CN113089099B - 一种单晶多孔方形片状氮化钨纳米粒子的合成方法及应用 - Google Patents

一种单晶多孔方形片状氮化钨纳米粒子的合成方法及应用 Download PDF

Info

Publication number
CN113089099B
CN113089099B CN202110265599.1A CN202110265599A CN113089099B CN 113089099 B CN113089099 B CN 113089099B CN 202110265599 A CN202110265599 A CN 202110265599A CN 113089099 B CN113089099 B CN 113089099B
Authority
CN
China
Prior art keywords
tungsten nitride
porous square
synthesis method
temperature
hydrothermal reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110265599.1A
Other languages
English (en)
Other versions
CN113089099A (zh
Inventor
席广成
李俊芳
刘大民
李亚辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese Academy of Inspection and Quarantine CAIQ
Original Assignee
Chinese Academy of Inspection and Quarantine CAIQ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese Academy of Inspection and Quarantine CAIQ filed Critical Chinese Academy of Inspection and Quarantine CAIQ
Priority to CN202110265599.1A priority Critical patent/CN113089099B/zh
Publication of CN113089099A publication Critical patent/CN113089099A/zh
Application granted granted Critical
Publication of CN113089099B publication Critical patent/CN113089099B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及纳米材料合成领域,尤其涉及一种单晶多孔方形片状氮化钨纳米粒子的合成方法。本发明的方法包括如下步骤:1)以钨酸钠二水合物、草酸钠和盐酸的饱和水溶液为原料进行水热反应,得到水合氧化钨;反应过程中所述钨酸钠二水合物、草酸钠、水和盐酸的饱和水溶液的质量比为0.3~0.4:0.1~0.15:25~35:1;水热反应的温度为100~130℃;2)将步骤1)得到的水合氧化钨进行氮化处理,得到单晶多孔方形片状氮化钨纳米粒子。本发明采用水热法制备单晶多孔氮化钨,操作简便,所制得的单晶多孔方形片状氮化钨形貌规则、可控,具有良好的重复性和稳定性。

Description

一种单晶多孔方形片状氮化钨纳米粒子的合成方法及应用
技术领域
本发明涉及纳米材料合成领域,尤其涉及一种单晶多孔方形片状氮化钨纳米粒子的合成方法及应用。
背景技术
作为一种重要的分析技术,表面增强拉曼光谱除具有高灵敏的特点,还具有检测时间短和便于现场检测等优点,在化学物质痕量测定、生物组织成像、产品真伪鉴别以及催化反应过程监测等领域有着非常广泛的应用前景,是国际上研究的前沿热点之一。虽然近年来表面增强拉曼光谱技术发展迅猛,但仍然存在一些问题影响其大规模的实际检测应用。首先,目前最常见的拉曼增强基底是基于贵金属金、银等纳米材料制作而成。由于金基底的价格较高、制备复杂,在大批量的检测活动中存在使用成本高的问题;其次,尽管银的价格只有金的百分之一左右,但其容易被空气氧化,也容易和含硫化合物反应,从而很快失去拉曼增强效应,实用程度降低。因此,开发成本低、稳定性良好的表面增强拉曼光谱基底材料势在必行。
目前最常见的氮化钨合成方法有焙烧法、磁控溅射法、球磨法、气相沉积法等,常用作催化剂和电极材料。但是上述方法存在步骤冗长、所制备材料形貌不规则等问题。
发明内容
针对现有技术中存在的问题,本发明提供一种单晶多孔方形片状氮化钨纳米粒子的合成方法,包括如下步骤:
1)以钨酸钠二水合物、草酸钠和盐酸的饱和水溶液为原料进行水热反应,得到水合氧化钨;反应过程中所述钨酸钠二水合物、草酸钠、水和盐酸的饱和水溶液的质量比为0.3~0.4:0.1~0.15:25~35:1;水热反应的温度为100~130℃;
2)将步骤1)得到的水合氧化钨进行氮化处理,得到单晶多孔方形片状氮化钨纳米粒子。
优选的,所述步骤1)中,将钨酸钠二水合物和草酸钠加入到去离子水中,搅拌至完全溶解后加入盐酸的饱和水溶液,混匀后转入反应釜中,进行水热反应。
优选的,所述水热反应的时间为4~12h。
优选的,所述步骤2)中氮化处理为在氮气与氨气的混合气氛下于720~820℃的条件下焙烧。
优选的,所述步骤2)中,氮气与氨气的流速比为1~2:1。
进一步优选的,氨气的流速为8~12mL/min。
优选的,反应过程中升温速率为3~8℃/min,720~820℃下保持4~8h。
进一步优选的,焙烧的温度为750~800℃。
进一步优选的,所述步骤2)的焙烧在管式炉中进行。
优选的,所述步骤1)中水热反应完成后还包括冷却至室温、离心、洗涤和干燥的操作。
优选的,离心速度为8000~10000r/min,离心时间为3~7min,离心次数为3~7次;
优选的,用去离子水进行洗涤;
优选的,步骤1)中,样品于鼓风干燥箱中50~80℃保持6~12h干燥。
本发明的另一目的是保护本发明所述方法制备得到的单晶多孔方形片状氮化钨纳米粒子。
本发明的最后一个目的是保护本发明所述的单晶多孔方形片状氮化钨纳米粒子应用于制备表面增强拉曼光谱检测基底。
本发明所述盐酸的饱和水溶液中盐酸的质量分数约为36~37%。
本发明具有如下有益效果:
本发明采用水热法制备单晶多孔氮化钨纳米粒子,方法操控性强,所制得的单晶多孔方形片状氮化钨形貌规则、可控,具有良好的重复性和稳定性,且具有超疏水的表面、强烈的局域表面等离子体共振效应和杰出的表面增强拉曼光谱效应,可直接用于制备SERS基底,对消费品中有毒有害物质的检测具有重要意义。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中需要使用的附图作简单介绍,显而易见,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中所制备的单晶多孔方形片状氮化钨纳米粒子的XRD谱图;
图2为本发明实施例1中所制备的单晶多孔方形片状氮化钨纳米粒子的SEM照片;
图3为本发明实施例1中所制备的单晶多孔方形片状氮化钨纳米粒子对浓度10-10M的2,4-二氯苯酚的表面增强拉曼检测谱图;
图4为本发明实施例2中所制备的单晶多孔方形片状氮化钨纳米粒子的XRD谱图;
图5为本发明实施例2中所制备的单晶多孔方形片状氮化钨纳米粒子的SEM照片;
图6为本发明实施例2中所制备的单晶多孔方形片状氮化钨纳米粒子方形对浓度10-10M的2,4-二氯苯酚的表面增强拉曼检测谱图;
图7为本发明实施例3中所制备的单晶多孔方形片状氮化钨纳米粒子的XRD图谱;
图8为本发明实施例3中所制备的单晶多孔方形片状氮化钨纳米粒子的SEM照片;
图9为本发明实施例3中所制备的单晶多孔方形片状氮化钨纳米粒子对浓度10-8M的R6G的表面增强拉曼检测谱图;
图10为本发明实施例4中所制备的单晶多孔方形片状氮化钨纳米粒子的XRD图谱;
图11为本发明实施例4中所制备的单晶多孔方形片状氮化钨纳米粒子的SEM照片;
图12为本发明实施例4中所制备的单晶多孔方形片状氮化钨纳米粒子对浓度10-8M的R6G的表面增强拉曼检测谱图;
图13为本发明实施例5中所制备的单晶多孔方形片状氮化钨纳米粒子的XRD图谱;
图14为本发明实施例5中所制备的单晶多孔方形片状氮化钨纳米粒子的SEM照片;
图15为本发明实施例5中所制备的单晶多孔方形片状氮化钨纳米粒子对浓度10-8M的R6G的表面增强拉曼检测谱图;
图16为对比例1所制备的氮化钨纳米粒子的SEM照片;
图17为对比例2所制备的氮化钨纳米粒子的SEM照片;
图18为对比例3所制备的氮化钨纳米粒子的SEM照片。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。
本发明中,所用仪器等未注明生产厂商者,均为可通过正规渠道商购买得到的常规产品。所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径而得。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。
实施例1
本实施例提供单晶多孔方形片状氮化钨纳米粒子的制备方法:
1)将0.3g的钨酸钠二水合物和0.1g的草酸钠加入到25mL的去离子水中,300r/min的转速磁力搅拌1.5h,滴加1mL的盐酸的饱和水溶液,继续搅拌5min,转入100mL反应釜中于鼓风干燥箱中100℃保持12h。降至室温后转入离心管中,离心(离心速度8000r/min,离心时间为7min)、去离子水清洗,重复3次后将样品于鼓风干燥箱中50℃保持12h干燥。
2)将干燥后的样品置于管式炉中,通入氮气和氨气的混合气体(氨气流速为10mL/min,氮气流速为10mL/min),以4℃/min的升温速率升温至750℃,并保持7h,得到最终样品。
所获最终样品经XRD(图1)和SEM(图2)表征,可知最终产物为单晶多孔方形片状氮化钨纳米粒子,将其作为SERS基底(图3)对2,4-二氯苯酚的检测浓度值可达10-10M。
实施例2
本实施例提供单晶多孔方形片状氮化钨纳米粒子的制备方法:
1)将0.32g的钨酸钠二水合物和0.12g的草酸钠加入到27mL的去离子水中,400r/min的转速磁力搅拌1h,滴加1mL的盐酸的饱和水溶液,继续搅拌6min,转入100mL反应釜中于鼓风干燥箱中110℃保持10h。降至室温后转入离心管中,离心(离心速度9000r/min,离心时间为5min)、去离子水清洗,重复4次后将样品于鼓风干燥箱中60℃保持10h干燥。
2)将干燥后的样品置于管式炉中,通入氮气和氨气的混合气体(氨气流速为10mL/min,氮气流速为15mL/min),以5℃/min的升温速率升温至760℃,并保持6h,得到最终样品。
所获最终样品经XRD(图4)和SEM(图5)表征,可知最终产物为单晶多孔方形片状氮化钨纳米粒子,将其作为SERS基底(图6)对2,4-二氯苯酚的检测浓度值可达10-10M。
实施例3
本实施例提供单晶多孔方形片状氮化钨纳米粒子的制备方法:
1)将0.35g的钨酸钠二水合物和0.13g的草酸钠加入到30mL的去离子水中,500r/min的转速磁力搅拌0.5h,滴加1mL的盐酸的饱和水溶液,继续搅拌8min,转入100mL反应釜中于鼓风干燥箱中120℃保持8h。降至室温后转入离心管中,离心(离心速度10000r/min,离心时间为3min)、去离子水清洗,重复5次后将样品于鼓风干燥箱中70℃保持8h干燥。
2)将干燥后的样品置于管式炉中,通入氮气和氨气的混合气体(氨气流速为10mL/min,氮气流速为20mL/min),以6℃/min的升温速率升温至770℃,并保持5h,得到最终样品。
所获最终样品经XRD(图7)和SEM(图8)表征,可知最终产物为单晶多孔方形片状氮化钨纳米粒子,将其作为SERS基底(图9)对R6G分子的检测浓度值可达10-8M。
实施例4
本实施例提供单晶多孔方形片状氮化钨纳米粒子的制备方法:
1)将0.38g的钨酸钠二水合物和0.14g的草酸钠加入到33mL的去离子水中,400r/min的转速磁力搅拌1h,滴加1mL的盐酸的饱和水溶液,继续搅拌10min,转入100mL反应釜中于鼓风干燥箱中130℃保持4h。降至室温后转入离心管中离心(离心速度8000r/min,离心时间为6min)、去离子水清洗,重复6次后将样品于鼓风干燥箱中80℃保持6h干燥。
2)将干燥后的样品置于管式炉中,通入氮气和氨气的混合气体(氨气流速为10mL/min,氮气流速为10mL/min),以4℃/min的升温速率升温至780℃,并保持6h,得到最终样品。
所获最终样品经XRD(图10)和SEM(图11)表征,可知最终产物为单晶多孔方形片状氮化钨纳米粒子,将其作为SERS基底(图12)对R6G分子的检测浓度值可达10-8M。
实施例5
本实施例提供单晶多孔方形片状氮化钨纳米粒子的制备方法:
1)0.4g的钨酸钠二水合物和0.15g的草酸钠加入到35mL的去离子水中,300r/min的转速磁力搅拌1.5h,滴加1mL的盐酸的饱和水溶液,继续搅拌9min,转入100mL反应釜中于鼓风干燥箱中120℃保持6h。降至室温后转入离心管中,离心(离心速度9000r/min,离心时间为4min)、去离子水清洗,重复7次后将样品于鼓风干燥箱中60℃保持10h干燥。
2)将干燥后的样品置于管式炉中,通入氮气和氨气的混合气体(氨气流速为10mL/min,氮气流速为15mL/min),以5℃/min的升温速率升温至800℃,并保持5h,得到最终样品。
所获最终样品经XRD(图13)和SEM(图14)表征,可知最终产物为单晶多孔方形片状氮化钨纳米粒子,将其作为SERS基底(图15)对R6G分子的检测浓度值可达10-8M。
对比例1
本对比例与实施例1的区别在于,所述反应原料为六氯化钨和草酸钠,实验条件相同的情况下,无法生成方形片状氧化钨(如图16)。
对比例2
本对比例与实施例1的区别在于,水热反应的条件为150℃下反应24h,发现生成的物质为无定型态,无法形成多孔方形片状材料(如图17)。
对比例3
本对比例与实施例1的区别在于,反应投料量为钨酸钠二水合物、草酸钠、水、盐酸的饱和水溶液的质量比为0.5:0.15:20:1时,发现得到的产物是类球形颗粒,无法得到多孔片状材料(如图18)。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (9)

1.一种单晶多孔方形片状氮化钨纳米粒子的合成方法,其特征在于,包括如下步骤:
1)将钨酸钠二水合物和草酸钠加入到去离子水中,搅拌至完全溶解后加入盐酸的饱和水溶液,混匀后转入反应釜中,进行水热反应,得到水合氧化钨;反应过程中所述钨酸钠二水合物、草酸钠、水和盐酸的饱和水溶液的质量比为0.3~0.4: 0.1~0.15: 25~35:1;水热反应的温度为100~130 ℃;水热反应的时间为4~12 h;
2)将步骤1)得到的水合氧化钨进行氮化处理,所述氮化处理为在氮气与氨气的混合气氛下于720~820 ℃的条件下焙烧,得到单晶多孔方形片状氮化钨纳米粒子。
2.根据权利要求1所述的合成方法,其特征在于,所述步骤2)中,氮气与氨气的流速比为1~2:1。
3.根据权利要求1所述的合成方法,其特征在于,所述氨气的流速为8~12 mL/min。
4.根据权利要求1~3中任一项所述的合成方法,其特征在于,所述步骤2)焙烧过程中升温速率为3~8 ℃/min,720~820 ℃下保持4~8 h。
5.根据权利要求1~3中任一项所述的合成方法,其特征在于,所述步骤2)中的焙烧在管式炉中进行。
6.根据权利要求1所述的合成方法,其特征在于,所述步骤1)中水热反应完成后还包括冷却至室温、离心、洗涤和干燥的操作。
7.根据权利要求6所述的合成方法,其特征在于,离心速度为8000~10000 r/min,离心时间为3~7 min,离心次数为3~7次;
和/或,用去离子水进行洗涤,
和/或,步骤1)中,样品于鼓风干燥箱中50~80 ℃保持6~12 h干燥。
8.权利要求1~7中任一项所述方法制备得到单晶多孔方形片状氮化钨纳米粒子。
9.权利要求8所述的单晶多孔方形片状氮化钨纳米粒子应用于制备表面增强拉曼光谱检测基底。
CN202110265599.1A 2021-03-11 2021-03-11 一种单晶多孔方形片状氮化钨纳米粒子的合成方法及应用 Active CN113089099B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110265599.1A CN113089099B (zh) 2021-03-11 2021-03-11 一种单晶多孔方形片状氮化钨纳米粒子的合成方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110265599.1A CN113089099B (zh) 2021-03-11 2021-03-11 一种单晶多孔方形片状氮化钨纳米粒子的合成方法及应用

Publications (2)

Publication Number Publication Date
CN113089099A CN113089099A (zh) 2021-07-09
CN113089099B true CN113089099B (zh) 2022-04-15

Family

ID=76666897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110265599.1A Active CN113089099B (zh) 2021-03-11 2021-03-11 一种单晶多孔方形片状氮化钨纳米粒子的合成方法及应用

Country Status (1)

Country Link
CN (1) CN113089099B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114789991B (zh) * 2022-04-06 2023-12-15 江苏大学 一种二维层状氮化钨纳米粒子的合成方法及应用
CN115744840B (zh) * 2022-10-18 2024-02-09 南昌航空大学 一种碳纳米片封装原子级非晶态钨-氮团簇储钠材料及其形成方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107915212B (zh) * 2016-10-08 2020-12-22 中国科学院大连化学物理研究所 片层堆叠的毛虫状wn纳米材料及其制备方法
CN110228797B (zh) * 2018-07-25 2021-05-07 北京科技大学 一种低成本制备二维氮化钼或氮化钨纳米片的方法
CN112062106B (zh) * 2020-11-09 2021-11-09 江西善纳新材料科技有限公司 一种氮化钨纳米棒的制备方法

Also Published As

Publication number Publication date
CN113089099A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN113089099B (zh) 一种单晶多孔方形片状氮化钨纳米粒子的合成方法及应用
Hema et al. The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles
Chen et al. Hollow peanut-like m-BiVO 4: facile synthesis and solar-light-induced photocatalytic property
CN102071027B (zh) 一种水溶性稀土铽离子掺杂氟化铈纳米晶及其制备方法
CN101182197A (zh) 一种W-Sn纳米复合金属氧化物气敏材料及其制备方法
CN110044971A (zh) 一种气敏材料,制备方法及其在气敏传感器中的应用
CN113237840B (zh) 类过氧化物纳米酶及其制备方法、活性检测方法及传感器
CN108715457A (zh) 基于mof模板法可控合成氧化锌纳米结构气敏元件
CN115448377B (zh) 一种四氧化三钴修饰氧化铟复合材料及制备方法和应用、乙醇气敏检测元件及制备方法
CN113740390A (zh) 一种镍掺杂氧化铟纳米颗粒及其制备方法与应用
CN109678210B (zh) 用于高灵敏表面增强拉曼光谱检测的MoO2量子点合成方法
Shi et al. Facile synthesis of metal–organic framework-derived SiW 12@ Co 3 O 4 and its peroxidase-like activity in colorimetric assay
CN117571793A (zh) 一种复合金属氧化物基气敏传感器及其制备方法和应用
CN110220869B (zh) 一种检测水中汞离子的方法
CN109932351B (zh) 一种TiO2/ZnO半导体异质结SERS活性基底的制备方法
Moradi et al. Microwave-assisted synthesized and characterization of BiFeO3 (CTAB/PEG/PVA) nanocomposites by the auto-combustion method with efficient visible-light photocatalytic dye degradation
CN112938910B (zh) 一种薄片状氮化钨纳米材料的合成方法及应用
CN114573036B (zh) 一种多孔棒状Fe2O3/Ag、其制备方法及应用
CN109499582B (zh) 一种复合氧化物模拟酶材料及其制备方法和用途
CN115160590A (zh) 双金属金属有机框架表面增强拉曼光谱基底的制备方法
Krasil’nikov et al. Synthesis and photocatalytic properties of low-dimensional cobalt-doped zinc oxide with different crystal shapes
CN114397287A (zh) 一种基于PEI-rGO@Ag复合纳米材料的SERS基底及其制备方法和应用
CN104829425B (zh) 单分散梭形纳米片及其制备方法
CN113457621A (zh) C3n4-石墨烯复合材料的制备方法及其应用
CN114789991A (zh) 一种二维层状氮化钨纳米粒子的合成方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant