CN113066865A - 降低开关损耗的半导体器件及其制作方法 - Google Patents

降低开关损耗的半导体器件及其制作方法 Download PDF

Info

Publication number
CN113066865A
CN113066865A CN202110274169.6A CN202110274169A CN113066865A CN 113066865 A CN113066865 A CN 113066865A CN 202110274169 A CN202110274169 A CN 202110274169A CN 113066865 A CN113066865 A CN 113066865A
Authority
CN
China
Prior art keywords
type
grid
conductive type
metal
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110274169.6A
Other languages
English (en)
Other versions
CN113066865B (zh
Inventor
朱袁正
黄薛佺
杨卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi NCE Power Co Ltd
Original Assignee
Wuxi NCE Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi NCE Power Co Ltd filed Critical Wuxi NCE Power Co Ltd
Priority to CN202110274169.6A priority Critical patent/CN113066865B/zh
Publication of CN113066865A publication Critical patent/CN113066865A/zh
Priority to PCT/CN2021/125973 priority patent/WO2022193656A1/zh
Priority to US18/023,752 priority patent/US11837630B1/en
Application granted granted Critical
Publication of CN113066865B publication Critical patent/CN113066865B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Plasma & Fusion (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种降低开关损耗的半导体器件,包括漏极金属,在漏极金属上设有第一导电类型硅衬底,在第一导电类型硅衬底上设有第一导电类型外延层,在第一导电类型外延层内设有互相间隔的第一导电类型柱与第二导电类型柱,在第一导电类型柱和第二导电类型柱的表面设有第二导电类型体区,在第二导电类型体区内设有重掺杂第一导电类型源区和第二导电类型源区,第一导电类型源区和衬底金属电连接,第二导电类型源区和源极金属电连接,在第一导电类型柱内设有栅极沟槽;栅极沟槽内部设有分离的栅极多晶硅,第一栅极多晶硅位于沟槽表面,第二栅极多晶硅位于沟槽底部,第一栅极多晶硅和第二栅极多晶硅之间被氧化层隔离,第一栅极多晶硅和第二栅极多晶硅绝缘。器件开启、关断速度快。

Description

降低开关损耗的半导体器件及其制作方法
技术领域
本发明涉及一种半导体器件及其制作方法,尤其是一种能够减少栅极电荷,提高开关速度,降低开关损耗的功率半导体器件及其制造方法。
背景技术
MOSFET器件作为新一代功率半导体器件,在新能源、汽车电子、电力电子等系统应用中具有广泛应用。MOSFET器件在工作过程中,其功率损耗主要由导通损耗和开关损耗两部分组成,特别在高频条件下,MOSFET器件的总损耗主要由开关损耗决定。
MOSFET器件的输入电容Ciss对于器件的开关损耗具有较大影响,而器件的输入电容Ciss=Cgs+Cgd,其中,Cgs主要由多晶硅和第二导电类型体区的交叠区域面积决定,而Cgd主要由多晶硅和第一导电类型柱的交叠区域面积决定。因此,当多晶硅和第二导电类型体区及第一导电类型柱的交叠面积增加时,Ciss增加,器件的开启时间和关断时间增加,器件的开关损耗也会增加,降低系统的效率。
发明内容
本发明的目的是克服现有技术中存在的栅极电荷过大,器件开关损耗过大的问题,提供一种降低开关损耗的半导体器件及其制造方法,该器件制造方法与现有半导体工艺兼容。为实现以上技术目的,本发明采用的技术方案是:
第一方面,本发明的实施例提出一种降低开关损耗的半导体器件,包括漏极金属,在所述漏极金属上设有第一导电类型硅衬底,所述漏极金属与第一导电类型硅衬底的接触面为下表面,在所述第一导电类型硅衬底上设有第一导电类型外延层,在第一导电类型外延层内设有互相间隔的第一导电类型柱与第二导电类型柱,在所述第一导电类型柱和所述第二导电类型柱的表面设有第二导电类型体区,在所述第二导电类型体区内设有重掺杂第一导电类型源区和第二导电类型源区,所述第一导电类型源区和衬底金属电连接,所述第二导电类型源区和源极金属电连接,在所述第一导电类型柱内设有栅极沟槽,在栅极沟槽上方被绝缘介质层覆盖;
所述栅极沟槽内部设有分离的栅极多晶硅,第一栅极多晶硅位于沟槽表面,第二栅极多晶硅位于沟槽底部,第一栅极多晶硅和第二栅极多晶硅之间被氧化层隔离,第一栅极多晶硅和第二栅极多晶硅绝缘。
进一步地,在所述第二导电类型柱中设有高浓度的第二导电类型埋层。
进一步地,对于N型功率半导体器件,所述第一导电类型为N型,所述第二导电类型为P型;对于P型功率半导体器件,所述第一导电类型为P型,所述第二导电类型为N型。
进一步地,所述栅极沟槽的开口宽度为0.3μm~2μm。
进一步地,栅极沟槽的深度为0.5μm~5μm。
进一步地,第二栅极多晶硅的长度为0.3μm~4μm。
第二方面,本发明的实施例提出一种降低开关损耗的半导体器件的制作方法,其特征在于,包括如下步骤:
步骤一:选取第一导电类型硅衬底材料并外延生长第一导电类型外延层;
步骤二:在所述第一导电类型外延层上选择性刻蚀出深沟槽;
步骤三:淀积第二导电类型硅,将上述深沟槽填满,在第一导电类型外延层中形成互相间隔的第一导电类型柱与第二导电类型柱,然后去除上表面上方的结构;
步骤四:在所述第一导电类型外延层上选择性刻蚀出栅极沟槽,在所述栅极沟槽中生长氧化层,淀积多晶硅后并回刻至一定深度,形成第二栅极多晶硅,生长第一栅极多晶硅和第二栅极多晶硅之间的氧化层,再次淀积多晶硅形成第一栅极多晶硅,最后去除上表面上方的结构;
步骤五:利用掩膜窗口,借助高能离子注入的方式,在第二导电类型柱中注入高浓度的第二导电类型的杂质,激活后形成第二导电类型埋层;
步骤六:在上表面注入第二导电类型杂质并热退火,形成第二导电类型体区;
步骤七:利用掩膜窗口在第二导电类型体区中注入第二导电类型的杂质,激活后形成第二导电类型源区;
步骤八:利用掩膜窗口在栅极沟槽两侧注入第一导电类型的杂质,激活后形成第一导电类型源区;
步骤九:在正面淀积绝缘介质层,然后在绝缘介质层上选择性刻蚀出通孔,接着淀积金属并选择性刻蚀金属,形成源极金属、衬底金属、漏极金属、第一栅极金属和第二栅极金属。
第三方面,本发明的实施例提出一种降低开关损耗的半导体器件的制作方法,其特征在于,包括如下步骤:
步骤一:选取第一导电类型硅衬底材料并外延生长第一导电类型外延层;
步骤二:利用掩膜窗口在第一导电类型外延层表面分别注入第二导电类型的低扩散系数杂质和高扩散系数杂质,形成第二导电类型柱和第二导电类型埋层;
步骤三:在上表面进行第二次外延生长,继续生长第一导电类型外延层,第二导电类型埋层在外延层生长过程中扩散较少,而第二导电类型柱在外延层生长过程中扩散较多;
步骤四:利用步骤二中的掩膜窗口,在上表面注入第二导电类型的高扩散系数杂质,经过热退火激活后,杂质进一步扩散进而与步骤三中的第二导电类型柱衔接并形成最终的第二导电类型柱;
步骤五:在所述第一导电类型外延层上选择性刻蚀出栅极沟槽,在所述栅极沟槽中生长氧化层,淀积多晶硅后并回刻至一定深度,形成第二栅极多晶硅,生长第一栅极多晶硅和第二栅极多晶硅之间的氧化层,再次淀积多晶硅形成第一栅极多晶硅,最后去除上表面上方的结构;
步骤六:在上表面注入第二导电类型杂质并热退火,形成第二导电类型体区;
步骤七:利用掩膜窗口在第二导电类型体区中注入第二导电类型的杂质,激活后形成第二导电类型源区;
步骤八:利用掩膜窗口在栅极沟槽两侧注入第一导电类型的杂质,激活后形成第一导电类型源区;
步骤九:在正面淀积绝缘介质层,然后在绝缘介质层上选择性刻蚀出通孔,接着淀积金属并选择性刻蚀金属,形成源极金属、衬底金属、漏极金属、第一栅极金属和第二栅极金属。
与现有技术相比,本发明具有如下优点:
1)如附图3所示为传统的沟槽型超结功率MOSFET,器件只存在第一栅极多晶硅,第一栅极多晶硅底部与第一导电类型柱交叠,因此会产生较大的Cgd,即米勒电容,由米勒电容引起的米勒效应电荷会在MOSFET器件的栅压上升期间产生平台电压,进而影响器件的开启时间及开启损耗。对于本发明所提出的一种降低开关损耗的半导体器件而言,如图1所示,在第一栅极多晶硅下方还设有与之绝缘的第二栅极多晶硅,因此第一栅极多晶硅与第一导电类型柱的交叠区域较小,进而其Cgd也就较小,在器件开关时其栅平台电压维持的时间也就较短,甚至能消除栅平台电压,本发明结构的开启波形如图11所示,因此,本发明结构的开启速度明显优于传统结构的开启速度,而开启损耗则是器件开启过程中漏极电压和漏极电流对于时间的积分,当开启速度更快,器件开启损耗自然也就得到降低。
2)对于传统的沟槽型超结功率MOSFET,器件在耐压时仅通过第二导电类型体区及第二导电类型柱,与第一导电类型柱耗尽来承担漏极高压。本发明结构在工作时,第二栅极多晶硅和衬底金属接地或接负压,器件的第二导电类型体区、第二导电类型柱和第二栅极多晶硅会同时对第一导电类型柱即器件漂移区进行耗尽来将导电通道夹断并承担漏端高压,因此本发明结构在关断时的耗尽效率优于传统结构,进而带来了关断速度的提升与关断损耗的降低。本发明结构与传统结构的关断波形对比如图12所示,由图可知,本发明结构的关断速度会比传统结构的关断速度更快。
附图说明
附图1为本发明实施例一的剖视结构示意图。
附图2为本发明实施例二的剖视结构示意图。
附图3为传统的沟槽型超结功率MOSFET的剖视结构示意图。
附图4为形成外延层的剖视结构示意图。
附图5为形成深沟槽的剖视结构示意图。
附图6为形成第二导电类型柱的剖视结构示意图。
附图7为形成第一栅极多晶硅和第二栅极多晶硅的剖视结构示意图。
附图8为形成第二导电类型埋层的剖视结构示意图。
附图9为形成第二导电类型体区的剖视结构示意图。
附图10为形成第二导电类型源区的剖视结构示意图。
附图11为形成第一导电类型源区的剖视结构示意图。
附图12为实施例四中注入第二类型的低扩散系数杂质和高扩散系数杂质的剖视结构示意图。
附图13为实施例四中生长第二次外延层的剖视结构示意图。
附图14为实施例四中形成最终的第二导电类型柱的剖视结构示意图。
附图15为实施例四中形成第一栅极多晶硅和第二栅极多晶硅的剖视结构示意图。
附图16为本发明结构与传统结构进行阻性开关测试时的开启波形对比图。
附图17为本发明结构与传统结构进行阻性开关测试时的关断波形对比图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互结合。下面将参考附图并结合实施例来详细说明本发明。
为了使本领域技术人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包括,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
作为本发明的第一实施例,提供了一种以N型沟槽型超结功率半导体器件为例的一种降低开关损耗的半导体器件,图1是根据本发明实施例提供的结构示意图,如图1所示,包括:
漏极金属01,在所述漏极金属01上设有N型硅衬底02,所述漏极金属01与N型硅衬底02的接触面为下表面102,在所述N型硅衬底02上设有N型外延层3,在N型外延层3内设有互相间隔的N型柱03与P型柱04,在所述P型柱中设有高浓度的P型埋层15,在所述N型柱03和所述P型柱04的表面设有P型体区08,在所述P型体区08内设有重掺杂N型源区10和P型源区11,所述N型源区10和衬底金属12电连接,所述P型源区11和源极金属14电连接,在所述N型柱03内设有栅极沟槽06,在栅极沟槽上方被绝缘介质层9覆盖;
所述栅极沟槽06内部设有分离的栅极多晶硅,第一栅极多晶硅07位于沟槽表面,第二栅极多晶硅05位于沟槽底部,第一栅极多晶硅07和第二栅极多晶硅05之间被氧化层13隔离,第一栅极多晶硅07和第二栅极多晶硅05绝缘;
优选地,所述栅极沟槽06的开口宽度为0.3μm~2μm,栅极沟槽06的深度为0.5μm~5μm,第二栅极多晶硅05的长度为0.3μm~4μm;
所述半导体器件是超结MOSFET。
作为本发明的第二实施例,如图2所示,提供了一种以N型沟槽型超结功率半导体器件为例的一种降低开关损耗的半导体器件,包括漏极金属01,在所述漏极金属01上设有N型硅衬底02,所述漏极金属01与N型硅衬底02的接触面为下表面102,在所述N型硅衬底02上设有N型外延层3,在N型外延层3内设有互相间隔的N型柱03与P型柱04,在所述N型柱03和P型柱04的表面设有P型体区08,在所述P型体区08内设有重掺杂N型源区10和P型源区11,所述N型源区10和衬底金属12电连接,所述P型源区11和源极金属14电连接,在所述N型柱03内设有栅极沟槽06,在栅极沟槽上方被绝缘介质层9覆盖;
所述栅极沟槽06内部设有分离的栅极多晶硅,第一栅极多晶硅07位于沟槽表面,第二栅极多晶硅05位于沟槽底部,第一栅极多晶硅07和第二栅极多晶硅05之间被氧化层13隔离,第一栅极多晶硅07和第二栅极多晶硅05绝缘;
优选地,所述栅极沟槽06的开口宽度为0.3μm~2μm,栅极沟槽06的深度为0.5μm~5μm,第二栅极多晶硅05的长度为0.3μm~4μm;
所述半导体器件是超结MOSFET。
作为本发明的第三实施例,提供了以N型沟槽型超结功率半导体器件为例的一种降低开关损耗的半导体器件的制作方法,包括以下步骤:
如附图4所示,步骤一:选取N型硅衬底02材料并外延生长N型外延层3;
如附图5所示,步骤二:在所述N型外延层3上选择性刻蚀出深沟槽401;
如附图6所示,步骤三:淀积P型硅,将上述深沟槽401填满,在N型外延层3中形成互相间隔的N型柱03与P型柱04,然后去除上表面101上方的结构;
如附图7所示,步骤四:在所述N型外延层3上选择性刻蚀出栅极沟槽06,在所述栅极沟槽06中生长氧化层,淀积多晶硅后并回刻至一定深度,形成第二栅极多晶硅05,生长第一栅极多晶硅07和第二栅极多晶硅05之间的氧化层13,再次淀积多晶硅形成第一栅极多晶硅07,最后去除上表面101上方的结构;
如附图8所示,步骤五:利用掩膜窗口,借助高能离子注入的方式,在P型柱04中注入高浓度的P型杂质,激活后形成P型埋层15;
如附图9所示,步骤六:在上表面101注入P型杂质并热退火,形成P型体区08;
如附图10所示,步骤七:利用掩膜窗口在P型体区中注入P型杂质,激活后形成P型源区11;
如附图11所示,步骤八:利用掩膜窗口在栅极沟槽两侧注入N型杂质,激活后形成N型源区10;
如附图1所示,步骤九:在正面淀积绝缘介质层09,然后在绝缘介质层09上选择性刻蚀出通孔,接着淀积金属并选择性刻蚀金属,形成源极金属14、衬底金属12、漏极金属01、第一栅极金属和第二栅极金属。其中第一栅极金属和第二栅极金属在图中未示出,分别与第一栅极多晶硅07和第二栅极多晶硅05连接。
作为本发明的第四实施例,提供了以N型沟槽型超结功率半导体器件为例的一种降低开关损耗的半导体器件的制作方法,包括以下步骤:
如附图4所示,步骤一:选取N型硅衬底02材料并外延生长N型外延层3;
如附图12所示,步骤二:利用掩膜窗口在N型外延层3表面分别注入P型的低扩散系数杂质和高扩散系数杂质,形成P型柱04和P型埋层15;
如附图13所示,步骤三:在上表面101进行第二次外延生长,继续生长N型外延层3,P型埋层15在外延层生长过程中扩散较少,而P型柱04在外延层生长过程中扩散较多;
如附图14所示,步骤四:利用步骤二中的掩膜窗口,在上表面101注入P型的高扩散系数杂质,经过热退火激活后,杂质进一步扩散进而与步骤三中的P型柱衔接并形成最终的P型柱04;
如附图15所示,步骤五:在所述N型外延层3上选择性刻蚀出栅极沟槽06,在所述栅极沟槽06中生长氧化层,淀积多晶硅后并回刻至一定深度,形成第二栅极多晶硅05,生长第一栅极多晶硅07和第二栅极多晶硅05之间的氧化层13,再次淀积多晶硅形成第一栅极多晶硅07,最后去除上表面101上方的结构;
如附图10所示,步骤六:在上表面101注入P型杂质并热退火,形成P型体区08;
如附图11所示,步骤七:利用掩膜窗口在P型体区08中注入P型的杂质,激活后形成P型源区11;
如附图12所示,步骤八:利用掩膜窗口在栅极沟槽06两侧注入N型的杂质,激活后形成N型源区10;
如附图1所示,步骤九:在正面淀积绝缘介质层09,然后在绝缘介质层09上选择性刻蚀出通孔,接着淀积金属并选择性刻蚀金属,形成源极金属14、衬底金属12、漏极金属01、第一栅极金属和第二栅极金属。其中第一栅极金属和第二栅极金属在图中未示出,分别与第一栅极多晶硅07和第二栅极多晶硅05连接。
本发明的工作原理:
在器件工作过程中,衬底金属12、源极金属14和第二栅极多晶硅05接地或者接负压。在器件开启时,第一栅极多晶硅07上的电压逐渐升高,本发明结构的第一栅极多晶硅与N型柱具有较少的交叠面积,其Cgs也就较小,在栅平台电压器件,栅电流用于Cgs充电,当Cgs较小时,充电时间也就更快,最终使得器件的开启时间更短,降低了器件的开启损耗。在器件关断时,第一栅极多晶硅07上的电压逐渐降低,得益于第二栅极多晶硅05对N型柱即漂移区的辅助耗尽和Cgs的减小,本发明器件能比传统器件更快关断,为了增强第二栅极多晶硅05对N型柱的辅助耗尽效果,第二栅极多晶硅05和衬底金属可以接负压。总而言之,本发明器件更快的关断速度以及更短的开启时间有利于器件开关损耗的降低。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

1.一种降低开关损耗的半导体器件,包括漏极金属(01),在所述漏极金属(01)上设有第一导电类型硅衬底(02),所述漏极金属(01)与第一导电类型硅衬底(02)的接触面为下表面(102),在所述第一导电类型硅衬底(02)上设有第一导电类型外延层(3),在第一导电类型外延层(3)内设有互相间隔的第一导电类型柱(03)与第二导电类型柱(04),在所述第一导电类型柱(03)和所述第二导电类型柱(04)的表面设有第二导电类型体区(08),在所述第二导电类型体区(08)内设有重掺杂第一导电类型源区(10)和第二导电类型源区(11),所述第一导电类型源区(10)和衬底金属(12)电连接,所述第二导电类型源区(11)和源极金属(14)电连接,在所述第一导电类型柱(03)内设有栅极沟槽(06),在栅极沟槽上方被绝缘介质层(09)覆盖,其特征在于:
所述栅极沟槽内部设有分离的栅极多晶硅,第一栅极多晶硅(07)位于沟槽表面,第二栅极多晶硅(05)位于沟槽底部,第一栅极多晶硅(07)和第二栅极多晶硅(05)之间被氧化层(13)隔离,第一栅极多晶硅(07)和第二栅极多晶硅(05)绝缘。
2.如权利要求1所述的降低开关损耗的半导体器件,其特征在于,
在所述第二导电类型柱(04)中设有高浓度的第二导电类型埋层(15)。
3.如权利要求1所述的降低开关损耗的半导体器件,其特征在于,
对于N型功率半导体器件,所述第一导电类型为N型,所述第二导电类型为P型;对于P型功率半导体器件,所述第一导电类型为P型,所述第二导电类型为N型。
4.如权利要求1所述的降低开关损耗的半导体器件,其特征在于,
所述栅极沟槽(06)的开口宽度为0.3μm~2μm。
5.如权利要求1所述的降低开关损耗的半导体器件,其特征在于,
栅极沟槽(06)的深度为0.5μm~5μm。
6.如权利要求1所述的降低开关损耗的半导体器件,其特征在于,
第二栅极多晶硅(05)的长度为0.3μm~4μm。
7.一种降低开关损耗的半导体器件的制作方法,其特征在于,包括如下步骤:
步骤一:选取第一导电类型硅衬底(02)材料并外延生长第一导电类型外延层(3);
步骤二:在所述第一导电类型外延层(3)上选择性刻蚀出深沟槽(401);
步骤三:淀积第二导电类型硅,将上述深沟槽(401)填满,在第一导电类型外延层(3)中形成互相间隔的第一导电类型柱(03)与第二导电类型柱(04),然后去除上表面(101)上方的结构;
步骤四:在所述第一导电类型外延层(3)上选择性刻蚀出栅极沟槽(06),在所述栅极沟槽(06)中生长氧化层,淀积多晶硅后并回刻至一定深度,形成第二栅极多晶硅(05),生长第一栅极多晶硅(07)和第二栅极多晶硅(05)之间的氧化层(13),再次淀积多晶硅形成第一栅极多晶硅(07),最后去除上表面(101)上方的结构;
步骤五:利用掩膜窗口,借助高能离子注入的方式,在第二导电类型柱(04)中注入高浓度的第二导电类型的杂质,激活后形成第二导电类型埋层(15);
步骤六:在上表面(101)注入第二导电类型杂质并热退火,形成第二导电类型体区(08);
步骤七:利用掩膜窗口在第二导电类型体区(08)中注入第二导电类型的杂质,激活后形成第二导电类型源区(11);
步骤八:利用掩膜窗口在栅极沟槽(06)两侧注入第一导电类型的杂质,激活后形成第一导电类型源区(10);
步骤九:在正面淀积绝缘介质层(09),然后在绝缘介质层(09)上选择性刻蚀出通孔,接着淀积金属并选择性刻蚀金属,形成源极金属(12)、衬底金属(12)、漏极金属(01)、第一栅极金属和第二栅极金属。
8.一种降低开关损耗的半导体器件的制作方法,其特征在于,包括如下步骤:
步骤一:选取第一导电类型硅衬底(02)材料并外延生长第一导电类型外延层(3);
步骤二:利用掩膜窗口在第一导电类型外延层(3)表面分别注入第二导电类型的低扩散系数杂质和高扩散系数杂质,形成第二导电类型柱(04)和第二导电类型埋层(15);
步骤三:在上表面(101)进行第二次外延生长,继续生长第一导电类型外延层(3),第二导电类型埋层(15)在外延层生长过程中扩散较少,而第二导电类型柱(04)在外延层生长过程中扩散较多;
步骤四:利用步骤二中的掩膜窗口,在上表面(101)注入第二导电类型的高扩散系数杂质,经过热退火激活后,杂质进一步扩散进而与步骤三中的第二导电类型柱衔接并形成最终的第二导电类型柱(04);
步骤五:在所述第一导电类型外延层(3)上选择性刻蚀出栅极沟槽(06),在所述栅极沟槽(06)中生长氧化层,淀积多晶硅后并回刻至一定深度,形成第二栅极多晶硅(05),生长第一栅极多晶硅(07)和第二栅极多晶硅(05)之间的氧化层(13),再次淀积多晶硅形成第一栅极多晶硅(07),最后去除上表面(101)上方的结构;
步骤六:在上表面(101)注入第二导电类型杂质并热退火,形成第二导电类型体区(08);
步骤七:利用掩膜窗口在第二导电类型体区(08)中注入第二导电类型的杂质,激活后形成第二导电类型源区(11);
步骤八:利用掩膜窗口在栅极沟槽(06)两侧注入第一导电类型的杂质,激活后形成第一导电类型源区(10);
步骤九:在正面淀积绝缘介质层(09),然后在绝缘介质层(09)上选择性刻蚀出通孔,接着淀积金属并选择性刻蚀金属,形成源极金属(12)、衬底金属(12)、漏极金属(01)、第一栅极金属和第二栅极金属。
CN202110274169.6A 2021-03-15 2021-03-15 降低开关损耗的半导体器件及其制作方法 Active CN113066865B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110274169.6A CN113066865B (zh) 2021-03-15 2021-03-15 降低开关损耗的半导体器件及其制作方法
PCT/CN2021/125973 WO2022193656A1 (zh) 2021-03-15 2021-10-25 降低开关损耗的半导体器件及其制作方法
US18/023,752 US11837630B1 (en) 2021-03-15 2021-10-25 Semiconductor device for reducing switching loss and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110274169.6A CN113066865B (zh) 2021-03-15 2021-03-15 降低开关损耗的半导体器件及其制作方法

Publications (2)

Publication Number Publication Date
CN113066865A true CN113066865A (zh) 2021-07-02
CN113066865B CN113066865B (zh) 2022-10-28

Family

ID=76560595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110274169.6A Active CN113066865B (zh) 2021-03-15 2021-03-15 降低开关损耗的半导体器件及其制作方法

Country Status (3)

Country Link
US (1) US11837630B1 (zh)
CN (1) CN113066865B (zh)
WO (1) WO2022193656A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582966A (zh) * 2022-05-09 2022-06-03 南京微盟电子有限公司 一种可调安全工作区的功率器件及其制作方法
WO2022193656A1 (zh) * 2021-03-15 2022-09-22 无锡新洁能股份有限公司 降低开关损耗的半导体器件及其制作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020185705A1 (en) * 2001-06-11 2002-12-12 Wataru Saitoh Power semiconductor device having RESURF layer
CN101180737A (zh) * 2003-12-30 2008-05-14 飞兆半导体公司 功率半导体器件及制造方法
US7550803B1 (en) * 2008-04-15 2009-06-23 United Microelectronics Corp. Vertical double-diffusion metal-oxide-semiconductor transistor device
CN101719495A (zh) * 2008-09-30 2010-06-02 英飞凌科技奥地利有限公司 半导体器件及其制造方法
CN102332470A (zh) * 2010-07-12 2012-01-25 株式会社电装 半导体器件及其制造方法
US20170338302A1 (en) * 2016-05-23 2017-11-23 Infineon Technologies Ag Power Semiconductor Device with Charge Balance Design
US20180315846A1 (en) * 2017-04-26 2018-11-01 Alpha And Omega Semiconductor (Cayman) Ltd. Scalable sgt structure with improved fom
CN110690272A (zh) * 2019-11-07 2020-01-14 苏州凤凰芯电子科技有限公司 一种结合屏蔽栅的sj mos器件结构及其制作方法
CN110739346A (zh) * 2019-11-07 2020-01-31 苏州凤凰芯电子科技有限公司 具有屏蔽栅的sj mos器件终端结构及其制作方法
CN112310194A (zh) * 2019-07-31 2021-02-02 意法半导体股份有限公司 电荷平衡功率器件以及用于制造电荷平衡功率器件的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715604B2 (ja) * 2012-09-12 2015-05-07 株式会社東芝 電力用半導体素子
US9105713B2 (en) * 2012-11-09 2015-08-11 Infineon Technologies Austria Ag Semiconductor device with metal-filled groove in polysilicon gate electrode
JP2015133380A (ja) * 2014-01-10 2015-07-23 株式会社東芝 半導体装置
CN107068763A (zh) * 2017-03-31 2017-08-18 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽功率器件及其制造方法
CN108831927A (zh) * 2018-06-12 2018-11-16 北京世港晟华科技有限公司 超结金属氧化物半导体场效应晶体管及其制造方法
CN111415867A (zh) * 2020-02-18 2020-07-14 捷捷微电(上海)科技有限公司 一种半导体功率器件结构及其制造方法
CN111180521A (zh) * 2020-03-10 2020-05-19 无锡新洁能股份有限公司 一种降低开关损耗的半导体结构及制造方法
CN113066865B (zh) * 2021-03-15 2022-10-28 无锡新洁能股份有限公司 降低开关损耗的半导体器件及其制作方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020185705A1 (en) * 2001-06-11 2002-12-12 Wataru Saitoh Power semiconductor device having RESURF layer
CN101180737A (zh) * 2003-12-30 2008-05-14 飞兆半导体公司 功率半导体器件及制造方法
US7550803B1 (en) * 2008-04-15 2009-06-23 United Microelectronics Corp. Vertical double-diffusion metal-oxide-semiconductor transistor device
CN101719495A (zh) * 2008-09-30 2010-06-02 英飞凌科技奥地利有限公司 半导体器件及其制造方法
CN102332470A (zh) * 2010-07-12 2012-01-25 株式会社电装 半导体器件及其制造方法
US20170338302A1 (en) * 2016-05-23 2017-11-23 Infineon Technologies Ag Power Semiconductor Device with Charge Balance Design
US20180315846A1 (en) * 2017-04-26 2018-11-01 Alpha And Omega Semiconductor (Cayman) Ltd. Scalable sgt structure with improved fom
CN108807548A (zh) * 2017-04-26 2018-11-13 万国半导体(开曼)股份有限公司 带有改良fom的可扩展的sgt结构
CN112310194A (zh) * 2019-07-31 2021-02-02 意法半导体股份有限公司 电荷平衡功率器件以及用于制造电荷平衡功率器件的方法
CN110690272A (zh) * 2019-11-07 2020-01-14 苏州凤凰芯电子科技有限公司 一种结合屏蔽栅的sj mos器件结构及其制作方法
CN110739346A (zh) * 2019-11-07 2020-01-31 苏州凤凰芯电子科技有限公司 具有屏蔽栅的sj mos器件终端结构及其制作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193656A1 (zh) * 2021-03-15 2022-09-22 无锡新洁能股份有限公司 降低开关损耗的半导体器件及其制作方法
US11837630B1 (en) 2021-03-15 2023-12-05 Wuxi Nce Power Co., Ltd Semiconductor device for reducing switching loss and manufacturing method thereof
CN114582966A (zh) * 2022-05-09 2022-06-03 南京微盟电子有限公司 一种可调安全工作区的功率器件及其制作方法

Also Published As

Publication number Publication date
CN113066865B (zh) 2022-10-28
WO2022193656A1 (zh) 2022-09-22
US20230395651A1 (en) 2023-12-07
US11837630B1 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
CN108198851B (zh) 一种具有载流子存储效应的超结igbt
US9093522B1 (en) Vertical power MOSFET with planar channel and vertical field plate
CN109920854B (zh) Mosfet器件
CN109065621B (zh) 一种绝缘栅双极晶体管及其制备方法
CN113838922B (zh) 具有载流子浓度增强的分离栅超结igbt器件结构及方法
US11888022B2 (en) SOI lateral homogenization field high voltage power semiconductor device, manufacturing method and application thereof
CN113066865B (zh) 降低开关损耗的半导体器件及其制作方法
CN108091685A (zh) 一种提高耐压的半超结mosfet结构及其制备方法
CN111384153A (zh) 一种具有接地p型区的sgt器件及其制备方法
CN111697078A (zh) 高雪崩耐量的vdmos器件及制备方法
CN114050184A (zh) 低米勒电容功率器件及其制造方法
CN110504260B (zh) 一种具有自偏置pmos的横向沟槽型igbt及其制备方法
CN103515443B (zh) 一种超结功率器件及其制造方法
CN114005877A (zh) 一种超薄超结igbt器件及制备方法
CN110943124A (zh) Igbt芯片及其制造方法
CN110504313B (zh) 一种横向沟槽型绝缘栅双极晶体管及其制备方法
CN110459596B (zh) 一种横向绝缘栅双极晶体管及其制备方法
CN116031303B (zh) 超结器件及其制作方法和电子器件
CN110518060B (zh) 横向变掺杂结终端结构
CN115148826B (zh) 一种深沟槽碳化硅jfet结构的制作方法
CN113921614B (zh) 一种半导体功率器件结构及其制造方法
CN113838914B (zh) 具有分离栅结构的ret igbt器件结构及制作方法
CN111370464A (zh) 沟槽栅功率器件及其制造方法
CN102522338A (zh) 高压超结mosfet结构及p型漂移区形成方法
CN107863378B (zh) 超结mos器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant