出口通道502处均安装有自动控制阀, 以便通过控制模块101控制进口通道501和出口通道502的开闭。在一些实施例中,进口通道501和出口通道502可以互换使用。
如图5所示,第二类腔体500包括至少一个抽气管道503,用于对第二类腔体500进行抽真空,以使第二类腔体500内到达所需压力。在一些实施例中,抽气管道503可以设置于第二类腔体500的底部、顶部或侧壁。例如,如图5所示,抽气管道503设置于第二类腔体500的底部。在一些实施例中,抽气管道503设置于第二类腔体500的任一侧壁或顶部。在一些实施例中,抽气管道503可以与抽真空设备连通,通过控制真空设备的运行参数(例如,功率、转速、运行时间等)可以调整抽真空的速度和时间,以控制第二类腔体500内的压力变化。在一些实施例中,抽真空设备可以包括真空泵。在一些实施例中,抽气管道503的数量可以为一个或多个。在一些实施例中,真空泵的数量可以为一台或两台以上。
在一些实施例中,第二类腔体500包括至少一个进气管道504,用于向第二类腔体500中通入气体。在一些实施例中,进气管道504可以设置于第二类腔体500的底部、顶部或侧壁。例如,如图5所示,进气管道504设置于第二类腔体500的顶部。在一些实施例中,进气管道504的数量可以为一个或多个。在一些实施例中,可以设置一个进气管道504,所有气体从同一个进气管道504通入第二类腔体500。在一些实施例中,可以设置两个或多个进气管道504,不同气体分别从不同进气管道504通入第二类腔体500。在一些实施例中,每个进气管道504上都可以设置流量调节阀,以控制各气体的流量,从而控制各气体的配比(例如,质量比或摩尔比)。
如图5所示,第二类腔体500还设置有加热体505,用于对第二类腔体500进行温度调节,以控制第二类腔体500内到达所需温度。在一些实施例中,通过控制加热体505的加热功率和加热时间,可以调整第二类腔体500内的温度。在一些实施例中,加热体505可以设置于第二类腔体500的外顶壁、外侧壁、内顶壁、内侧壁,或其任意组合。例如,如图5所示,加热体505设置于第 二类腔体500的内侧壁。
在一些实施例中,加热体505可以包括但不限于电阻加热组件和/或电磁感应加热组件等。在一些实施例中,电阻加热组件可以包括石墨电阻或碳硅棒电阻。石墨电阻或碳硅棒电阻通电后,可以利用电流流过上述电阻的焦耳效应产生的热能对第二类腔体500进行温度调节。在一些实施例中,电磁感应加热组件可以包括感性线圈。感应线圈在不同频率的交流电作用下,可以在第二类腔体500上产生涡流,在涡流作用下,第二类腔体500上产生的电能可以转变为热能,以对第二类腔体500进行温度调节。
在一些实施例中,加热体505可以包括一个或多个加热件。
在一些实施例中,加热体505可以包括一个或多个电阻加热组件,各个电阻加热组件可以均匀或不均匀设置于第二类腔体500的侧壁。在一些实施例中,加热体505可以包括5个石墨电阻,第二类腔体500可以为圆柱形,5个石墨电阻等距周向设置于第二类腔体500的侧壁,即,各个石墨电阻分别位于第二类腔体500侧壁五分之一的位置。在一些实施例中,加热体505可以包括4个石墨电阻,第二类腔体500可以为长方柱形,4个石墨电阻可以分别设置于第二类腔体500的四个侧壁,或者4个石墨电阻可以分别设置于第二类腔体500的四个转角位置。
在一些实施例中,加热体505可以包括一个或多个感应加热组件,各个感应加热组件可以均匀或不均匀设置于第二类腔体500的外侧壁。在一些实施例中,加热体505可以包括多圈感应线圈,感应线圈可以螺旋式缠绕于第二类腔体500的外侧壁。进一步地,感应线圈可以缠绕第二类腔体500的整个外侧壁,也可以缠绕托盘所在位置对应的第二类腔体500的外侧壁。
在一些实施例中,第二类腔体500可以是原位刻蚀腔体202,也可以是碳化腔体203或缓冲腔体205。
原位刻蚀腔体202可以设置与真空腔体201相邻。在一些实施例中,原位刻蚀腔体202与真空腔体201可以共用同一个通道,即,真空腔体201的出 口通道402和原位刻蚀腔体202的进口通道501为同一个通道。在一些实施例中,原位刻蚀腔体202与真空腔体201可以不共用同一个通道,真空腔体201的出口通道402和原位刻蚀腔体202的进口通道501为两个通道且相邻设置。在一些实施例中,可以通过加热体505对原位刻蚀腔体202进行温度调节,通过抽气管道503对原位刻蚀腔体202进行抽真空,可以通过进气管道504向原位刻蚀腔体202中通入氢气对衬底进行原位刻蚀。
碳化腔体203可以设置与原位刻蚀腔体202相邻。在一些实施例中,碳化腔体203和原位刻蚀腔体202可以共用同一个通道,即,原位刻蚀腔体202的出口通道和碳化腔体203的进口通道为同一个通道。在一些实施例中,碳化腔体203和原位刻蚀腔体202可以不共用同一个通道,原位刻蚀腔体202的出口通道和碳化腔体203的进口通道为两个通道且相邻设置。在一些实施例中,可以通过加热体505对碳化腔体203进行温度调节,通过抽气管道503对碳化腔体203进行抽真空,通过进气管道504向碳化腔体203中通入碳化气体(例如,甲烷、丙烷、丁烷等)和氢气对衬底进行碳化处理。
缓冲腔体205可以设置与末端腔体206相邻。在一些实施例中,缓冲腔体205与末端腔体206可以共用同一个通道,即,缓冲腔体205的出口通道502和末端腔体206的进口通道401为同一个通道。在一些实施例中,缓冲腔体205与末端腔体206可以不共用同一个通道,缓冲腔体205的出口通道502和末端腔体206的进口通道401为两个通道且相邻设置。在一些实施例中,可以通过加热体505对缓冲腔体205进行温度调节。在一些实施例中,缓冲腔体205可以不使用抽气管道503和进气管道504,即抽气管道503和进气管道504处于关闭状态。在一些实施例中,可以通过进气管道504向缓冲腔体205中通入气体,通过抽气管道503排出缓冲腔体205中的气体,以加快缓冲腔体205中的降温速度。
在一些实施例中,第二类腔体500的形状包括但不限于圆柱形、棱柱形、正方体、长方柱形等等规则或不规则形状。第二类腔体500的尺寸可以根据实 际生产需要进行设置。在一些实施例中,第二类腔体500的顶壁距离组合晶体生长面的高度可以为20~300mm。在一些实施例中,第二类腔体500的顶壁距离组合晶体生长面的高度可以为50~200mm。在一些实施例中,第二类腔体500的顶壁距离组合晶体生长面的高度可以为70~180mm。在一些实施例中,第二类腔体500的顶壁距离组合晶体生长面的高度可以为100~150mm。
在一些实施例中,第二类腔体500的腔壁可以采用双层中空的高强度不锈钢或铝合金制得,中空腔内通冷却水对腔壁进行冷却,起到隔热、散热的作用。在一些实施例中,第二类腔体500的腔壁内侧设置有一层或多层保温材料。在一些实施例中,保温材料可以包括石墨毡、氧化锆毡。
图6是一些实施例所述的第三类腔体的示例性结构示意图。
在一些实施例中,第三类腔体600可以为生长腔体204。如图6所示,第三类腔体600(或称为生长腔体204)侧壁设置有进口通道601和出口通道602,第三类腔体600内部安装有传动组件608,传动组件608连通进口通道601和出口通道602,以在进口通道601和出口通道602之间传送衬底或组合晶体。在一些实施例中,进口通道601和出口通道602可以设置于第三类腔体600相对的两个侧壁,使得进口通道601、传动组件608和出口通道602构成直线。在一些实施例中,进口通道601和出口通道602可以设置于第三类腔体600相邻的两个侧壁,进口通道601、传动组件608和出口通道602构成L型折线。在一些实施例中,进口通道601和出口通道602可以设置于第三类腔体600的同一个侧壁,进口通道601、传动组件608和出口通道602构成U型折线。在一些实施例中,进口通道601和出口通道602设置于第三类腔体600侧壁的顶部、中部、底端。仅作为示例,如图6所示,进口通道601和出口通道602分别设置于第三类腔体600相对的两个侧壁的底端,传动组件608设置于第三类腔体600的底部。关于传动组件608的更多内容可以参见图8的描述。
在一些实施例中,进口通道601和出口通道602的形状包括但不限于矩形、圆形、椭圆形,以及其他任何规则或不规则形状。在一些实施例中,进口通 道601和出口通道602的数量可以分别是一个,也可以分别是两个或多个。在一些实施例中,进口通道601和出口通道602的数量可以相同,也可以不同。在一些实施例中,进口通道601和出口通道602数量相同且成对设置。在一些实施例中,可以设置两组或多组进口通道601和出口通道602,每组进口通道601和出口通道602之间都分别设置传动组件608,可以同时从不同路线传送衬底或组合晶体。在一些实施例中,进口通道601和出口通道602的数量不同。在一些实施例中,可以设置两个或多个进口通道601,设置一个出口通道602,衬底或组合晶体可以从多个进口通道601传入第三类腔体600,从一个出口通道602传出第三类腔体600。
在一些实施例中,进口通道601和出口通道602处均安装有自动控制阀,以便于通过控制模块101控制进口通道601和出口通道602的开闭。在一些实施例中,进口通道601和出口通道602可以互换使用。
在一些实施例中,第三类腔体600包括至少一个抽气管道603,用于对第三类腔体600进行抽真空,以使第三类腔体600内压力到达所需压力。在一些实施例中,抽气管道603可以设置于第三类腔体600的底部、顶部或侧壁。在一些实施例中,如图6所示,抽气管道603设置于第三类腔体600的底部。在一些实施例中,抽气管道603设置于第三类腔体600的任一侧壁或顶部。在一些实施例中,抽气管道603可以与抽真空设备连通,通过控制真空设备的运行参数(例如,功率、转速、运行时间等)可以调整抽真空的速度和时间,以控制第三类腔体600内的压力变化。在一些实施例中,抽真空设备可以包括真空泵。在一些实施例中,抽气管道603的数量可以为一个或多个。在一些实施例中,真空泵的数量可以设置一台或两台以上。
在一些实施例中,第三类腔体600包括至少一个进气管道604,用于通入反应气体。例如,硅烷和丙烷。在一些实施例中,进气管道604可以设置于第三类腔体600的顶部、底部或侧壁。在一些实施例中,如图6所示,进气管道604设置于第三类腔体600的顶部。在一些实施例中,进气管道604的数量可以为 一个或多个。在一些实施例中,可以设置一个进气管道604,所有气体从同一个进气管道604通入第三类腔体600。在一些实施例中,可以设置两个或多个进气管道604,不同气体分别从不同进气管道604通入第三类腔体600。在一些实施例中,每个进气管道604上都可以设置流量调节阀,以控制各气体的流量,从而控制各气体的配比(例如,质量比或摩尔比)。
在一些实施例中,第三类腔体600(或称为生长腔体204)设置有加热体605,用于对生长腔体204进行温度调节,以控制生长腔体204内温度到达所需温度。在一些实施例中,通过控制加热体605的加热功率和加热时间,可以调整生长腔体204内的温度。在一些实施例中,加热体605可以设置于生长腔体204的外顶壁、外侧壁、内顶壁、内侧壁,或其任意组合。在一些实施例中,如图6所示,加热体605设置于生长腔体204的内侧壁。
在一些实施例中,加热体605可以包括但不限于电阻加热组件和/或电磁感应加热组件等。在一些实施例中,电阻加热组件可以包括石墨电阻或碳硅棒电阻。在一些实施例中,电磁感应加热组件可以包括感性线圈。关于加热体605的更多内容可以参见加热体505的描述。
在一些实施例中,生长腔体204还包括旋转轴606(也可以称为旋转轴207),旋转轴606设置于生长腔体204底部,用于将托盘607顶起至生长腔体204的中部。关于托盘的更多内容可以参见图7的描述。在一些实施例中,旋转轴606的高度可以包括10-200mm。在一些实施例中,旋转轴606的高度可以包括20-180mm。在一些实施例中,旋转轴606的高度可以包括30-150mm。在一些实施例中,旋转轴606的高度可以包括40-130mm。在一些实施例中,旋转轴606的高度可以包括50-100mm。在一些实施例中,旋转轴606的高度可以包括60-80mm。在一些实施例中,旋转轴606的高度可以为生长腔体204高度的
Figure PCTCN2021085469-appb-000001
在一些实施例中,旋转轴606的高度可以为生长腔体204高度的
Figure PCTCN2021085469-appb-000002
在一些实施例中,旋转轴606的高度可以为生长腔体204高度的
Figure PCTCN2021085469-appb-000003
在一些实施例 中,旋转轴606的高度可以为生长腔体204高度的
Figure PCTCN2021085469-appb-000004
在一些实施例中,旋转轴606的高度可以为生长腔体204高度的
Figure PCTCN2021085469-appb-000005
在一些实施例中,旋转轴606上安装有定位器(图中未示出),用于检测托盘607的位置。在一些实施例中,定位器可以是位移传感器。在一些实施例中,可以在旋转轴606顶端设置定位器,可以实时检测托盘607的位置,并通过旋转轴606将托盘607顶起至生长腔体204的中部。在一些实施例中,定位器实时检测托盘607的位置并将托盘607的位置信息发送给控制模块101,当定位器检测到托盘607被传动组件608传送至旋转轴606正上方时,控制模块101可以通过驱动模块110控制传动组件608停止转动,并通过驱动模块110控制旋转轴606将托盘607平稳顶起至生长腔体204中部。在一些实施例中,在生长过程中,旋转轴606可以持续旋转,以使衬底各个位置反应均匀。在一些实施例中,定位器也可以为GPS定位器。在一些实施例中,可以将GPS定位器装在托盘607上,用于实时将托盘607的位置信息发送给控制模块101。
图7是一些实施例所述的托盘的示例性结构示意图。
在一些实施例中,多腔体生长装置包括托盘207。在一些实施例中,如图7所示,托盘207上设有至少一个凹槽207-1,每个凹槽207-1可以放置一个衬底。在一些实施例中,托盘207的形状包括但不限于圆形、椭圆形、三角形、矩形、多边形,或者其他任意规则或不规则形状。在一些实施例中,每个托盘207上表面可以设置一个或两个以上的凹槽207-1。在一些实施例中,凹槽207-1的数量可以是1个、2个、4个、7个、11个等。在一些实施例中,凹槽207-1的排布方式可以均匀排布,也可以不均匀排布。在一些实施例中,如图7所示,托盘207为圆形,6个凹槽207-1周向均匀排布于托盘207上表面。
在一些实施例中,托盘207中心还设置有与旋转轴606配合的顶升结构,当托盘207传送至旋转轴606的正上方时,旋转轴606与该顶升结构配合,从而将托盘207平稳顶升至所需高度。在一些实施例中,顶升结构可以与旋转轴606通过卡接连接。在一些实施例中,顶升结构可以是托盘207中心的定位孔 207-2,旋转轴606顶端为截面积小于中部或底端的轴,旋转轴606顶端可以插入定位孔207-2,使得旋转轴606可以平稳顶升托盘207。
图8是根据一些实施例所述的传动组件的示例性结构示意图。
如图8所示,传动组件208包括至少两个平行排列的圆柱滚轮208-1以及平行设置于圆柱滚轮208-1上下两端的两根传动架208-2,两根传动架208-2固定设置于各腔体下方(图8中未示出),使得圆柱滚轮208-1在其轴向被限定于两根传动架208-2之间并可绕自身的轴进行转动。在一些实施例中,圆柱滚轮208-1的上下两端为圆柱,且上下两端的截面积小于中部,传动架208-2上设置多个截面积大于圆柱滚轮208-1上下两端的截面积的孔,使得圆柱滚轮208-1的上下两端可以插入两根传动架208-2之间并可绕自身的轴进行转动。如图8所示,托盘207可以放置于圆柱滚轮208-1上,随着圆柱滚轮208-1转动,托盘207底部与圆柱滚轮208-1之间的静摩擦力,使得托盘207被向前传送。
在一些实施例中,圆柱滚轮208-1的数量可以根据传动架208-2的长度以及圆柱滚轮208-1上下两端的直径进行确定。在一些实施例中,圆柱滚轮208-1上下两端的直径与圆柱滚轮208-1的数量的乘积小于或等于传动架208-2的长度。在一些实施例中,圆柱滚轮208-1的数量可以为7根、8根、9根或10根。在一些实施例中,圆柱滚轮208-1之间的间距可以根据实际生产需要进行设置,能够保证随着圆柱滚轮208-1转动可以将托盘207往前传送即可。
在一些实施例中,传动架208-2可以设置为直线,也可以设置有弯角。在一些实施例中,两根传动架208-2分别设置为90°L形架并平行设置于圆柱滚轮208-1之间。需说明的是,对传动架208-2的设置形式不作限制,保证传动组件208能够连通各腔体的进口通道和出口通道,实现将托盘207在各腔体之间传进和传出即可。
真空腔体201、原位刻蚀腔体202、碳化腔体203、生长腔体204、缓冲腔体205、末端腔体206都设置有进口通道、出口通道以及传动组件208,并且传动组件208连通各腔体的进口通道和出口通道,将托盘207放置于传动组件208 上,可以通过传动组件208将托盘207在各腔体之间传送。在一些实施例中,进口通道和出口通道位置都安装有自动控制阀,通过自动控制阀可以打开或关闭进口通道和出口通道,以控制托盘207进出对应的腔体。在一些实施例中,托盘207的数量可以是一个,也可以是多个,若将放置有衬底的多个托盘207置于传动组件208上,则可以在各腔体之间实现流水线式批量传送托盘207并生长包含衬底和碳化硅晶体的组合晶体。
图9是根据一些实施例所述的碳化硅晶体制备方法的示例性流程示意图。
在一些实施例中,该碳化硅晶体制备过程900可以由控制设备(例如,控制模块101)执行。例如,过程900可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程900。在一些实施例中,过程900可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图9所示的操作的顺序并非限制性的。
在一些实施例中,碳化硅晶体制备方法可以在多腔体生长装置(例如,多腔体生长装置200、多腔体生长装置300)中进行,多腔体生长装置包括多个依次排列的腔体,关于多腔体生长装置可以参见图2A-2B、图3A-3B。在一些实施例中,碳化硅晶体制备方法可以在单个腔体或一个反应室中进行,单个腔体或一个反应室具有与多腔体生长装置对应的所有功能(例如,抽真空、加热、通入置换气体等),即,碳化硅晶体制备过程中的各个步骤(例如,真空处理过程、原位刻蚀处理过程、碳化处理过程、晶体生长过程、冷却降温过程等)可以在同一个反应室内进行。碳化硅晶体制备过程900包括:
步骤910,将衬底依次在多个腔体之间进行传送和处理。在一些实施例中,该步骤910可以由控制模块101执行。
衬底是具有特定晶面和适当电学、光学和机械特性的单晶薄片,可以用于生长外延层(例如,目标晶体),起到支撑和改善目标晶体特性的作用。选择衬底时可以综合考虑以下条件:结构特性(目标晶体与衬底的晶格结构相同或相近、晶格常数失配度小、结晶性能好)、界面特性(有利于目标晶体的生长、黏附性 强)、化学稳定性(在目标晶体生长的温度和气氛中不容易分解和被腐蚀)、热学性能(导热性好和热失配度小)、良好的导电性、光学性能好(对光的吸收少)、机械性能好(容易进行抛光和切割等加工)、尺寸(直径不小于2英寸)。在一些实施例中,衬底的材料可以包括蓝宝石(Al 2O 3)、硅(Si)、碳化硅(SiC)、砷化镓(GaAs)、氮化铝(AIN)、氧化锌(ZnO)。
在一些实施例中,衬底可以包括单晶硅。单晶硅为光伏级单晶硅。在一些实施例中,单晶硅纯度为大于99.9999%。在一些实施例中,单晶硅纯度为大于99.99999%。在一些实施例中,单晶硅纯度为大于99.999999%。在一些实施例中,单晶硅纯度为大于99.9999999%。在一些实施例中,衬底在一个方向(称为X方向)的尺寸可以小于垂直于X方向的另一个方向的横截面的尺寸。在一些实施例中,衬底在垂直于X方向的横截面形状可以是圆形、椭圆形、多边形、规则或不规则形状。在一些实施例中,衬底在垂直于X方向的横截面形状为圆形,衬底在垂直于X方向的横截面的尺寸可以根据实际生产需要进行设置。衬底在垂直于X方向的横截面的尺寸可以为衬底边缘上距离最远的两个点的直线距离。在一些实施例中,衬底在垂直于X方向的横截面形状为圆形,圆形的直径包括1-10英寸。在一些实施例中,圆形的直径包括1.5-8英寸。在一些实施例中,圆形的直径包括2-6英寸。在一些实施例中,圆形的直径包括3-5英寸。在一些实施例中,圆形的直径包括3-4英寸。衬底在垂直于X方向的横截面的尺寸可以根据实际需要制备的目标晶体的尺寸进行选择,例如,若需要制备在垂直于X方向的横截面尺寸较大的目标晶体,则可以选择在垂直于X方向的横截面的尺大的晶体。X方向的尺寸可以称为衬底的厚度。在一些实施例中,衬底在不同区域的厚度相同。厚度相同可以为在衬底上最大厚度区域与最小厚度区域的厚度差异小于厚度阈值(例如,10um或15um)。厚度相同的平整衬底可以使晶体生长过程中应力均匀,形成晶型一致的晶体。在一些实施例中,衬底的厚度为100um-400um。在一些实施例中,衬底的厚度为160um-300um。在一些实施例中,衬底的厚度可以为180um-280um。在一些实施例中,衬底的厚度可以为200um- 260um。在一些实施例中,衬底的厚度可以为220um-240um。上述衬底厚度与量产光伏单晶晶片的厚度相近,容易获得,并且衬底较薄成本较低。
在一些实施例中,多腔体生长装置至少包括原位刻蚀腔体、碳化腔体、生长腔体、缓冲腔体和传动组件,原位刻蚀腔体、碳化腔体、生长腔体和缓冲腔体依次进行排列。在一些实施例中,多腔体生长装置可以包括真空腔体、原位刻蚀腔体、碳化腔体、生长腔体、缓冲腔体、末端腔体和传动组件,原位刻蚀腔体、碳化腔体、生长腔体、缓冲腔体和末端腔体依次进行排列。在一些实施例中,每个腔体都开设有进口通道和出口通道,衬底可以通过传动组件(例如,传动组件208)在各个腔体之间传出或传进。关于多腔体装置的更多内容可以参见图2A-2B、图3A-3B的内容。
在一些实施例中,可以将衬底依次在多个腔体之间进行传送和处理,以对衬底或组合晶体分别执行不同的工序。例如,对衬底或组合晶体进行原位刻蚀处理、碳化处理、晶体生长、缓冲处理、降温冷却等工序。关于将衬底依次在多个腔体之间进行传送和处理的更多内容可以参见图11的描述。
在一些实施例中,可以在多腔体装置中同时传送多个衬底(或称为一组或一批次衬底),进行晶体生长,以实现组合晶体的批量生产。在一些实施例中,可以在多腔体装置中依次传送多组或多批次衬底,进行晶体生长,以实现组合晶体的连续流水线式生产。在一些实施例中,在至少一组或一批次衬底完成依次在多个腔体之间进行传送和处理前,启动另一个批次的至少一个衬底在多个腔体之间进行传送和处理,所述两个批次的至少一个衬底同时分别在不同的腔体进行传送和处理。
步骤920,在多个腔体中的一个腔体内,衬底表面通过气相沉积生长目标晶体,得到包含衬底和目标晶体的组合晶体。在一些实施例中,该步骤920可以由控制模块101执行。
在一些实施例中,多腔体生长装置中的一个腔体可以为生长腔体。在一些实施例中,在生长腔体内,在衬底表面通过气相沉积法进行目标晶体生长过程, 从而制得包含衬底和目标晶体的组合晶体。气相沉积法把含有构成薄膜元素的气态反应物、液态反应物的蒸气或反应所需的其它气体引入反应环境内,在衬底表面发生化学反应,并把固体产物沉积到衬底表面生成薄膜。
在一些实施例中,目标晶体可以包括碳化硅晶体、氮化硅晶体、二硫化钼晶体、氮化硼晶体、石墨烯晶体等。下面主要以碳化硅晶体为例,对制备组合晶体的过程进行说明,需要注意的是,本说明书中的目标晶体不限于碳化硅晶体,可以是能够通过气相沉积法制备的任何组合晶体。
在一些实施例中,制备组合晶体的反应物可以包括硅源和碳源。在一些实施例中,硅源可以包括硅烷(SiH 4)、氯硅烷、三甲基氯硅烷。在一些实施例中,碳源可以包括丙烷(C 3H 8)、丁烷、乙烷、乙炔。在一些实施例中,可以将硅烷和丙烷通入生长腔体中在衬底表面进行晶体生长过程。在一些实施例中,可以使用载气带载反应物气体通入生长腔体内。载气不参与反应,仅起带载反应物气体的作用,因此可以选择惰性气体或化学稳定性较高的气体。在一些实施例中,载气可以为H 2、N 2、Ar或He。在一些实施例中,综合考虑价格和化学稳定性,载气可以为H 2、N 2
在一些实施例中,可以对组合晶体进行化学刻蚀除去组合晶体上的衬底,以得到碳化硅晶体。由于碳化硅晶体与衬底的硬度不同,碳化硅晶体耐酸度或耐碱度更高,因此,可以通过酸溶液或碱溶液溶解去除衬底,而保留碳化硅晶体。
在一些实施例中,可以在第一温度区间,使用刻蚀溶液对组合晶体进行超声清洗第一时长,溶解去除衬底得到碳化硅晶体。在一些实施例中,第一温度区间可以是50℃~100℃。在一些实施例中,第一温度区间可以是65℃~80℃。在一些实施例中,第一温度区间可以是67~78℃。在一些实施例中,第一温度区间可以是70~76℃。在一些实施例中,第一温度区间可以是72~74℃。通过设定第一温度区间为50℃~100℃,可以加快刻蚀速度。
在一些实施例中,刻蚀溶液可以为碱溶液或酸溶液。在一些实施例中,碱溶液可以包括NaOH溶液、KOH溶液或NH 4OH溶液。在一些实施例中,碱溶 液可以是5%~30%的NaOH溶液。在一些实施例中,碱溶液可以是10%~25%的NaOH溶液。在一些实施例中,碱溶液可以是15%~20%的NaOH溶液。在一些实施例中,碱溶液可以是10%~25%的NaOH溶液。在一些实施例中,碱溶液可以是12%~23%的NaOH溶液。在一些实施例中,碱溶液可以是14%~21%的NaOH溶液。在一些实施例中,碱溶液可以是16%~18%的NaOH溶液。在一些实施例中,酸溶液可以包括盐酸溶液、稀硫酸溶液、硝酸溶液、氢氟酸或次氯酸溶液。在一些实施例中,上述碱溶液或酸溶液的纯度可以不作限制。例如,上述碱溶液和酸溶液可以使用其他工艺(例如,光伏或半导体器件生产工艺)中回收的酸溶液和碱溶液,可以循环利用资源、节约成本且生产方式环保。
在一些实施例中,第一时长与衬底厚度正相关,衬底越厚,刻蚀去除该衬底所需的第一时长就越长。在一些实施例中,第一时长间可以是至少40分钟。在一些实施例中,第一时长间可以是40~90分钟。在一些实施例中,第一时长可以是50~80分钟。在一些实施例中,第一时长可以是55~75分钟。在一些实施例中,第一时长可以是60~70分钟。在一些实施例中,第一时长可以是63~68分钟。通过设定超声清洗的时长为40~90分钟,可以充分刻蚀除去组合晶体上的衬底,得到不含衬底的碳化硅晶体。在一些实施例中,可以通过人眼观察或成分检测,确定衬底是否刻蚀完成。可以用基面位错密度(单位面积的缺陷数量)表征碳化硅晶体的质量。关于基面位错密度的内容可以参见图1的描述。
在一些实施例中,可以对去除衬底的碳化硅晶体进行清洗。在一些实施例中,可以使用清洗液(例如,异丙醇或去离子水)在50℃~80℃和超声波作用下,对不含衬底的碳化硅晶体进行清洗一定时长(例如,3-10分钟)。通过对碳化硅晶体进行清洗,可以得到表面洁净的碳化硅晶体。
图10是根据一些实施例所述的衬底表面处理过程的示例性流程示意图。在一些实施例中,在将衬底依次在多个腔体之间进行传送和处理之前,还可以对衬底表面进行,以使衬底表面,尤其是晶体生长的表面,保持洁净和平整。
在一些实施例中,该衬底表面处理过程1000可以由控制设备(例如,控 制模块101)执行。例如,过程1000可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1000。在一些实施例中,过程1000可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图10所示的操作的顺序并非限制性的。
步骤1010,对衬底表面进行抛光处理。在一些实施例中,该步骤1010可以由抛光模块104执行。
在一些实施例中,将衬底放置于抛光设备(例如,抛光机)上进行抛光。在一些实施例中,可以先对衬底背面(晶体生长面的相对面)进行抛光,然后对衬底正面(晶体生长面)进行精细抛光。在一些实施例中,可以对衬底正面(晶体生长面)进行精细抛光。在一些实施例中,可以对衬底背面(晶体生长面的相对面)进行抛光。通过对衬底背面进行抛光,去除衬底背面的切割划痕和缺陷,可以使得衬底平整,在衬底传送过程中可以保持晶体生长面的水平度。通过对衬底正面(晶体生长面)进行精细抛光,使其表面平整,便于在晶体生长时反应产物在晶体生长面上均匀结晶。
在一些实施例中,可以对抛光处理后的衬底进行干燥。例如,用氮气或氦气吹干衬底各个表面。
步骤1020,对衬底表面进行清洗处理。在一些实施例中,该步骤1010可以由清洗模块105执行。
在一些实施例中,可以使用清洗装置(例如,超声清洗设备)对衬底表面进行清洗处理,以去除抛光处理中产生的残渣。在一些实施例中,可以采用至少一种清洗液对衬底表面进行至少一次清洗。在一些实施例中,可以依次采用丙酮、酒精、去离子水对衬底表面分别超声清洗一次。在一些实施例中,一次清洗时长可以为至少5分钟。在一些实施例中,一次清洗时长可以为5-30分钟。在一些实施例中,一次清洗时长可以为10-20分钟。在一些实施例中,一次清洗时长可以为15-18分钟。在一些实施例中,可以对清洗处理后的衬底进行干燥。例如,衬底清洗完成后,用氮气或氦气吹干衬底各个表面。
在一些实施例中,将衬底表面抛光处理和清洗处理后,还可以对衬底进行进一步清洗处理。在一些实施例中,可以将抛光处理和清洗处理后的衬底放入强酸溶液中浸泡一定时长,然后进行进一步清洗处理。在一些实施例中,强酸溶液可以包括盐酸、硫酸、硝酸溶液、氢氟酸或次氯酸溶液。在一些实施例中,强酸溶液可以包括30%-40%的氢氟酸(HF)溶液。在一些实施例中,可以将强酸溶液稀释后,再将衬底放入稀释后的酸溶液中浸泡,以避免酸溶液浓度过高而损坏衬底。在一些实施例中,可以将30%-40%的HF溶液稀释为1%的HF溶液,再将衬底放入1%-3%的HF溶液中浸泡一定时长,然后用超声清洗设备进行进一步清洗处理。在一些实施例中,可以将单晶硅衬底放入1%-3%的HF溶液中浸泡5-8分钟,然后用去离子水进一步超声清洗5-10分钟。在一些实施例中,可以对进一步清洗处理后的衬底进行干燥。例如,进一步清洗完成后的衬底用氮气或氦气吹干衬底各个表面。
图11是根据一些实施例所述的将衬底在各腔体之间传送和处理的示例性流程示意图。
在一些实施例中,在各腔体之间传送和处理过程1100可以由控制设备(例如,控制模块101)执行。例如,过程1100可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1100。在一些实施例中,过程1100可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图11所示的操作的顺序并非限制性的。
关于多腔体生长装置的更多内容可以参见图2A-2B、图3A-3B和图9的内容。衬底在各腔体间传送和处理的过程1100包括:
步骤1110,在原位刻蚀腔体中对衬底进行原位刻蚀处理。
在一些实施例中,可以对至少一片衬底进行原位刻蚀处理。例如,可以将一片或多片衬底放置于托盘上,并传送至原位刻蚀腔体中进行原位刻蚀处理。在一些实施例中,可以在一定气体压力、一定温度和处理气体的反应条件下对衬底 进行原位刻蚀处理。在一些实施例中,可以在第二时长范围内保持原位刻蚀腔体的压力在第二压力区间,温度在第二温度区间;然后通入氢气至原位刻蚀腔体为常压,在第三时长范围内保持原位刻蚀腔体的温度在第三温度区间对衬底进行原位刻蚀处理。关于对衬底进行原位处理的更多内容可以参见图13的描述。
通过对衬底进行原位刻蚀处理,可以去除衬底晶体生长面的缺陷,便于在衬底表面生长晶型一致、质量高的碳化硅晶体。
步骤1120,通过传动组件将衬底从原位刻蚀腔体传送至碳化腔体,进行碳化处理。
经过原位刻蚀处理后的衬底,可以进一步进行碳化处理。在一些实施例中,可以通过传动组件(例如,传动组件208)将衬底从原位刻蚀腔体传送至碳化腔体中进行碳化处理。在一些实施例中,可以在一定气体压力、一定温度和处理气体的反应条件下对衬底进行碳化处理。在一些实施例中,可以在第四时长内保持碳化腔体的压力为第三压力区间,温度原位刻蚀腔体的温度相等或相近(温度差小于或等于5℃);然后控制原位刻蚀腔体和碳化腔体之间的第三通道打开,通过传动组件208将衬底传送至碳化腔体中,关闭第三通道;之后将碳化腔体降温至第五温度区间,并抽真空至第四压力区间后,逐渐对碳化腔体升温至第四温度区间,同时通入碳化气体(例如,甲烷、丙烷、丁烷等)和氢气至第三压力进行碳化处理。关于对衬底进行碳化处理的更多内容可以参见图14的描述。
通过对衬底进行碳化处理,可以在衬底的晶体生长面上制备碳化缓冲层,有利于碳化硅晶体在衬底表面结晶。
步骤1130,通过传动组件将衬底从碳化腔体传送至生长腔体进行气相沉积,得到组合晶体。
经过碳化处理后的衬底,可以在衬底的晶体生长面上生长碳化硅晶体。在一些实施例中,可以通过传动组件(例如,传动组件208)将衬底从碳化腔体传送至生长腔体中。在一些实施例中,可以将生长腔体升温至第四温度区间,并加压至第三压力区间;然后控制碳化腔体和生长腔体之间的第四通道打开,通过传 动组件208将衬底传送至生长腔体中,关闭第四通道。关于将衬底从碳化腔体传送至生长腔体中的更多内容可以参见图15的描述。
在一些实施例中,在生长腔体中,在衬底的晶体生长面进行气相沉积进行晶体生长,以制得包含衬底和碳化硅晶体的组合晶体。在一些实施例中,将生长腔体升温至第六温度区间,并通入硅烷、丙烷和氢气至第五压力区间进行晶体生长;当目标晶体生长厚度达到目标厚度时,停止进行晶体生长。关于在生长腔体中晶体生长的更多内容可以参见图16的描述。
步骤1140,通过传动组件将组合晶体从生长腔体传送至缓冲腔体,进行降温冷却。
生长完成的组合晶体可以进一步进行降温。在一些实施例中,可以通过传动组件208将组合晶体从生长腔体传送至缓冲腔体,在缓冲腔体内进行降温冷却。在一些实施例中,将缓冲腔体升温至第六温度区间,并控制生长腔体和缓冲腔体之间的第五通道打开,通过传动组件208将组合晶体传送至缓冲腔体中,关闭第五通道;然后将缓冲腔体逐渐降温至第七温度区间,保持第五时长。关于在缓冲腔体中冷却降温的更多内容可以参见图17的描述。
图12是根据一些实施例所述的真空处理的示例性流程示意图。在一些实施例中,在对衬底进行原位刻蚀处理之前,可以对衬底进行真空处理。
在一些实施例中,该真空处理过程1200可以由控制设备(例如,控制模块101)执行。例如,过程1200可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1200。在一些实施例中,过程1200可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图12所示的操作的顺序并非限制性的。
在一些实施例中,可以在真空腔体中对衬底进行真空处理。关于真空腔体的更多内容可以参见图3A-图3B的内容。对衬底进行真空处理的过程1200包括:
步骤1210,将衬底放置于真空腔体中。
在一些实施例中,可以对抛光处理和清洗处理后的衬底进行真空处理。在一些实施例中,可以人工手动将衬底放置于真空腔体中,或者可以人工手动将衬底放置于传动组件208上,通过传动组件208将衬底传送至真空腔体中。在另一些实施例中,可以通过机械结构111(如,机械手)将衬底放置于真空腔体中,或者可以通过机械结构111将衬底放置于传动组件208上,通过传动组件208将衬底传送至真空腔体中。在一些实施例中,可以将一个或多个衬底放置于真空腔体中。在一些实施例中,可以连续依次将多组衬底放置于真空腔体中。
步骤1220,关闭真空腔体的第一通道,调整真空腔体和原位刻蚀腔体的压力至第一压力区间。
在一些实施例中,第一通道为真空腔体的入口通道(例如,进口通道401)。在一些实施例中,可以调整原位刻蚀腔体与真空腔体的压力相等或相近(差值不超过5Pa)后,再将衬底传送至原位刻蚀腔体。在一些实施例中,将衬底放置于真空腔体后,关闭真空腔体的第一通道,分别对真空腔体和原位刻蚀腔体抽真空至第一压力区间。在一些实施例中,第一压力区间可以是3~15Pa。在一些实施例中,第一压力区间可以是5~10Pa。在一些实施例中,第一压力区间可以是6~9Pa。在一些实施例中,第一压力区间可以是7~8Pa。通过将真空腔体和原位刻蚀腔体的压力都调整为第一压力区间,可以减小真空腔体和原位刻蚀腔体的压力差,使得衬底处于相对稳定的环境中。
在一些实施例中,可以同时对真空腔体和原位刻蚀腔体进行抽真空。在一些实施例中,将真空腔体和原位刻蚀腔体的抽气管道(例如,抽气管道403和抽气管道503)连接后再连通至一个抽真空设备,控制抽真空设备的运行速度和时间进行抽真空。在一些实施例中,可以分别对真空腔体和原位刻蚀腔体进行抽真空,并实时监测压力。在一些实施例中,将真空腔体和原位刻蚀腔体的抽气管道分别连通至多个抽真空设备,控制抽真空设备的运行速度和时间,分别对真空腔体和原位刻蚀腔体抽真空,并实时监测压力。在一些实施例中,可以采用机械泵和分子泵联合进行抽真空。在一些实施例中,可以先通过机械泵对真空腔体和/ 或原位刻蚀腔体抽真空至一定真空度,然后通过分子泵对真空腔体和/或原位刻蚀腔体继续抽真空至第一压力区间。
步骤1230,传动组件通过真空腔体和原位刻蚀腔体之间的第二通道将衬底传送至原位刻蚀腔体。
在一些实施例中,当真空腔体和原位刻蚀腔体内压力相等或相近且达到第一压力区间时,可以将衬底传送至原位刻蚀腔体中。在一些实施例中,控制模块101可以控制真空腔体和原位刻蚀腔体之间的第二通道打开,启动传动组件208将衬底传送至原位刻蚀腔体中的特定位置,关闭第二通道,并停止传动组件208。第二通道是指真空腔体和原位刻蚀腔体相邻的通道,例如,第二通道可以是原位刻蚀腔体的进口通道501或真空腔体的出口通道402。在一些实施例中,原位刻蚀腔体的进口通道501和真空腔体的出口通道402为同一个通道。在一些实施例中,原位刻蚀腔体中的特定位置可以是原位刻蚀腔体的底部中心区域。在一些实施例中,可以通过检测模块102(如,传感器)检测衬底的位置。在一些实施例中,当检测模块102检测到衬底处于原位刻蚀腔体的底部中心区域时,可以将衬底的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止运转。
图13是根据一些实施例所述的原位刻蚀处理的示例性流程示意图。
在一些实施例中,该原位刻蚀处理过程1300可以由控制设备(例如,控制模块101)执行。例如,过程1300可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1300。在一些实施例中,过程1300可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图13所示的操作的顺序并非限制性的。
在一些实施例中,可以在原位刻蚀腔体中对衬底进行原位刻蚀处理。关于原位刻蚀腔体的更多内容可以参见图2A-图2B、图3A-图3B的内容。对衬底进行原位刻蚀处理的过程1300包括:
步骤1310,在第二时长范围内保持原位刻蚀腔体的压力在第二压力区间, 温度在第二温度区间。
在一些实施例中,可以在第一条件下通入氢气对衬底进行原位刻蚀处理。在一些实施例中,第一条件可以包括在第二时长范围内保持压力在第二压力区间,温度在第二温度区间。在一些实施例中,第二压力区间为压力小于5×10 -3Pa的范围内。在一些实施例中,第二压力区间为压力小于1×10 -3Pa的范围内。在一些实施例中,第二压力区间可以为压力小于0.8×10 -3Pa的范围内。在一些实施例中,第二压力区间可以为压力小于0.5×10 -3Pa的范围内。在一些实施例中,第二压力区间可以为压力小于1×10 -4Pa的范围内。在一些实施例中,第二压力区间为压力小于1×10 -5Pa的范围内。通过将原位刻蚀腔体的压力设置为小于5×10 -3Pa的范围内,有利于原位刻蚀处理过程中产生的气体从衬底表面脱附,脱附效果更好。
为了在不损伤衬底的前提下,尽量除去原位刻蚀腔体内的气体,第二温度应选择适宜的温度区间。例如,氮气或氧气吸附在衬底表面,温度过低不利于上述气体脱附,温度过高则易使衬底氮化或氧化。在一些实施例中,第二温度区间可以包括400~900℃。在一些实施例中,第二温度区间可以包括500~800℃。在一些实施例中,第二温度区间可以包括550~750℃。在一些实施例中,第二温度区间可以包括600~700℃。在一些实施例中,第二温度区间可以包括630~680℃。在一些实施例中,可以通过加热体505对原位刻蚀腔体进行温度调节。关于加热体505的更多内容可以参见图5的描述。
在一些实施例中,第二时长可以为至少10分钟。在一些实施例中,第二时长可以为10~90分钟。在一些实施例中,第二时长可以为20~80分钟。在一些实施例中,第二时长可以为25~75分钟。在一些实施例中,第二时长可以为30~70分钟。在一些实施例中,第二时长可以是40~60分钟。通过将第二温度区间保持10~90分钟,可以使得原位刻蚀腔体内的温度保持稳定,便于后续对衬底进行均匀、有效的刻蚀。
在一些实施例中,将衬底传送至原位刻蚀腔体后,控制模块101可以控 制抽真空设备对原位刻蚀腔体抽真空使得原位刻蚀腔体内压力达到第二压力区间,并缓慢升温至第二温度区间保持第二时长,以充分排出原位刻蚀腔体内的气体。
步骤1320,通入氢气至常压,在第三时长范围内保持原位刻蚀腔体的温度在第三温度区间进行原位刻蚀处理。
在一些实施例中,第三温度区间可以包括900~1300℃。在一些实施例中,第三温度区间可以包括1000~1200℃。在一些实施例中,第三温度区间可以包括1050~1150℃。在一些实施例中,第三温度区间可以包括1080~1130℃。通过设置原位刻蚀腔体的温度在第三温度区间,可以使得氢气与衬底表面附着的氧化物进行反应,氧化物被还原以完成原位刻蚀处理。
在一些实施例中,第三时长可以是至少0.5分钟。在一些实施例中,第三时长可以是0.5~5分钟。在一些实施例中,第三时长可以是1~3分钟。在一些实施例中,第三时长可以是1.5~2.8分钟。在一些实施例中,第三时长可以是1.8~2.5分钟。在一些实施例中,第三时长可以是2分钟。通过在常压、第三温度区间下刻蚀第三时长,可以对衬底进行充分刻蚀。
在一些实施例中,排出原位刻蚀腔体内的气体后,控制模块101可以控制向原位刻蚀腔体中通入氢气进行原位刻蚀处理。在一些实施例中,控制模块101可以控制进气管道504上的阀门打开并向原位刻蚀腔体中通入氢气至常压,然后控制加热体505进行加热,使原位刻蚀腔体内的温度升至第三温度区间保持第三时长,对衬底的晶体生长面进行原位刻蚀,去除晶体生长面的缺陷。
图14是根据一些实施例所述的碳化处理的示例性流程示意图。在一些实施例中,可以将原位刻蚀处理后的衬底传送至碳化腔体,对衬底的晶体生长面进行碳化处理,以在晶体生长面形成碳化缓冲层。
在一些实施例中,该碳化处理过程1400可以由控制设备(例如,控制模块101)执行。例如,过程1400可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1400。在一些实施例中,过 程1400可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图14所示的操作的顺序并非限制性的。碳化处理的过程1400可以包括:
步骤1410,调整碳化腔体温度至第三温度区间。
在一些实施例中,可以通过碳化腔体内的加热体将碳化腔体升温至第三温度区间。关于加热体和第三温度区间的更多内容可以参见其他部分的描述。在一些实施例中,控制模块101可以控制加热模块103(如,加热体)使碳化腔体升温至第三温度区间。
将碳化腔体升温至与原位刻蚀腔体的温度相等或相近(温度差小于或等于5℃)时,再将衬底传送至碳化腔体内,避免了由于温度骤变导致衬底变形或变性。
步骤1420,通过传动组件将衬底传送至碳化腔体中。
在一些实施例中,当原位刻蚀腔体和碳化腔体的温度都保持在第三温度区间时,可以将衬底传送至碳化腔体中。在一些实施例中,控制模块101可以控制原位刻蚀腔体和碳化腔体之间的第三通道打开,启动传动组件(例如,传动组件208)将衬底传送至碳化腔体中的特定位置,关闭第三通道并停止传动组件运转。第三通道是指原位刻蚀腔体和碳化腔体相邻的通道,例如,第三通道可以是原位刻蚀腔体的出口通道502或碳化腔体的进口通道501。在一些实施例中,原位刻蚀腔体的出口通道502和碳化腔体的进口通道501为同一个通道。在一些实施例中,碳化腔体中的特定位置可以是碳化腔体的底部中心区域。在一些实施例中,可以通过检测模块102(如,传感器)检测衬底的位置。在一些实施例中,当传感器检测到衬底处于原位刻蚀腔体的底部中心区域时,可以将衬底的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止运转。
步骤1430,调整碳化腔体温度至第五温度区间,压力至第四压力区间,同时通入丙烷和氢气至第三压力区间,并在第四时长内保持碳化腔体的压力为 第三压力区间,温度在第四温度区间内进行碳化处理。
衬底在原位刻蚀腔体中经过原位刻蚀处理后温度较高(900~1300℃),若直接将衬底传送至碳化腔体,衬底可能会与碳化处理气体直接进行反应,并且会使得压力和气体组分不稳定,因此可以先将碳化腔体内温度降低,待压力和气体组分稳定后再升温至碳化处理所需温度。在一些实施例中,可以在第二条件下通入丙烷和氢气对衬底进行碳化处理。在一些实施例中,第二条件可以包括压力在第四压力区间,温度在第五温度区间。
在一些实施例中,第五温度区间可以是700~1100℃。在一些实施例中,第五温度区间可以是800~1000℃。在一些实施例中,第五温度区间可以是850~980℃。在一些实施例中,第五温度区间可以是900~950℃。在一些实施例中,第四压力区间可以是小于5×10 -5Pa。在一些实施例中,第四压力区间可以是小于1×10 -5Pa。在一些实施例中,第四压力区间可以是小于0.5×10 -5Pa。在一些实施例中,第四压力区间可以是小于10 -6Pa。当衬底传送至碳化腔体后,将碳化腔体降温至第五温度区间,并抽真空至第四压力区间,可以进一步排出碳化腔体内的气体。
在一些实施例中,第三压力区间可以是1×10 3~1×10 5Pa。在一些实施例中,第三压力区间可以是1×10 3-6×10 4Pa。在一些实施例中,第三压力区间可以是2×10 3-6×10 3Pa。在一些实施例中,第四温度区间可以是1000~1500℃。在一些实施例中,第四温度区间可以是1100~1400℃。在一些实施例中,第四温度区间可以是1200~1350℃。在一些实施例中,第四温度区间可以是1250~1300℃。在一些实施例中,第四时长可以是至少0.5分钟。在一些实施例中,第四时长可以是0.5~5分钟。在一些实施例中,第四时长可以是1~3分钟。在一些实施例中,第四时长可以是1.5~2.5分钟。在一些实施例中,第四时长可以是2分钟。在一些实施例中,丙烷(C 3H 8)的流量包括3~25sccm。在一些实施例中,丙烷(C 3H 8)的流量包括5~20sccm。在一些实施例中,丙烷(C 3H 8)的流量包括7~18sccm。在一些实施例中,丙烷(C 3H 8)的流量包括10~15sccm。在一些实施例 中,氢气的流量包括0.5~25L/分钟。在一些实施例中,氢气的流量包括1~20L/分钟。在一些实施例中,氢气的流量包括5~15L/分钟。在一些实施例中,氢气的流量包括7~12L/分钟。
在一些实施例中,控制模块101控制碳化腔体降温至第五温度区间,并抽真空至第四压力区间后开始升温,同时通入丙烷和氢气至压力达到第三压力区间,升温至第四温度区间,恒温恒压保持第四时长进行碳化处理。
图15是根据一些实施例所述的将衬底从碳化腔体传送至生长腔体的示例性流程示意图。在一些实施例中,可以将原位刻蚀处理后的衬底传送至生长腔体,以在衬底的晶体生长面生长碳化硅晶体。
在一些实施例中,将衬底从碳化腔体传送至生长腔体的过程1500可以由控制设备(例如,控制模块101)执行。例如,过程1500可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1500。在一些实施例中,过程1500可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图15所示的操作的顺序并非限制性的。将衬底从碳化腔体传送至生长腔体的过程1500可以包括:
步骤1510,调整生长腔体温度至第四温度区间,压力至第三压力区间。
在一些实施例中,可以通过生长腔体内的加热体将生长腔体升温至第四温度区间。关于加热体和第四温度区间的更多内容可以参见其他部分的描述。在一些实施例中,控制模块101可以控制加热模块103(如,加热体)使生长腔体升温至第四温度区间。在一些实施例中,控制模块101可以控制抽真空设备对生长腔体抽气使得生长腔体内的压力调整为第三压力区间。关于第三压力区间的更多内容可以参见图14的描述。
将生长腔体升温至与碳化腔体的温度相等或相近(温度差小于或等于5℃)且抽真空至压力相等或相近(压力差不超过10Pa)时,再将衬底传送至生长腔体内,避免了由于温度或压力骤变导致衬底变形或变性。
步骤1520,控制碳化腔体和生长腔体之间的第四通道打开,通过传动组 件将衬底传送至生长腔体中。
在一些实施例中,当生长腔体和碳化腔体的温度都为第四温度区间、压力都为第三压力区间时,可以将衬底传送至生长腔体中。在一些实施例中,当生长腔体的温度达到第四温度区间、压力达到第三压力区间后,控制模块101可以控制生长腔体和碳化腔体之间的第四通道打开,启动传动组件(例如,传动组件208)将衬底传送至生长腔体中的特定位置,关闭第四通道并停止传动组件。第四通道是指生长腔体和碳化腔体相邻的通道,例如,第四通道可以是碳化腔体的出口通道502或生长腔体的进口通道601。在一些实施例中,碳化腔体的出口通道502和生长腔体的进口通道601为同一个通道。在一些实施例中,生长腔体中的特定位置可以是生长腔体底部的旋转轴606的正上方。
在一些实施例中,可以通过检测模块102(如,定位器)检测衬底的位置。可以将衬底的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止运转。
在一些实施例中,当定位器确定衬底位于生长腔体的预设位置时,可以将衬底的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止传动。在一些实施例中,生长腔体的预设位置可以为旋转轴606的正上方。在一些实施例中,定位器可以设置于旋转轴上。在一些实施例中,控制模块101可以控制旋转轴606上升,以将衬底顶起至生长腔体的中部。在一些实施例中,旋转轴可以带动衬底顺时针或逆时针旋转。在一些实施例中,旋转轴的旋转速度可以调节。
图16是根据一些实施例所述的晶体生长的示例性流程示意图。
在一些实施例中,可以在生长腔体中在衬底的晶体生长面进行气相沉积,制得包含衬底和碳化硅晶体的组合晶体。关于生长腔体的更多内容可以参见图2A-图2B、图3A-图3B和图6的内容。
在一些实施例中,该晶体生长过程1600可以由控制设备(例如,控制模块101)执行。例如,过程1600可以以程序或指令的形式存储在存储设备中, 当控制模块101执行程序或指令时,可以实现过程1600。在一些实施例中,过程1600可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图16所示的操作的顺序并非限制性的。晶体生长过程1600可以包括:
步骤1610,将生长腔体升温至第六温度区间,调整压力至第四压力区间。
在一些实施例中,可以在第三条件下通入硅烷、丙烷和氢气在衬底上通过气相沉积生长目标晶体(例如,碳化硅晶体)。在一些实施例中,第三条件可以包括压力在第四压力区间,温度在第六温度区间。第六温度区间根据待生长晶体的类型不同而不同。在一些实施例中,第六温度区间可以是1300~1750℃。在一些实施例中,第六温度区间可以是1400~1700℃。在一些实施例中,第六温度区间可以是1450~1650℃。在一些实施例中,第六温度区间可以是1500~1600℃。在一些实施例中,第六温度区间可以是1520~1570℃。在一些实施例中,第六温度区间可以是在整个生长过程中保持恒定,也可以根据晶体生长过程的不同阶段进行调整。
在一些实施例中,控制模块101可以控制加热模块103(如,生长腔体中的加热体)使生长腔体升温至第六温度区间。关于加热体的更多内容可以参见其他部分的描述。
在一些实施例中,可以通过真空设备(例如,真空泵)将生长腔体抽真空至第四压力区间。关于第四压力区间的更多内容可以图14的描述。
步骤1620,通入硅烷、丙烷和氢气至第五压力区间进行晶体生长。
第五压力区间根据待生长晶体的类型不同而不同,对于某一特定晶体(例如,碳化硅晶体),第五压力区间过小,晶体生长速率较低;第五压力过大,晶体生长易形成缺陷。在一些实施例中,第五压力区间可以是20~100Pa。在一些实施例中,第五压力区间可以是30~90Pa。在一些实施例中,第五压力区间可以是40~80Pa。在一些实施例中,第五压力区间可以是50~70Pa。在一些实施例中,第五压力区间可以是55~65Pa。在一些实施例中,第五压力区间可以是在整 个生长过程中保持恒定,也可以根据晶体生长过程的不同阶段进行调整。
在一些实施例中,通入硅烷(SiH 4)的流量包括300~800sccm。在一些实施例中,通入硅烷(SiH 4)的流量包括400~600sccm。在一些实施例中,通入硅烷(SiH 4)的流量包括450~550sccm。在一些实施例中,通入硅烷(SiH 4)的流量包括480~520sccm。在一些实施例中,通入丙烷(C 3H 8)的流量包括100~250sccm。在一些实施例中,通入丙烷(C 3H 8)的流量包括133~200sccm。在一些实施例中,通入丙烷(C 3H 8)的流量包括150~180sccm。在一些实施例中,通入丙烷(C 3H 8)的流量包括160~170sccm。在一些实施例中,通入氢气(H 2)的流量包括10~90L/分钟。在一些实施例中,通入氢气(H 2)的流量包括20~80L/分钟。在一些实施例中,通入氢气(H 2)的流量包括30~70L/分钟。在一些实施例中,通入氢气(H 2)的流量包括40~60L/分钟。
在一些实施例中,控制模块101可以分别控制向生长腔体中通入硅烷、丙烷和氢气的流量使生长腔体的压力为第五压力区间。在生长腔体中,衬底在第六温度区间、第五压力区间以及反应物(硅烷、丙烷和氢气)的条件下进行晶体生长。
步骤1630,当目标晶体厚度达到目标厚度时,停止进行晶体生长。
在一些实施例中,目标厚度可以是200~600μm在一些实施例中,目标厚度可以是300~500μm。在一些实施例中,目标厚度可以是320~480μm。在一些实施例中,目标厚度可以是350~450μm。在一些实施例中,目标厚度可以是380~420μm。在一些实施例中,目标厚度可以是390~410μm。通过设置目标厚度为200~600μm,可以不用进行切割加工等后续处理,直接通过抛光即可获得指定厚度的晶片,提高了生产效率、节约加工成本,便于工业应用。
在一些实施例中,在晶体生长过程中,可以对晶体生长的厚度进行监控,并根据晶体生长的速度、厚度等参数,控制生长腔体的温度、压力以及硅烷、丙烷和氢气的流量比。在一些实施例中,可以采用反射式高能电子衍射装置(RHEED)对晶体生长厚度进行监控。在一些实施例中,可以通过调控加热体 的发热功率,调整生长腔体的温度。在一些实施例中,可以通过分别调整硅烷、丙烷的流量,调整反应物中硅源和碳源的配比。在一些实施例中,通过调整通入硅烷、丙烷和氢气的流量,可以调整生长腔体的压力。
在一些实施例中,当晶体生长到目标厚度时,控制模块101可以控制停止进行晶体生长。在一些实施例中,控制模块101可以控制停止通入硅烷、丙烷和氢气,并且控制停止加热体对生长腔体进行加热。
图17是根据一些实施例所述的缓冲和降温处理的示例性流程示意图。
在一些实施例中,与生长腔体相邻还设置有缓冲腔体和末端腔体,以便进行晶体生长结束后的后续操作,例如,对制得的组合晶体进行冷却。通过传动组件将组合晶体从生长腔体传送至缓冲腔体,进行降温冷却至一定温度(例如,第七温度区间);然后将组合晶体传送至末端腔体中冷却至室温。通过设置缓冲腔体先将组合晶体在缓冲腔体中降温至第七温度区间(500~1200℃),再将组合晶体传送至末端腔体中冷却至室温,避免了环境温度骤降(将组合晶体从生长腔体中直接传送至末端腔体中)导致组合晶体开裂的情况出现。
在一些实施例中,该缓冲和降温处理过程1700可以由控制设备(例如,控制模块101)执行。例如,过程1700可以以程序或指令的形式存储在存储设备中,当控制模块101执行程序或指令时,可以实现过程1700。在一些实施例中,过程1700可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图17所示的操作的顺序并非限制性的。
步骤1710,调整缓冲腔体温度至第六温度区间。
在一些实施例中,可以通过缓冲腔体内的加热体将缓冲腔体加热至第六温度区间。在一些实施例中,控制模块101可以控制加热模块103(如,加热体)使缓冲腔体升温至第六温度区间。关于加热体和第六温度区间的更多内容可以参见其他部分的描述。
将缓冲腔体加热至与生长腔体的温度相等或相近(温度差小于或等于5℃)时,避免由于缓冲腔体与生长腔体的温度差过大而形成温度骤变,从而导致组合 晶体变形或变性。
步骤1720,通过传动组件将组合晶体传送至缓冲腔体中。
在一些实施例中,当缓冲腔体的温度达到第六温度区间时,可以将生长腔体和缓冲腔体之间的第五通道打开,启动传动组件(例如,传动组件208)将组合晶体传送至缓冲腔体中的特定位置,关闭第五通道并停止传动组件运转。第五通道是指生长腔体和缓冲腔体相邻的通道,例如,第五通道可以是生长腔体的出口通道602或缓冲腔体的进口通道501。在一些实施例中,生长腔体的出口通道602和缓冲腔体的进口通道501为同一个通道。在一些实施例中,缓冲腔体中的特定位置可以是缓冲腔体的底部中心区域。在一些实施例中,可以通过检测模块102(如,传感器)检测衬底的位置。在一些实施例中,当传感器检测到衬底处于缓冲腔体的底部中心区域时,可以将衬底的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止运转。
步骤1730,调整缓冲腔体温度至第七温度区间,保持第五时长进行冷却降温处理。
在一些实施例中,第七温度区间可以是500~1200℃。在一些实施例中,第七温度区间可以是550~1000℃。在一些实施例中,第七温度区间可以是600~800℃。在一些实施例中,第七温度区间可以是650~750℃。在一些实施例中,第七温度区间可以是680~720℃。在一些实施例中,第五时长可以是至少1h。在一些实施例中,第五时长可以是1-7h。在一些实施例中,第五时长可以是2-6h。在一些实施例中,第五时长可以是2.5-5.5h。在一些实施例中,第五时长可以是3-5h。在一些实施例中,第五时长可以是3.5-4.5h。
在一些实施例中,控制模块101可以控制缓冲腔体逐渐降温至第七温度区间。在一些实施例中,控制模块101可以控制进气管道504上的阀门开启并通过进气管道504向缓冲腔体中通入置换气体(例如,氢气、氮气、氩气或氦气);同时,还可以控制抽真空设备对缓冲腔体进行抽气,以保持缓冲腔体内的压力处于常压附近。在一些实施例中,当缓冲腔体的温度为第七温度区间时,控 制模块101可以控制缓冲腔体的第七温度区间保持第五时长,以使得缓冲腔体内的部件或组合晶体的温度稳定于第七温度区间。
步骤1740,通过传动组件将组合晶体传送至末端腔体中。
在一些实施例中,可以将组合晶体传送至末端腔体中进行进一步冷却降温。在一些实施例中,末端腔体的温度可以为室温。在一些实施例中,控制模块101可以控制缓冲腔体和末端腔体之间的第六通道打开,启动传动组件(例如,传动组件208)将组合晶体传送至末端腔体中的特定位置,关闭第六通道并停止传动组件运转。第六通道是指缓冲腔体和末端腔体相邻的通道,例如,第六通道可以是缓冲腔体的出口通道502或末端腔体的进口通道401。在一些实施例中,缓冲腔体的出口通道502和末端腔体的进口通道401为同一个通道。在一些实施例中,缓冲腔体中的特定位置可以是缓冲腔体的底部中心区域或其他指定区域。在一些实施例中,可以通过检测模块102(如,传感器)检测组合晶体的位置。在一些实施例中,当传感器检测到组合晶体处于末端腔体的底部中心区域或其他指定区域时,可以将组合晶体的位置信息发送给控制模块101,控制模块101可以控制机械结构111(如,传动组件208)停止运转。
步骤1750,将组合晶体冷却至室温。
组合晶体可以在末端腔体内继续冷却至室温。在一些实施例中,可以在末端腔体中经过8~12h自然冷却,将组合晶体冷却至室温。在一些实施例中,可以向末端腔体中通入置换气体对组合晶体进行冷却。在一些实施例中,末端腔体上设置有进气管道和出气管道,控制模块101可以控制进气管道上的阀门开启并通过进气管道向末端腔体中通入置换气体(例如,氢气、氮气、氩气或氦气);同时,还可以控制抽真空设备对末端腔体进行抽气,以保持末端腔体内的压力处于常压附近。
在一些实施例中,组合晶体冷却至室温后,控制模块101可以控制末端腔体的出口通道402打开,并通过传动组件208将组合晶体传送至末端腔体的出口通道402附近,人工手动或通过机械手取出组合晶体。组合晶体取出后,可 以对组合晶体进行化学刻蚀除去组合晶体上的衬底,得到碳化硅晶体。关于化学刻蚀的更多内容可以参见图9的描述。
在一些实施例中,过程1700可以不包括步骤1740和步骤1750,即没有末端腔体,直接在缓冲腔体中取出组合晶体后,在自然环境下进行冷却降温。
以下为本发明的一个具体实施例。通过多腔体生长装置制备碳化硅晶体的过程可以包括以下步骤:
(1)抛光处理和清洗处理:将晶体生长面为(111)面、厚度为100-400um、直径为1-10英寸的圆形单晶硅片在抛光机上进行抛光,先对(11ˉ1)面进行抛光,使其表面平整;然后对(111)面进行精细抛光,去除表面切割划痕和缺陷。采用清洗液(例如,丙酮、酒精、去离子水)对抛光后的单晶硅片各超声清洗10-20分钟,然后用高纯氮气或氦气吹干。再将单晶硅片放入1%-3%的HF溶液中浸泡5-8分钟,然后用去离子水超声清洗5-10分钟。清洗完成后将单晶硅片用氮气或氦气吹干。
(2)真空处理:将至少一个单晶硅片放在托盘上的凹槽位置并固定,将单晶硅片的(111)面朝上。将托盘放入真空腔体中,将真空腔体抽真空至3-15Pa。在此期间,将原位刻蚀腔体抽真空至与真空腔体中压力相等或相近(差值不超过5Pa)。
(3)原位刻蚀处理:将放置有至少一个单晶硅片的托盘传送至原位刻蚀腔体中。继续将原位刻蚀腔体抽真空至5×10 -3Pa以下,缓慢加热至400-900℃,保温10-90min,进行高温除气;然后向原位刻蚀腔体中通入氢气至常压,加热至1000-1200℃,保持常压并保温1-3分钟,进行原位刻蚀处理,去除晶体生长面的缺陷。
(4)碳化处理:将放置有至少一个单晶硅片的托盘传送至碳化腔体中,对晶体生长面进行碳化处理,制备碳化缓冲层。先将碳化腔体降温到800-1000℃,并进行抽真空;当真空压力小于1×10 -5Pa后,开始升温,并向碳化腔体中通入5-20sccm的丙烷(C 3H 8)和1-20L/分钟的氢气,保持碳化腔体压力为1×10 3~6 ×10 4Pa。将碳化腔体升温至1100-1400℃,保温1~3分钟。在此期间,将生长腔体的温度调控为1100-1400℃。
(5)晶体生长:将放置有至少一个单晶硅片的托盘传送至生长腔体中,将生长腔体的温度调控至1400-1700℃。向生长腔体中通入400-600sccm的SiH 4、133-200sccm的C 3H 8、20-80L/分钟的H 2,将生长腔体的压力保持在30-90Pa,在生长腔体中进行晶体生长。在此期间,将缓冲腔体的温度调控为1400-1700℃。当在生长腔体中生长10-12h后,将托盘传送至缓冲腔体中。
(6)冷却降温:托盘传送到缓冲腔体后,经过2-6h将缓冲腔体降温冷却至500-1200℃。然后将托盘传送至末端腔体中,经过8-12h冷却至室温。取出组合晶体。
(7)化学刻蚀处理:将组合晶体取出后,使用10%-25%的NaOH溶液,在65~80℃条件下,进行超声清洗以进行快速刻蚀,持续时长为50-80分钟,得到化学刻蚀后的碳化硅晶体。
(8)清洗处理:将碳化硅晶体放入清洗液(例如,异丙醇)中,在50-80℃条件下,超声清洗3-10分钟。然后使用去离子水超声清洗3~10分钟,得到碳化硅晶体。
(9)测试:经过测试,制得的碳化硅晶体厚度为300-500um,晶片无明显翘曲,表面光滑。
需要注意的是,以上对碳化硅晶体的制备方法的描述,仅为描述方便,并不能把本说明书限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解本说明书的原理后,可以在不背离这一原理的情况下,对实施上述流程及系统、装置、设备进行形式和细节上的各种修正和改变。然而,这些变化和修改不脱离本说明书的范围。
本说明书实施例可能带来的有益效果包括但不限于:(1)采用多腔体生长装置进行晶体制备,至少一个衬底或组合晶体在各腔体之间进行传送,在每个腔体中分别独立进行不同的工艺处理过程,实现了流水线批量生产晶体;(2) 在生长过程中,可以对目标晶体厚度进行监控,制备目标厚度的目标晶体,经过化学刻蚀后可以得到单个目标晶片成品,不需要切割,晶体制备周期短,加工成本较低、效率高;(3)使用单晶硅片作为衬底,采用气相沉积法在衬底上制备目标晶体得到组合晶体,可以使用其他工艺(例如,光伏或半导体器件生产过程)中使用过的酸液或碱液对组合晶体进行化学刻蚀去除衬底,节约了生产成本,实现了资源循环利用,使得生产方式更加环保。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
以上内容描述了本说明书和/或一些其他的示例。根据上述内容,本说明书还可以做出不同的变形。本说明书披露的主题能够以不同的形式和例子所实现,并且本说明书可以被应用于大量的应用程序中。后文权利要求中所要求保护的所有应用、修饰以及改变都属于本说明书的范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”、或“一个实施例”、或“一替代性实施例”、或“另一实施例”或“另一个实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
本领域技术人员能够理解,本说明书所披露的内容可以出现多种变型和改进。例如,以上所描述的不同系统组件都是通过硬件设备所实现的,但是也可能只通过软件的解决方案得以实现。例如:在现有的服务器上安装系统。此外,这里所披露的位置信息的提供可能是通过一个固件、固件/软件的组合、固件/硬件的组合或硬件/固件/软件的组合得以实现。
所有软件或其中的一部分有时可能会通过网络进行通信,如互联网或其他通信网络。此类通信能够将软件从一个计算机设备或处理器加载到另一个。例 如:从放射治疗系统的一个管理服务器或主机计算机加载至一个计算机环境的硬件平台,或其他实现系统的计算机环境,或与提供确定轮椅目标结构参数所需要的信息相关的类似功能的系统。因此,另一种能够传递软件元素的介质也可以被用作局部设备之间的物理连接,例如光波、电波、电磁波等,通过电缆、光缆或者空气实现传播。用来载波的物理介质如电缆、无线连接或光缆等类似设备,也可以被认为是承载软件的介质。在这里的用法除非限制了有形的“储存”介质,其他表示计算机或机器“可读介质”的术语都表示在处理器执行任何指令的过程中参与的介质。
本说明书各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C ++、C #、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,例如,局域网(LAN)或广域网(WAN)、或连接至外部计算机(例如通过因特网)、或在云计算环境中、或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述属性、数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档、物件等,特将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不限于本说明书明确介绍和描述的实施例。

Claims (29)

  1. 一种组合晶体制备方法,所述制备方法在多腔体生长装置中进行,所述多腔体生长装置包括多个腔体;所述方法包括:
    将至少一个衬底依次在多个腔体之间进行传送和处理;
    在所述多个腔体中的一个腔体内,通过气相沉积生长目标晶体,得到包含所述衬底和目标晶体的至少一个组合晶体。
  2. 如权利要求1所述的方法,其中,在将所述至少一个衬底依次在多个腔体之间进行传送和处理之前,所述方法还包括:
    对所述至少一个衬底进行抛光处理。
  3. 如权利要求1所述的方法,其中,在将所述至少一个衬底依次在多个腔体之间进行传送和处理之前,所述方法还包括:
    对所述至少一个衬底进行清洗处理。
  4. 如权利要求1所述的方法,其中,所述方法还包括:
    在第一温度区间,使用刻蚀溶液对所述组合晶体进行超声清洗第一时长,得到基面位错密度为120-2000cm -2的所述目标晶体。
  5. 如权利要求1所述的方法,其中,所述多腔体生长装置至少包括:原位刻蚀腔体、碳化腔体、生长腔体、缓冲腔体和传动组件;所述传动组件将至少一个衬底依次通过所述原位刻蚀腔体、所述碳化腔体、所述生长腔体和所述缓冲腔体进行处理。
  6. 如权利要求5所述的方法,其中,所述方法还包括:
    在所述至少一个衬底完成所述依次在多个腔体之间进行传送和处理前,启动另一个批次的至少一个衬底在多个腔体之间进行传送和处理,所述两个批次 的至少一个衬底同时分别在不同的腔体进行传送和处理。
  7. 如权利要求5所述的方法,其中,所述多腔体生长装置包括真空腔体;所述方法包括:
    所述至少一个衬底在所述原位刻蚀腔体中进行处理之前,将所述至少一个衬底放置于所述真空腔体中;
    调整所述真空腔体和所述原位刻蚀腔体压力至第一压力区间;
    所述传动组件将所述至少一个衬底传送至所述原位刻蚀腔体。
  8. 如权利要求5所述的方法,其中,所述至少一个衬底在所述原位刻蚀腔体中进行处理包括:
    在第二时长范围内保持所述原位刻蚀腔体的压力在第二压力区间,温度在第二温度区间;
    通入氢气至所述原位刻蚀腔体至常压,在第三时长范围内保持所述原位刻蚀腔体的温度在第三温度区间进行原位刻蚀处理。
  9. 如权利要求8所述的方法,其中,所述至少一个衬底在所述碳化腔体中进行处理包括:
    在第四时长内保持碳化腔体的压力为第三压力区间,温度在第四温度区间内进行碳化处理。
  10. 如权利要求9所述的方法,其中,所述碳化处理包括:
    调整所述碳化腔体温度至所述第三温度区间;
    通过所述传动组件将所述至少一个衬底传送至所述碳化腔体中,
    调整所述碳化腔体温度至第五温度区间,压力至第四压力区间,同时通入丙烷和氢气至第三压力区间,并在第四时长内保持碳化腔体的压力为第三压力区 间,温度在第四温度区间内进行碳化处理。
  11. 如权利要求10所述的方法,其中,所述至少一个衬底在所述生长腔体中进行处理包括:
    保持生长腔体的温度在第六温度区间,压力在所述第四压力区间,通入反应原料,调整压力在第五压力区间进行晶体生长过程。
  12. 如权利要求11所述的方法,其中,所述晶体生长过程包括:
    调整所述生长腔体温度至所述第四温度区间,压力至所述第三压力区间;
    通过所述传动组件将所述至少一个衬底传送至所述生长腔体中,
    调整所述生长腔体温度至第六温度区间,压力在所述第四压力区间,通入硅烷、丙烷和氢气至第五压力区间进行晶体生长;
    当所述目标晶体厚度达到目标厚度时,停止进行晶体生长。
  13. 如权利要求11所述的方法,其中,所述在所述缓冲腔体中进行处理包括:
    在第五时长内保持缓冲腔体的温度为第七温度区间内进行冷却降温处理。
  14. 如权利要求13所述的方法,其中,冷却降温处理包括:
    调整所述缓冲腔体温度至所述第六温度区间;
    通过所述传动组件将所述组合晶体传送至所述缓冲腔体中;
    调整所述缓冲腔体温度至第七温度区间,保持第五时长内缓冲腔体的温度为第七温度区间内进行冷却降温处理。
  15. 如权利要求13所述的方法,其中,所述多腔体生长装置包括末端腔体;所述方法还包括:保持所述末端腔体温度为室温;
    通过所述传动组件将所述组合晶体传送至所述末端腔体中;
    将所述组合晶体冷却至室温。
  16. 一种组合晶体制备系统,应用于晶体制备过程,其中,所述系统包括:
    至少一个存储器,用于存储计算机指令;
    至少一个处理器,所述至少一个处理器与所述至少一个存储器通讯,当所述至少一个处理器执行所述计算机指令时,所述至少一个处理器使所述系统执行:
    将至少一个衬底依次在多个腔体之间进行传送和处理;
    在所述多个腔体中的一个腔体内,通过气相沉积生长目标晶体,得到包含所述衬底和目标晶体的至少一个组合晶体。
  17. 如权利要求16所述的系统,其中,所述至少一个处理器使所述系统执行:
    在第一温度区间,使用刻蚀溶液对所述组合晶体进行超声清洗第一时长,得到基面位错密度为120-2000cm -2的所述目标晶体。
  18. 如权利要求16所述的系统,其中,所述多腔体生长装置至少包括:原位刻蚀腔体、碳化腔体、生长腔体、缓冲腔体和传动组件;所述至少一个处理器使所述系统执行:
    通过传动组件将至少一个衬底依次通过所述原位刻蚀腔体、所述碳化腔体、所述生长腔体和所述缓冲腔体进行处理。
  19. 如权利要求18所述的系统,其中,所述至少一个处理器使所述系统执行:
    在所述至少一个衬底完成所述依次在多个腔体之间进行传送和处理前,启动另一个批次的至少一个衬底在多个腔体之间进行传送和处理,所述两个批次的至少一个衬底同时分别在不同的腔体进行传送和处理。
  20. 一种计算机可读存储介质,其中,所述存储介质存储计算机指令,当所述计算机指令被处理器执行时,实现如权利要求1-19中任一项所述的方法。
  21. 一种多腔体生长装置,应用于晶体制备过程,其中,所述多腔体生长装置包括:
    原位刻蚀腔体;
    碳化腔体;
    生长腔体,用于通过气相沉积生长目标晶体,得到包括衬底和目标晶体的至少一个组合晶体;
    缓冲腔体;
    传动组件;所述传动组件将所述至少一个衬底依次通过所述原位刻蚀腔体、所述碳化腔体、所述生长腔体和所述缓冲腔体进行处理。
  22. 如权利要求21所述的多腔体生长装置,其中,所述多腔体生长装置还包括真空腔体。
  23. 如权利要求21所述的多腔体生长装置,其中,所述多腔体生长装置还包括末端腔体。
  24. 如权利要求21所述的多腔体生长装置,其中,所述传动组件包括至少两个平行排列的可转动圆柱滚轮,所述可转动圆柱滚轮并排位于各个腔体下方。
  25. 如权利要求21所述的多腔体生长装置,其中,所述多腔体生长装置包括托盘;所述托盘上设有至少一个凹槽,所述至少一个凹槽用于放置至少一个衬底。
  26. 如权利要求25所述的多腔体生长装置,其中,所述生长腔体包括旋转 轴。
  27. 如权利要求21所述的多腔体生长装置,其中,所述原位刻蚀腔体、所述碳化腔体和所述生长腔体中分别包括至少一个进气管道。
  28. 如权利要求22所述的多腔体生长装置,其中,所述真空腔体、所述原位刻蚀腔体、所述碳化腔体和所述生长腔体中分别包括至少一个抽气管道。
  29. 如权利要求21所述的多腔体生长装置,其中,所述原位刻蚀腔体、所述碳化腔体、所述生长腔体和所述缓冲腔体中分别设置加热体。
PCT/CN2021/085469 2020-05-06 2021-04-02 一种组合晶体制备方法和系统 WO2022205480A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023561027A JP2024513870A (ja) 2021-04-02 2021-04-02 複合結晶の製造方法及びシステム
PCT/CN2021/085469 WO2022205480A1 (zh) 2021-04-02 2021-04-02 一种组合晶体制备方法和系统
EP21934135.1A EP4289993A4 (en) 2021-04-02 2021-04-02 METHOD FOR PREPARING COMPOSITE CRYSTAL, AND SYSTEM
US17/451,647 US20220316093A1 (en) 2021-04-02 2021-10-21 Methods and systems for preparing composite crystals
US18/482,847 US20240110307A1 (en) 2020-05-06 2023-10-06 Methods and systems for producing composite crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085469 WO2022205480A1 (zh) 2021-04-02 2021-04-02 一种组合晶体制备方法和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/451,647 Continuation US20220316093A1 (en) 2020-05-06 2021-10-21 Methods and systems for preparing composite crystals

Publications (1)

Publication Number Publication Date
WO2022205480A1 true WO2022205480A1 (zh) 2022-10-06

Family

ID=83449922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085469 WO2022205480A1 (zh) 2020-05-06 2021-04-02 一种组合晶体制备方法和系统

Country Status (4)

Country Link
US (1) US20220316093A1 (zh)
EP (1) EP4289993A4 (zh)
JP (1) JP2024513870A (zh)
WO (1) WO2022205480A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158694A (ja) * 1999-11-29 2001-06-12 Toyota Central Res & Dev Lab Inc 炭化珪素単結晶の製造方法
DE112006001204T5 (de) * 2005-05-13 2008-03-06 Cree, Inc. Verfahren und Vorrichtung zum Erzeugen von Siliciumkarbidkristallen
CN101150055A (zh) * 2006-09-18 2008-03-26 中国科学院半导体研究所 用于MEMS器件的大面积3C-SiC薄膜的制备方法
CN203007478U (zh) * 2012-11-02 2013-06-19 东莞市中镓半导体科技有限公司 气相外延材料生长多腔分步式处理装置
CN108166056A (zh) * 2018-01-16 2018-06-15 李哲洋 一种能够有效降低碳化硅外延表面缺陷的生长方法
CN110592672A (zh) * 2018-12-14 2019-12-20 北京天科合达半导体股份有限公司 一种低基面位错密度的碳化硅晶体生长方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582720A (en) * 1982-09-20 1986-04-15 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for forming non-single-crystal layer
US5186718A (en) * 1989-05-19 1993-02-16 Applied Materials, Inc. Staged-vacuum wafer processing system and method
US5225032A (en) * 1991-08-09 1993-07-06 Allied-Signal Inc. Method of producing stoichiometric, epitaxial, monocrystalline films of silicon carbide at temperatures below 900 degrees centigrade
US5882807A (en) * 1995-12-26 1999-03-16 Asahi Glass Company, Ltd Jig for heat treatment and process for fabricating the jig
US5911834A (en) * 1996-11-18 1999-06-15 Applied Materials, Inc. Gas delivery system
US20010013313A1 (en) * 2000-02-10 2001-08-16 Motorola, Inc. Apparatus for fabricating semiconductor structures and method of forming the structures
US7091132B2 (en) * 2003-07-24 2006-08-15 Applied Materials, Inc. Ultrasonic assisted etch using corrosive liquids
US7811943B2 (en) * 2004-12-22 2010-10-12 Cree, Inc. Process for producing silicon carbide crystals having increased minority carrier lifetimes
US20100206229A1 (en) * 2008-05-30 2010-08-19 Alta Devices, Inc. Vapor deposition reactor system
US8207023B2 (en) * 2009-08-06 2012-06-26 Applied Materials, Inc. Methods of selectively depositing an epitaxial layer
JP4850960B2 (ja) * 2010-04-07 2012-01-11 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板の製造方法
WO2012012394A1 (en) * 2010-07-23 2012-01-26 First Solar, Inc In-line deposition system
CN102592976B (zh) * 2012-03-22 2014-04-02 西安电子科技大学 P型重掺杂碳化硅薄膜外延制备方法
JP2014125651A (ja) * 2012-12-26 2014-07-07 Kobe Steel Ltd インライン式プラズマcvd装置
US10533264B1 (en) * 2015-12-02 2020-01-14 General Graphene Corp. Apparatus for producing graphene and other 2D materials
US11450525B2 (en) * 2018-09-14 2022-09-20 Applied Materials, Inc. Selective aluminum oxide film deposition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158694A (ja) * 1999-11-29 2001-06-12 Toyota Central Res & Dev Lab Inc 炭化珪素単結晶の製造方法
DE112006001204T5 (de) * 2005-05-13 2008-03-06 Cree, Inc. Verfahren und Vorrichtung zum Erzeugen von Siliciumkarbidkristallen
CN101150055A (zh) * 2006-09-18 2008-03-26 中国科学院半导体研究所 用于MEMS器件的大面积3C-SiC薄膜的制备方法
CN203007478U (zh) * 2012-11-02 2013-06-19 东莞市中镓半导体科技有限公司 气相外延材料生长多腔分步式处理装置
CN108166056A (zh) * 2018-01-16 2018-06-15 李哲洋 一种能够有效降低碳化硅外延表面缺陷的生长方法
CN110592672A (zh) * 2018-12-14 2019-12-20 北京天科合达半导体股份有限公司 一种低基面位错密度的碳化硅晶体生长方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4289993A4 *

Also Published As

Publication number Publication date
EP4289993A1 (en) 2023-12-13
US20220316093A1 (en) 2022-10-06
JP2024513870A (ja) 2024-03-27
EP4289993A4 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
CN109545657B (zh) 一种改善碳化硅衬底上生长的氧化镓薄膜的方法
US20100178234A1 (en) Multilayer substrate and method for producing the same, diamond film and method for producing the same
CN111029246B (zh) 一种降低SiC外延层中三角形缺陷的方法
WO2013102360A1 (zh) 基于金属膜辅助退火和Cl2反应的石墨烯制备方法
CN114959888B (zh) 一种SiC外延薄膜的生产工艺
CN104867818B (zh) 一种减少碳化硅外延材料缺陷的方法
KR20100057585A (ko) 반도체장치의 제조방법, 막생성방법 및 기판처리장치
WO2022205480A1 (zh) 一种组合晶体制备方法和系统
CN113089089B (zh) 一种碳化硅晶体制备装置及其生长方法
WO2024139073A1 (zh) 外延晶圆生产设备、外延晶圆生产方法和装置
TWI449087B (zh) A method for growing a silicon carbide film on a (100) silicon substrate
CN113113290B (zh) 一种碳化硅晶体制备方法
JP2014027028A (ja) SiCエピタキシャル基板製造装置、SiCエピタキシャル基板の製造方法、SiCエピタキシャル基板
US20240110307A1 (en) Methods and systems for producing composite crystals
JP4916479B2 (ja) 炭化珪素エピタキシャル用基板の製造方法
CN110453280B (zh) 一种高质量晶圆级石墨烯单晶的制备方法
JP6927429B2 (ja) SiCエピタキシャル基板の製造方法
JP2009177202A (ja) 半導体装置の製造方法および基板処理装置
CN101985743A (zh) 采用pecvd制备碳化硅薄膜的方法
JP2000277432A (ja) 選択成長方法
JP2004537855A (ja) 薄いエピタキシャル半導体層の製造方法および装置
WO2024029217A1 (ja) 3C-SiC積層基板の製造方法、3C-SiC積層基板及び3C-SiC自立基板
CN108217636B (zh) 一种工艺气体辅助的石墨烯氢插入层生长方法
CN114524431B (zh) 一种在绝缘衬底上低温生长高质量石墨烯的工艺方法
CN106744864B (zh) 一种六边形双环石墨烯纳米结构的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021934135

Country of ref document: EP

Effective date: 20230905

WWE Wipo information: entry into national phase

Ref document number: 2023561027

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE