CN103515443B - 一种超结功率器件及其制造方法 - Google Patents

一种超结功率器件及其制造方法 Download PDF

Info

Publication number
CN103515443B
CN103515443B CN201310420420.0A CN201310420420A CN103515443B CN 103515443 B CN103515443 B CN 103515443B CN 201310420420 A CN201310420420 A CN 201310420420A CN 103515443 B CN103515443 B CN 103515443B
Authority
CN
China
Prior art keywords
conductive type
type semiconductor
drift region
tagma
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310420420.0A
Other languages
English (en)
Other versions
CN103515443A (zh
Inventor
任敏
李果
宋询奕
顾鸿鸣
吴明进
张鹏
曾智
李泽宏
张金平
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Institute of Electronic and Information Engineering of Dongguan UESTC
Original Assignee
University of Electronic Science and Technology of China
Institute of Electronic and Information Engineering of Dongguan UESTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China, Institute of Electronic and Information Engineering of Dongguan UESTC filed Critical University of Electronic Science and Technology of China
Priority to CN201310420420.0A priority Critical patent/CN103515443B/zh
Publication of CN103515443A publication Critical patent/CN103515443A/zh
Application granted granted Critical
Publication of CN103515443B publication Critical patent/CN103515443B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Abstract

本发明涉及功率半导体器件技术,具体的说是涉及一种超结结构的横向功率器件及其制造方法。本发明的一种超结功率器件,其特征在于,在第二导电类型半导体漂移区4和第一导电类型半导体体区9上设置有凹槽,所述厚氧化层12覆盖设置在第二导电类型半导体漂移区4的上表面,所述薄栅氧化层13覆盖设置在第一导电类型半导体体区9的上表面,所述栅电极2覆盖设置在厚氧化层12和薄栅氧化层13的上表面。本发明的有益效果为,增大了漂移区4表面的积累层通道面积,可以达到更低的正向导通电阻。本发明尤其适用于超结结构的横向功率器件。

Description

一种超结功率器件及其制造方法
技术领域
本发明涉及功率半导体器件技术,具体的说是涉及一种超结(SuperJunction)结构的横向功率器件及其制造方法。
背景技术
功率半导体器件广泛地应用于DC-DC变换器、DC-AC变换器、继电器、马达驱动等领域。功率金属-氧化物-半导体场效应晶体管(MOSFET)与双极型晶体管相比,具有开关速度快、损耗小、输入阻抗高、驱动功率小等优点,尤其是功率MOSFET在大电流下具有负的温度系数,没有双极型晶体管的二次击穿问题,安全工作区大,故应用范围更广。
但常规功率MOSFET也有其天生的缺点,即导通电阻随耐压的增长(Ron∝BV2.5)导致功耗的急剧增加。以超结(Superjunction)VDMOS为代表的电荷平衡类器件的出现打破了这一“硅限(siliconlimit)”,改善了导通电阻和耐压之间的制约关系(Ron∝BV1.3),可同时实现低通态功耗和高阻断电压,因此迅速在各种高能效场合取得应用,市场前景非常广泛。基本的超结结构为交替的p柱和n柱,该结构有效的前提是p、n柱严格满足电荷平衡。在器件处于关断状态时,在反向偏压下,由于横向电场和纵向电场的相互作用,p柱区和n柱区将完全耗尽,耗尽区内纵向电场分布趋于均匀,因而理论上击穿电压仅仅依赖于耐压层的厚度,与掺杂浓度无关,耐压层掺杂浓度可以提高将近一个数量级,从而有效地降低了器件的导通电阻。
在功率集成电路中,为了实现功率MOSFET与低压电路的集成,MOSFET常采用横向的双扩散结构,即LDMOS(lateraldouble-diffusedMOS)结构。为了LDMOS的导通电阻,人们将超结结构引入LDMOS的漂移区。但是,LDMOS的导电区域位于器件的表面,受表面积的限制,其导电通道的总宽度有限,这成为了进一步降低超结型LDMOS的比导通电阻的一个制约。
发明内容
本发明所要解决的技术问题,就是针对上述问题,提出一种超结功率器件及其制造方法。
本发明解决上述技术问题所采用的技术方案是:一种超结功率器件,其元胞结构包括第一导电类型半导体衬底7、第二导电类型半导体辅助耗尽层14、第二导电类型半导体漂移区4、第一导电类型半导体漂移区11、第一导电类型半导体体区9、第二导电类型半导体源区10、第一导电类型半导体接触区8、源极金属化电极1、漏极金属化电极5、第二导电类型半导体材料漏区6、薄栅氧层13、栅电极2、厚氧化层12和延伸栅电极3,所述第二导电类型半导体辅助耗尽层14设置在第一导电类型半导体衬底7的上表面,所述第二导电类型半导体漂移区4、第一导电类型半导体漂移区11和第一导电类型半导体体区9相互接触并均设置在第二导电类型半导体辅助耗尽层14的上表面,第二导电类型半导体漂移区4与第一导电类型半导体漂移区11水平接触,同时设置于第二导电类型半导体辅助耗尽层14的上表面,并在垂直方向上都与第一导电类型半导体体区9相互接触,且第二导电类型半导体漂移区4仅设置在第一导电类型半导体漂移区11的上表面,并不覆盖不与第二导电类型半导体漂移区4接触的第一导电类型半导体漂移区11的另一侧壁表面;所述第二导电类型半导体源区10和第一导电类型半导体接触区8相互独立设置在第一导电类型半导体体区9中,所述源极金属化电极1设置在第一导电类型半导体接触区8和部分第二导电类型半导体源区10的上表面,所述第二导电类型半导体材料漏区6设置在第二导电类型半导体漂移区4中远离第一导电类型半导体体区9的一端,所述漏极金属化电极5设置在第二导电类型半导体材料漏区6的上表面,所述薄栅氧层13设置在第一导电类型半导体体区9的部分上表面,所述栅电极2设置在薄栅氧层13的上表面,所述厚氧化层12设置在第二导电类型半导体漂移区4的上表面,所述延伸栅电极3设置在厚氧化层12的上表面且与栅电极2连接;其特征在于,所述第二导电类型半导体漂移区4和第一导电类型半导体体区9上设置有凹槽。
具体的,所述第一导电类型半导体漂移区11的杂质总量与第二导电类型半导体辅助耗尽层14的杂质总量相等。
一种超结功率器件的制造方法,其特征在于,包括以下步骤:
第一步:在第一导电类型半导体衬底7上外延低掺杂的第二导电类型外延层,形成衬底辅助耗尽层14;
第二步:在第二导电类型外延层上利用硼离子注入和扩散工艺制作第一导电类型半导体体区9和第一导电类型半导体漂移区11;
第三步:利用光刻和体硅刻蚀在第一导电类型半导体体区9和第一导电类型半导体漂移区11上形成凹槽结构,刻蚀在到达第二导电类型半导体辅助耗尽层14上表面之前停止;
第四步:利用离子注入在第一导电类型半导体漂移区11上表面注入第二导电类型的杂质,所述离子注入应采用倾角离子注入法,使凹槽侧壁和底部均注入相同浓度的第二导电类型杂质形成第二导电类型半导体漂移区4;
第五步:在第一导电类型半导体体区9上表面利用热氧化工艺生长薄栅氧层13;
第六步:在第一导电类型半导体漂移区11上表面淀积厚氧化层12;
第七步:淀积多晶硅、多晶硅掺杂及光刻形成多晶栅电极2,所述栅电极2如覆盖在厚氧化层12上表面;
第八步:完成常规LDMOS器件的后续工艺,包括源区的光刻和离子注入、体区接触区的离子注入、漏区的光刻和离子注入、淀积介质层、退火致密并光刻引线孔、淀积金属、反刻金属、表面钝化。
本发明的有益效果为,通过多面栅的结构将沟道区包围,极大的增加了沟道区的宽度,从而减少了沟道区的电阻;通过在漂移区中引入超结结构与延伸栅电极3可以达到更低的正向导通电阻。
附图说明
图1是本发明的一种横向超结功率器件的结构示意图;
图2是图1中沿AA’方向的剖视图;
图3是图1中沿BB’方向的剖视图;
图4是图1中沿CC’方向的剖视图;
图5是实施例1的横向超结功率器件的制造方法的工艺步骤中的P+衬底上外延N-外延层示意图;
图6是实施例1的横向超结功率器件的制造方法的工艺步骤中的N-外延层上利用硼离子注入和扩散工艺制作P-body区和P型区示意图;
图7是实施例1的横向超结功率器件的制造方法的工艺步骤中的形成沟槽结构示意图;
图8是实施例1的横向超结功率器件的制造方法的工艺步骤中的在漂移区表面注入磷杂质示意图;
图9是实施例1的横向超结功率器件的制造方法的工艺步骤中的生长薄栅氧化层示意图;
图10是实施例1的横向超结功率器件的制造方法的工艺步骤中的在漂移区淀积厚氧化层示意图;
图11是实施例1的横向超结功率器件的制造方法的工艺步骤中的形成多晶栅电极示意图;
图12是实施例1的横向超结功率器件的制造方法的工艺步骤中的栅电极将覆盖沟道区和漂移区示意图。
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案:
如图1-图4所示,本发明所述的一种超结功率器件,其元胞结构包括第一导电类型半导体衬底7、第二导电类型半导体辅助耗尽层14、第二导电类型半导体漂移区4、第一导电类型半导体漂移区11、第一导电类型半导体体区9、第二导电类型半导体源区10、第一导电类型半导体接触区8、源极金属化电极1、漏极金属化电极5、第二导电类型半导体材料漏区6、薄栅氧层13、栅电极2、厚氧化层12和延伸栅电极3,所述第二导电类型半导体辅助耗尽层14设置在第一导电类型半导体衬底7的上表面,所述第二导电类型半导体漂移区4、第一导电类型半导体漂移区11和第一导电类型半导体体区9相互接触并均设置在第二导电类型半导体辅助耗尽层14的上表面,第二导电类型半导体漂移区4与第一导电类型半导体漂移区11水平接触,同时设置于第二导电类型半导体辅助耗尽层14的上表面,并在垂直方向上都与第一导电类型半导体体区9相互接触,且第二导电类型半导体漂移区4仅设置在第一导电类型半导体漂移区11的上表面,并不覆盖不与第二导电类型半导体漂移区4接触的第一导电类型半导体漂移区11的另一侧壁表面,所述第二导电类型半导体源区10和第一导电类型半导体接触区8相互独立设置在第一导电类型半导体体区9中,所述源极金属化电极1设置在第一导电类型半导体接触区8和部分第二导电类型半导体源区10的上表面,所述第二导电类型半导体材料漏区6设置在第二导电类型半导体漂移区4中远离第一导电类型半导体体区9的一端,所述漏极金属化电极5设置在第二导电类型半导体材料漏区6的上表面,所述薄栅氧层13设置在第一导电类型半导体体区9的部分上表面,所述栅电极2设置在薄栅氧层13的上表面,所述厚氧化层12设置在第二导电类型半导体漂移区4的上表面,所述延伸栅电极3设置在厚氧化层12的上表面且与栅电极2连接;其特征在于,所述第二导电类型半导体漂移区4和第一导电类型半导体体区9上设置有凹槽,所述厚氧化层12覆盖设置在第二导电类型半导体漂移区4的上表面,所述薄栅氧化层13覆盖设置在第一导电类型半导体体区9的上表面,所述栅电极2覆盖设置在厚氧化层12和薄栅氧化层13的上表面。
本发明的工作原理为:
以第一导电类型半导体材料为P型半导体材料为例,说明本发明的工作原理和有益效果:
所述结构中,由第二导电类型半导体4中所提供的杂质离子总数与由第一导电类型半导体漂移区11中的相反类型的杂质离子总数近似相等,满足电荷平衡条件,构成超结结构。
所述结构的反向耐压:当栅极2与源极金属化电极1加零电位,漏极金属化电极5加正电压时,第一导电类型半导体材料区11与第二导电类型半导体材料区漂移区4中的空穴与电子会迅速耗尽,整个区域自由载流子数目几近为零,使漂移区4中的电场接近于矩形分布,可以获得更高的器件耐压。理论上,器件耐压的大小只与漂移区4的长度相关,而与漂移区4的掺杂浓度无关。而第二导电类型半导体材料辅助耗尽层14可以屏蔽由于第一导电类型半导体材料衬底7带来的衬底辅助耗尽效应引起的耐压降低。
所述结构的正向导通:在栅极2上加正电压,源极金属化电极加1零电位,漏极金属化电极5加正电压时,栅电极2下的第一导电类型半导体材料体区9将反型,形成连接第二导电类型半导体材料源区10和第二导电类型半导体材料区漂移区4的沟道,器件导通。由于沟道区为折叠式立体结构,三面都覆盖栅电极2,使得沟道区面积大大增加,能有效降低沟道区电阻。第一导电类型半导体材料区11与第二导电类型半导体材料漂移区4构成了电荷平衡的超结结构,漂移区4的掺杂浓度理论上不会影响器件的反向耐压,因此漂移区4可以采用较高的掺杂浓度。同时,由于漂移区4之上存在厚氧化层12和延伸栅电极3,延伸栅电极3会在漂移区4的表面感应出一个多数载流子积累层,这一积累层会给电流提供一个低电阻通道,降低漂移区电阻。由于漂移区4同样也采用了折叠型的立体结构,增大了漂移区4表面的积累层通道面积,可以达到更低的正向导通电阻。
实施例1:
作为本发明的以较佳实施方式,本发明公开了一种极低比导通电阻的横向超结功率器件的制备方法,其包括如下步骤:
(1)单晶硅准备,采用P型重掺杂区衬底1,掺杂原子为砷,浓度为1.5×1019cm-3,其晶向为<100>;
(2)在P+衬底上外延N-外延层,如图5所示,作为衬底辅助耗尽层,掺杂原子为磷,外延厚度根据器件电学参数指标要求调整;
(3)在低阻N-外延层上利用硼离子注入和扩散工艺制作P-body区和P型区,如图6所示;
(5)光刻,再利用体硅刻蚀在沟道区和漂移区形成沟槽结构,如图7所示,体硅刻蚀可采用反应离子刻蚀;
(6)利用离子注入在漂移区表面注入磷杂质,离子注入应采用倾角离子注入法,通过注入角度的适当选取,使沟槽侧壁和底部均注入相同浓度的磷杂质,注入的磷杂质在杂质补偿后应保证N+区与P+区的杂质总量满足电荷平衡,如图8所示;
(7)在沟道区利用热氧化工艺生长薄栅氧化层,如图9所示;
(8)在漂移区淀积厚氧化层,如图10所示;
(9)淀积多晶硅、多晶硅掺杂及光刻形成多晶栅电极,如图11所示,该栅电极将覆盖沟道区和漂移区,如图12所示;
(10)完成常规LDMOS器件的后续工艺,工艺流程与常规LDMOS器件类似,包括N+源区的光刻和注入、P+接触区的注入、N+漏区的光刻和注入、淀积介质层、退火致密并光刻引线孔、淀积金属、反刻金属、钝化、光刻钝化孔等步骤。
在实施过程中可以根据具体情况,在基本结构不变的情况下,进行一定的变通设计,例如:步骤(3)中P-body区的制作可以放在步骤(9)多晶硅电极形成后,用自对准工艺形成。
实施例2
本例为在实施例1的基础上,将其第一导电类型区11也可为图5所示的情况,在第二导电类型半导体辅助耗尽层14与凹槽处的第二导电类型半导体区4之间,保留部分第一导电类型的区11。
实施例2的具体实现方法实施例1类似,只是在实施例1的工艺步骤的第5步中,减少对第一导电类型区11的刻蚀深度,在沟凹槽内保留适当厚度的第一导电类型区11。

Claims (2)

1.一种超结功率器件,其元胞结构包括第一导电类型半导体衬底(7)、第二导电类型半导体辅助耗尽层(14)、第二导电类型半导体漂移区(4)、第一导电类型半导体漂移区(11)、第一导电类型半导体体区(9)、第二导电类型半导体源区(10)、第一导电类型半导体接触区(8)、源极金属化电极(1)、漏极金属化电极(5)、第二导电类型半导体材料漏区(6)、薄栅氧层(13)、栅电极(2)、厚氧化层(12)和延伸栅电极(3),所述第二导电类型半导体辅助耗尽层(14)设置在第一导电类型半导体衬底(7)的上表面,所述第二导电类型半导体漂移区(4)、第一导电类型半导体漂移区(11)和第一导电类型半导体体区(9)相互接触并均设置在第二导电类型半导体辅助耗尽层(14)的上表面,第二导电类型半导体漂移区(4)与第一导电类型半导体漂移区(11)水平接触,同时设置于第二导电类型半导体辅助耗尽层(14)的上表面,并在垂直方向上都与第一导电类型半导体体区(9)相互接触,且第二导电类型半导体漂移区(4)仅设置在第一导电类型半导体漂移区(11)的上表面,并不覆盖不与第二导电类型半导体漂移区(4)接触的第一导电类型半导体漂移区(11)的另一侧壁表面;所述第二导电类型半导体源区(10)和第一导电类型半导体接触区(8)相互独立设置在第一导电类型半导体体区(9)中,所述源极金属化电极(1)设置在第一导电类型半导体接触区(8)和部分第二导电类型半导体源区(10)的上表面,所述第二导电类型半导体材料漏区(6)设置在第二导电类型半导体漂移区(4)中远离第一导电类型半导体体区(9)的一端,所述漏极金属化电极(5)设置在第二导电类型半导体材料漏区(6)的上表面,所述薄栅氧层(13)设置在第一导电类型半导体体区(9)的部分上表面,所述栅电极(2)设置在薄栅氧层(13)的上表面,所述厚氧化层(12)设置在第二导电类型半导体漂移区(4)的上表面,所述延伸栅电极(3)设置在厚氧化层(12)的上表面且与栅电极(2)连接;其特征在于,所述第二导电类型半导体漂移区(4)和第一导电类型半导体体区(9)上设置有凹槽述,第一导电类型半导体漂移区(11)的杂质总量与第二导电类型半导体辅助耗尽层(14)的杂质总量相等。
2.一种超结功率器件的制造方法,其特征在于,包括以下步骤:
第一步:在第一导电类型半导体衬底(7)上外延低掺杂的第二导电类型外延层,形成衬底辅助耗尽层(14);
第二步:在第二导电类型外延层上利用硼离子注入和扩散工艺制作第一导电类型半导体体区(9)和第一导电类型半导体漂移区(11),第一导电类型半导体漂移区(11)和第一导电类型半导体体区(9)相互接触并均设置在第二导电类型半导体辅助耗尽层(14)的上表面;
第三步:利用光刻和体硅刻蚀在第一导电类型半导体体区(9)和第一导电类型半导体漂移区(11)上形成凹槽结构,刻蚀在到达第二导电类型半导体辅助耗尽层(14)上表面之前停止;
第四步:利用离子注入在第一导电类型半导体漂移区(11)上表面注入第二导电类型的杂质,所述离子注入应采用倾角离子注入法,使凹槽侧壁和底部均注入相同浓度的第二导电类型杂质形成第二导电类型半导体漂移区(4),所述第二导电类型半导体漂移区(4)、第一导电类型半导体漂移区(11)和第一导电类型半导体体区(9)相互接触并均设置在第二导电类型半导体辅助耗尽层(14)的上表面,第二导电类型半导体漂移区(4)部分设置在第一导电类型半导体漂移区(11)的上表面;
第五步:在第一导电类型半导体体区(9)上表面利用热氧化工艺生长薄栅氧层(13);
第六步:在第一导电类型半导体漂移区(11)上表面淀积厚氧化层(12),厚氧化层(12)覆盖设置在第二导电类型半导体漂移区(4)的上表面;
第七步:淀积多晶硅、多晶硅掺杂及光刻形成多晶栅电极(2),所述栅电极(2)覆盖在厚氧化层(12)上表面;
第八步:完成常规LDMOS器件的后续工艺,包括源区的光刻和离子注入、体区接触区的离子注入、漏区的光刻和离子注入、淀积介质层、退火致密并光刻引线孔、淀积金属、反刻金属、表面钝化。
CN201310420420.0A 2013-09-16 2013-09-16 一种超结功率器件及其制造方法 Expired - Fee Related CN103515443B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310420420.0A CN103515443B (zh) 2013-09-16 2013-09-16 一种超结功率器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310420420.0A CN103515443B (zh) 2013-09-16 2013-09-16 一种超结功率器件及其制造方法

Publications (2)

Publication Number Publication Date
CN103515443A CN103515443A (zh) 2014-01-15
CN103515443B true CN103515443B (zh) 2016-03-02

Family

ID=49897859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310420420.0A Expired - Fee Related CN103515443B (zh) 2013-09-16 2013-09-16 一种超结功率器件及其制造方法

Country Status (1)

Country Link
CN (1) CN103515443B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996715A (zh) * 2014-05-29 2014-08-20 西安电子科技大学 一种横向双扩散金属氧化物半导体场效应管
JP6591312B2 (ja) * 2016-02-25 2019-10-16 ルネサスエレクトロニクス株式会社 半導体装置
CN110534566B (zh) * 2019-09-05 2021-03-30 电子科技大学 一种igbt功率器件
CN111710723B (zh) * 2020-07-16 2022-09-16 杰华特微电子股份有限公司 横向双扩散晶体管及其制造方法
CN112071863A (zh) * 2020-09-04 2020-12-11 Tcl华星光电技术有限公司 一种阵列基板

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201570500U (zh) * 2009-12-18 2010-09-01 东南大学 P型超结横向双扩散半导体金属氧化物晶体管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3944461B2 (ja) * 2002-03-27 2007-07-11 株式会社東芝 電界効果型トランジスタおよびその応用装置
US7355224B2 (en) * 2006-06-16 2008-04-08 Fairchild Semiconductor Corporation High voltage LDMOS
JP4751340B2 (ja) * 2007-01-09 2011-08-17 株式会社東芝 半導体装置及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201570500U (zh) * 2009-12-18 2010-09-01 东南大学 P型超结横向双扩散半导体金属氧化物晶体管

Also Published As

Publication number Publication date
CN103515443A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
CN102376762B (zh) 超级结ldmos器件及制造方法
CN103579353B (zh) 一种具有p型辅助埋层的半超结vdmos
CN109065542A (zh) 一种屏蔽栅功率mosfet器件及其制造方法
CN103515443B (zh) 一种超结功率器件及其制造方法
CN107093622B (zh) 一种具有半绝缘多晶硅层的纵向超结双扩散金属氧化物半导体场效应管
CN106158973A (zh) 一种积累型dmos
CN106098777A (zh) 一种分裂栅积累型dmos器件
CN116110944A (zh) 一种基于Resurf效应的屏蔽栅沟槽型MOSFET器件及其制备方法
CN114284358A (zh) 一种碳化硅功率器件及其制备方法
CN115881797A (zh) 一种碳化硅器件及其制备方法
CN107564965B (zh) 一种横向双扩散mos器件
CN116154000A (zh) 多级沟槽型SiC MOSFET器件及其制造方法
CN109713029B (zh) 一种改善反向恢复特性的多次外延超结器件制作方法
CN113066865B (zh) 降低开关损耗的半导体器件及其制作方法
CN106783620A (zh) 抗emi的超结vdmos器件结构及其制备方法
CN114005877A (zh) 一种超薄超结igbt器件及制备方法
CN102637731A (zh) 一种沟槽功率mos器件的终端结构及其制造方法
CN210092093U (zh) 一种屏蔽栅功率mos的器件
CN116469910B (zh) 一种igbt器件
CN102522338B (zh) 高压超结mosfet结构及p型漂移区形成方法
CN102157550A (zh) 一种具有p埋层的纵向沟道SOI LIGBT器件单元
CN109256428A (zh) 一种鳍式超结功率半导体晶体管及其制备方法
CN106057906B (zh) 一种具有p型埋层的积累型dmos
CN109994550A (zh) 一种低压槽栅超结mos器件
CN103531621A (zh) 一种带有侧边多晶硅电极沟槽非穿通型绝缘栅双极晶体管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: INSTITUTE OF ELECTRONIC AND INFORMATION ENGINEERIN

Effective date: 20140804

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140804

Address after: 611731 Chengdu province high tech Zone (West) West source Avenue, No. 2006

Applicant after: University of Electronic Science and Technology of China

Applicant after: Institute of Electronic and Information Engineering In Dongguan, UESTC

Address before: 611731 Chengdu province high tech Zone (West) West source Avenue, No. 2006

Applicant before: University of Electronic Science and Technology of China

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160302

Termination date: 20190916