CN107915212B - 片层堆叠的毛虫状wn纳米材料及其制备方法 - Google Patents

片层堆叠的毛虫状wn纳米材料及其制备方法 Download PDF

Info

Publication number
CN107915212B
CN107915212B CN201610876669.6A CN201610876669A CN107915212B CN 107915212 B CN107915212 B CN 107915212B CN 201610876669 A CN201610876669 A CN 201610876669A CN 107915212 B CN107915212 B CN 107915212B
Authority
CN
China
Prior art keywords
caterpillar
stacked
nano
sheet
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610876669.6A
Other languages
English (en)
Other versions
CN107915212A (zh
Inventor
杨明辉
贺波
邹明明
曲奉东
熊峰强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201610876669.6A priority Critical patent/CN107915212B/zh
Publication of CN107915212A publication Critical patent/CN107915212A/zh
Application granted granted Critical
Publication of CN107915212B publication Critical patent/CN107915212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/062Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种具有片层堆叠的毛虫状纳米材料WN的制备方法,该制备方法采用溶剂热方法,以环己醇为溶剂,以六氯化钨为原料。将六氯化钨溶解在环己醇溶液中,搅拌至溶液呈现蓝色为止。在100℃~200℃下加热4~24小时后,将前驱体在400℃~600℃下进行2~6小时的煅烧。生成的WO3再进行氮化,再将WO3材料在650℃~750℃下氮化2~6小时。可获取具有片层堆叠的毛虫状WN纳米材料。本发明方法具有合成方法简便、反应温度低等优点。

Description

片层堆叠的毛虫状WN纳米材料及其制备方法
技术领域
本发明属于材料领域,具体涉及一种片层堆叠的毛虫状WN纳米材料的制备方法.
背景技术
过渡金属氮化物不仅具有过渡金属的特性,同时还具有离子晶体和共价固体的性质,从而表现出特殊的物理化学性质。例如它们在电子性质和磁性质上类似于金属,其电导、Hall因子、磁自旋和热容值都与金属相近;它们具有与离子晶体一样的简单的晶体结构,与共价固体一样的硬度和强度,具有硬度大、熔点高、抗腐蚀等优点。氮化钨包括WN和W2N广泛地应用于燃料电池和二级电池上。Choi报道了在相对较低温度下(675℃)通过二步氨解反应合成了纳米结构的六方最紧密堆积的WN,并且将其用于电容器方面和分解水制氢上。相对于氮化钨,氧化钨则主要应用在应用于光催化领域,WO3因其Eq=2.7eV,所以其在可见光领域具有潜在的光催化价值。WO3的制备方法有很多,如Aaron Dodd等以钨酸和氯化钠为原料,采用球磨法制备了粒径为72nm的WO3粉体。又如Sofian M.Kanan等采用微乳液法适量表面活性剂span-60和span-80溶解在200ml有机溶剂甲苯中,高速搅拌下把钨酸加入乳液中随后在搅拌72h,便制得了粒径为20nm的超微粉体。再如,Zhongkuan Luo等采用溶胶凝胶法把钨酸钠溶解在水中,通过离子交换树脂值得WO3溶胶,溶胶静置三天后变成了凝胶,凝胶经煅烧后得到WO3纳米粒子。
发明内容
本发明的目的就在于提供一种原料易得,工艺过程简单的片层堆叠的毛虫状WN纳米材料的制备方法。
本发明的目的是通过下述方案达到的。
1.将六氯化钨溶于环己醇中,浓度为0.004-0.005mol/L。
2.在100℃~200℃下溶剂热反应4~24h,后进行抽滤干燥。
3.在400℃~600℃下煅烧2~6h,得到黄色的WO3材料。
4.将具有片层堆叠的毛虫状WO3纳米材料在650~750℃下的氨气气体氮化2~6h。
本发明提供了一种片层堆叠的毛虫状WN纳米材料的方法,其特点是:
1.制备流程及设备简单。
2.所用氮源为工业氨气,相比氢气和氮气混合气体更为安全。
3.本发明的反应过程温度低,时间相对较短,容易控制。
4.本方法操作简便。
附图说明
图1为WO3·0.33H2O的XRD图。
图2为WO3的XRD图。
图3为WN的XRD图。
图4为WO3·0.33H2O的SEM图。
图5为WN的SEM图。
图6为实施例2的WN的SEM图。
具体实施方式
为了进一步说明本发明,列举以下实施实例。
实施例1
将0.1g六氯化钨溶于50ml环己醇,进行溶剂热反应,放入马弗炉中以5℃/min速率升温至200℃,保持5h后降温。冷至室温取出,经XRD表征,可得WO3·0.33H2O(图1)经SEM表征后,可以看到WO3·0.33H2O的外部形貌(如图4)。在将初步产物放置于管式炉中,以5℃/min升温至400℃,煅烧2h后降至室温取出,可得WO3(图2),再将其放入氮化炉中抽真空,通氨气,升温至700℃,氮化3小时,经XRD表征,可得到WN材料(图3),经SEM表征,可以看出WN纳米材料具有片层堆叠的毛虫状结构(图5)。
实施例2
将0.1g六氯化钨溶于50ml环己醇,进行溶剂热反应,放入马弗炉中以5℃/min速率升温至180℃,保持8h后降温。冷至室温取出,经XRD表征,可得WO3·0.33H2O。在将初步产物放置于管式炉中,以5℃/min升温至500℃,煅烧2h后降至室温取出,可得WO3,再将其放入氮化炉中抽真空,通氨气,升温至700℃,氮化3小时,经XRD表征,可得到WN材料(图6)。
实施例3
将0.09g六氯化钨溶于50ml环己醇,进行溶剂热反应,放入马弗炉中以5℃/min速率升温至160℃,保持10h后降温。冷至室温取出,经XRD表征,可得WO3·0.33H2O。在将初步产物放置于管式炉中,以5℃/min升温至600℃,煅烧2h后降至室温取出,可得WO3,再将其放入氮化炉中抽真空,通氨气,升温至650℃,氮化3小时,经XRD表征,可得到WN材料。
实施例4
将0.11g六氯化钨溶于50ml环己醇,进行溶剂热反应,放入马弗炉中以5℃/min速率升温至170℃,保持15h后降温。冷至室温取出,经XRD表征,可得WO3·0.33H2O。在将初步产物放置于管式炉中,以5℃/min升温至600℃,煅烧2h后降至室温取出,可得WO3,再将其放入氮化炉中抽真空,通氨气,升温至700℃,氮化4小时,经XRD表征,可得到WN材料。

Claims (7)

1.一种片层堆叠的毛虫状WN纳米材料的制备方法,其特征在于:WN纳米材料是由片层堆叠,形成貌似毛虫状的形貌,长度约为250 nm ~300 nm,直径约为60 nm ~80 nm;
包括以下步骤:
将钨源溶于环己醇溶剂中,进行水热反应,将生成的前驱体材料进行烧结,再将生成的WO3材料进行氮化处理,可制备片层堆叠的毛虫状WN纳米材料;水热的时间为4~24小时,所述的钨源为WCl6,控制溶剂中钨源浓度为0.004~0.005 mol/L,所生成的前驱体为WO3·0.33H2O
2.根据权利要求1所述的片层堆叠的毛虫状WN纳米材料的制备方法,其特征在于:所述的水热温度为100 °C ~200 °C。
3.根据权利要求1所述的片层堆叠的毛虫状WN纳米材料的制备方法,其特征在于:所述的烧结温度控制在400 °C ~600 °C。
4.根据权利要求1所述的片层堆叠的毛虫状WN纳米材料的制备方法,其特征在于:所述的烧结时间控制在2~6小时,产物为WO3
5.根据权利要求1所述的片层堆叠的毛虫状WN纳米材料的制备方法,其特征在于:所述的氮源为氨气。
6.根据权利要求1或5所述的片层堆叠的毛虫状WN纳米材料的制备方法,其特征在于:将WO3在氨气中进行氮化处理,所述的氮化温度为650 °C ~750 °C。
7.根据权利要求6所述的片层堆叠的毛虫状WN纳米材料的制备方法,其特征在于:所述的氮化时间为2~6小时。
CN201610876669.6A 2016-10-08 2016-10-08 片层堆叠的毛虫状wn纳米材料及其制备方法 Active CN107915212B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610876669.6A CN107915212B (zh) 2016-10-08 2016-10-08 片层堆叠的毛虫状wn纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610876669.6A CN107915212B (zh) 2016-10-08 2016-10-08 片层堆叠的毛虫状wn纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107915212A CN107915212A (zh) 2018-04-17
CN107915212B true CN107915212B (zh) 2020-12-22

Family

ID=61891697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610876669.6A Active CN107915212B (zh) 2016-10-08 2016-10-08 片层堆叠的毛虫状wn纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107915212B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086651B (zh) * 2020-09-21 2022-07-12 哈尔滨理工大学 WN-rGO纳米粒子的合成方法及其构建的微生物燃料电池
CN112062106B (zh) * 2020-11-09 2021-11-09 江西善纳新材料科技有限公司 一种氮化钨纳米棒的制备方法
CN113089099B (zh) * 2021-03-11 2022-04-15 中国检验检疫科学研究院 一种单晶多孔方形片状氮化钨纳米粒子的合成方法及应用
CN112938910B (zh) * 2021-04-16 2022-09-20 中国检验检疫科学研究院 一种薄片状氮化钨纳米材料的合成方法及应用
CN113755879B (zh) * 2021-09-06 2023-03-14 无锡隆基氢能科技有限公司 一种δ相氮化钨电极材料及其制备方法和应用
CN114789991B (zh) * 2022-04-06 2023-12-15 江苏大学 一种二维层状氮化钨纳米粒子的合成方法及应用
CN115583670A (zh) * 2022-09-23 2023-01-10 河南理工大学 一种海胆状或棒状氧化钨及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786610A (zh) * 2010-03-19 2010-07-28 郑州大学 一种氮化钨纳米粉体的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012386A (zh) * 2010-10-24 2011-04-13 天津大学 基于准定向三氧化钨纳米带的氮氧化物气体传感器元件的制备方法
CN102019429A (zh) * 2011-01-04 2011-04-20 中国科学院上海硅酸盐研究所 一种纳米钨粉体的制备方法
WO2013192220A1 (en) * 2012-06-18 2013-12-27 University Of Florida Research Foundation, Inc. Tungsten nitrido precursors for the cvd of tungsten nitride, carbonitride, and oxide films
KR101475621B1 (ko) * 2013-08-13 2014-12-22 숭실대학교산학협력단 텅스텐 카바이드 촉매의 제조방법
CN104743529B (zh) * 2015-03-23 2017-04-26 北京科技大学 一种高催化性能氮化钨的合成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786610A (zh) * 2010-03-19 2010-07-28 郑州大学 一种氮化钨纳米粉体的制备方法

Also Published As

Publication number Publication date
CN107915212A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
CN107915212B (zh) 片层堆叠的毛虫状wn纳米材料及其制备方法
Portehault et al. A general solution route toward metal boride nanocrystals
Wu et al. A NiCo/NiO–CoO x ultrathin layered catalyst with strong basic sites for high-performance H 2 generation from hydrous hydrazine
JP2016222501A (ja) 板状アルミナ粒子およびその製造方法
CN109650424B (zh) 一种无定型氧化铝八面体颗粒及其制备方法
Wei et al. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides
CN108339562B (zh) 一种铁离子掺杂的氮化碳纳米管的制备方法及所得产品
Liu et al. A new two-dimensional layered germanate with in situ embedded carbon dots for optical temperature sensing
Wang et al. Preparation of micrometer-sized α-Al2O3 platelets by thermal decomposition of AACH
Mehta et al. Synthesis and characterization of MgO nanocrystals using strong and weak bases
CN104528787B (zh) 一种制备细粒径氧化铝粉末的方法
CN108083316A (zh) 一种纳米稀土氧化物粉体的制备方法
Zhao et al. Size-controlled synthesis and morphology evolution of bismuth trifluoride nanocrystals via a novel solvent extraction route
Jia et al. Shape-controlled synthesis of CdCO 3 microcrystals and corresponding nanoporous CdO architectures
Pingping et al. Preparation of Nd2O3 nanorods in SDBS micelle system
CN104045108A (zh) 一种制备TiO粉体材料的方法
Wang et al. A surfactant free synthesis and formation mechanism of hollow Cu 2 O nanocubes using Cl− ions as the morphology regulator
JP2016028993A (ja) α−アルミナ微粒子およびその製造方法
Wang et al. Room-temperature synthesis of MnO 2· 3H 2 O ultrathin nanostructures and their morphological transformation to well-dispersed nanorods
CN101660204A (zh) 六方片氧化铝晶须材料的制备方法
TW201840514A (zh) 製備經鎳鋁尖晶石包覆之氧化鋁的方法
Priyanka et al. Sol–gel synthesis and characterization of TiO2 nanoparticles
US10106433B2 (en) Metal oxide nanoparticle material
CN104261411B (zh) 一种类石墨烯状硅化镁纳米片的制备方法
Ghoderao et al. Solution assisted growth mechanism and characterization of ZnS microspheres

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant