CN113058616B - 一种氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法 - Google Patents

一种氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法 Download PDF

Info

Publication number
CN113058616B
CN113058616B CN202110334241.XA CN202110334241A CN113058616B CN 113058616 B CN113058616 B CN 113058616B CN 202110334241 A CN202110334241 A CN 202110334241A CN 113058616 B CN113058616 B CN 113058616B
Authority
CN
China
Prior art keywords
cuprous
self
preparation
reaction kettle
cuprous oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110334241.XA
Other languages
English (en)
Other versions
CN113058616A (zh
Inventor
张茂林
高燕
张丽园
杨国祥
徐少武
万媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bengbu College
Original Assignee
Bengbu College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bengbu College filed Critical Bengbu College
Priority to CN202110334241.XA priority Critical patent/CN113058616B/zh
Publication of CN113058616A publication Critical patent/CN113058616A/zh
Application granted granted Critical
Publication of CN113058616B publication Critical patent/CN113058616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种氧化亚铜‑硫化亚铜纳米复合物的自牺牲模板制备方法,是采用纳米CuO和Na2S·9H2O作为原料,通过离子交换反应和水热氧化还原反应,再经离心分离、洗涤干燥,得到氧化亚铜‑硫化亚铜纳米复合物产品。本发明具有工艺简单、无污染、无副反应、产品纯度高、原料易得等优点。

Description

一种氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法
技术领域
本发明涉及纳米材料的制备方法,具体涉及一种Cu2O-Cu2S纳米复合物的自牺牲模板制备方法。
背景技术
氧化亚铜Cu2O是一种典型的p型半导体光催化材料,直接带隙约为2.0-2.2eV,可被可见光激发。因此,其在可见光催化降解有机污染物、光解水产氢、一氧化碳催化氧化等方面有较大的应用前景。但是由于单一的窄带隙Cu2O,其光生电子与空穴容易快速复合,降低了Cu2O的光催化效率。为是克服这一不足,Cu2O与其他半导体耦合被认为是一种有效方法。例如,Cu2O与窄带半导体材料的杂化可以有效抑制光生载流子的复合,有助于提高Cu2O的光催化效率。Cu2S具有较窄的禁带,其禁带宽度约为1.2eV,是一个理想的可见光吸收材料。由于Cu2O导带电位低于Cu2S导带电位,当Cu2O与Cu2S复合后,Cu2O导带中的光生电子可以转移至Cu2S导带中,而光生空穴则向相反方向转移。Cu2S的存在,不但可以增加可见光的吸收,而且可以有效分离光生载流子,抑制光生载流子的复合,提高光催化效率。目前,Cu2O的制备方法多种多样。其中,液相还原法是制备纳米Cu2O最常用的方法之一,通常采用抗坏血酸、葡萄糖、甲醛、水合肼、硼氢化钠等还原剂在一定条件下还原二价铜制备Cu2O。这些制备方法虽然具备各自的优势,但由于甲醛、水合肼等还原剂本身具有较大毒性,会对环境造成一定的污染,不符合绿色化学的指导思想。同时,在液相还原法中还原剂通常过量,容易发生进一步的还原副反应,反应复杂,条件不易控制。此外,Cu2O基纳米复合物制备过程中,产物的晶粒大小和成分比例也不容易有效控制。所以,研究者们一直在努力寻找绿色环保、工艺简单的新制备方法,特别是制备Cu2O基纳米复合物的简单新方法。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种绿色环保、工艺简单、无副反应、原料易得的Cu2O-Cu2S纳米复合物制备方法。
为解决上述技术问题,本发明采用如下技术方案:
一种氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法,包括如下步骤:室温下,将纳米CuO和水按照摩尔比1:125进行混合,超声分散均匀,再按照CuO和Na2S·9H2O的摩尔比为8:(1+x),其中0<x<4,加入一定量Na2S·9H2O,搅拌溶解,得到混合物;
将所述混合物转移至对位聚苯材质的水热反应釜内胆中,密封水热反应釜后,将其放入加热设备中进行水热反应;反应完成后,自然冷却,离心分离,洗涤、干燥,得到Cu2O-Cu2S纳米复合物产品。
由于CuS溶度积常数小于CuO溶度积常数,因此在纳米CuO的表面发生离子交换反应生成CuS,从而得到CuO和CuS复合物,在水热条件下,复合物中部分S2-离子将二价铜还原成一价铜,反应方程式如式(1)和(2)所示。通过控制原料CuO和Na2S·9H2O的摩尔比,可以制备出不同Cu2S含量的Cu2O-Cu2S纳米复合物。
Figure BDA0002996668820000021
Figure BDA0002996668820000022
所述水热反应的温度为250℃,时间为20小时。
所述洗涤是先用蒸馏水对产物洗涤2次,再用无水乙醇对产物洗涤1次。
所述干燥是在85℃下真空干燥1小时。
本发明的有益效果体现在:
1、采用简单一锅水热法的制备技术,在不加入任何表面活性剂的情况下,借助纳米CuO自身模板作用和复合物内部氧化还原反应形成纳米级复合物,操作简单;
2、使用纳米CuO和Na2S·9H2O为原材料,无需另外加入还原剂和强碱,原料易得,无污染;
3、采用该法制备Cu2O-Cu2S纳米复合物,无副反应,产品纯度高。
附图说明
图1为实施例1-4制备的Cu2O-Cu2S纳米复合物XRD图。
图2为实施例3制备的Cu2O-Cu2S纳米复合物SEM图。
具体实施方式
下面结合附图对本发明的具体实施方式做详细的说明。以下内容仅仅是对本发明的构思所做的举例和说明,所属本技术领域的技术人员对所描述的具体实施案例做各种各样的修改或补充或采用类似的方式代替,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
实施例1
室温下,将0.008mol纳米CuO加入到18mL H2O中超声分散均匀,再加入0.0015molNa2S·9H2O,搅拌让其溶解,得到混合物;将上述混合物转移到25mL对位聚苯材质的水热反应釜内胆中,密封反应釜后放入电热加热箱中,在250℃下保温反应20小时。反应结束后,自然冷却至室温,离心分离,先用蒸馏水洗涤产物2次,再用无水乙醇洗涤产物1次,最后在85℃下真空干燥1小时,得到Cu2O-Cu2S纳米复合物产品。
实施例2
室温下,将0.008mol纳米CuO加入到18mL H2O中超声分散均匀,再加入0.002molNa2S·9H2O,搅拌让其溶解,得到混合物;将上述混合物转移到25mL对位聚苯材质的水热反应釜内胆中,密封反应釜后放入电热加热箱中,在250℃下保温反应20小时。反应结束后,自然冷却至室温,离心分离,先用蒸馏水洗涤产物2次,再用无水乙醇洗涤产物1次,最后在85℃下真空干燥1小时,得到Cu2O-Cu2S纳米复合物产品。
实施例3
室温下,将0.008mol纳米CuO加入到18mL H2O中超声分散均匀,再加入0.0025molNa2S·9H2O,搅拌让其溶解,得到混合物;将上述混合物转移到25mL对位聚苯材质的水热反应釜内胆中,密封反应釜后放入电热加热箱中,在250℃下保温反应20小时。反应结束后,自然冷却至室温,离心分离,先用蒸馏水洗涤产物2次,再用无水乙醇洗涤产物1次,最后在85℃下真空干燥1小时,得到Cu2O-Cu2S纳米复合物产品。
实施例4
室温下,将0.008mol纳米CuO加入到18mL H2O中超声分散均匀,再加入0.003molNa2S·9H2O,搅拌让其溶解,得到混合物;将上述混合物转移到25mL对位聚苯材质的水热反应釜内胆中,密封反应釜后放入电热加热箱中,在250℃下保温反应20小时。反应结束后,自然冷却至室温,离心分离,先用蒸馏水洗涤产物2次,再用无水乙醇洗涤产物1次,最后在85℃下真空干燥1小时,得到Cu2O-Cu2S纳米复合物产品。
对实施例1-4制得的Cu2O-Cu2S纳米复合物进行X-射线衍射分析(XRD),结果见图1。从图1可以看出,实施例1-4制得的4个样品中都出现了归属于立方相Cu2O(PDF#65-3288)的特征衍射峰。此外,除Cu2O特征衍射峰外,在2θ为32.846°、37.361°、37.467°、45.933°、48.386°和48.455°等处还出现了明显的衍射峰,这些衍射峰分别对应了单斜相Cu2S(PDF#65-3816)的(2 4 0)、(0 3 4)、(2 0 4)、(6 3 0)、(-5 3 6)和(1 0 6)晶面的衍射峰,表明了制备样品中存在Cu2O和Cu2S,形成了Cu2O-Cu2S复合物。从图1还可以看出,随着原料中Na2S·9H2O比例的增加,产物中Cu2O衍射峰强度明显地逐渐减少,而Cu2S衍射峰强度逐渐增强,表明复合物中Cu2O含量逐渐减少、Cu2S含量逐渐增加。所以,通过控制原料中Na2S·9H2O比例,可以方便地控制产物中Cu2S含量,从而可以合成出不同Cu2S含量的Cu2O-Cu2S复合物。
对实施例3制得的Cu2O-Cu2S纳米复合物进行扫描电子显微镜分析(SEM),结果见图2。由图2可见,样品的颗粒形态为近似立方形,颗粒直径约为50-60nm,颗粒大小分布较为均匀。
以上仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所做的任何修改,等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法,其特征在于:室温下,将纳米CuO和水按照摩尔比1:125进行混合,超声分散均匀,再按照CuO和Na2S·9H2O的摩尔比为8:(1+x),其中0<x<4,加入一定量Na2S·9H2O,搅拌溶解,得到混合物;
将所述混合物转移至对位聚苯材质的水热反应釜内胆中,密封水热反应釜后,将其放入加热设备中进行水热反应,所述水热反应的温度为250℃、时间为20小时;反应完成后,自然冷却,离心分离,洗涤、干燥,得到Cu2O-Cu2S纳米复合物产品。
2.根据权利要求1所述的氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法,其特征在于:所述洗涤是先用蒸馏水对产物洗涤2次,再用无水乙醇对产物洗涤1次。
3.根据权利要求1所述的氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法,其特征在于:所述干燥是在85℃下真空干燥1小时。
CN202110334241.XA 2021-03-29 2021-03-29 一种氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法 Active CN113058616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110334241.XA CN113058616B (zh) 2021-03-29 2021-03-29 一种氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110334241.XA CN113058616B (zh) 2021-03-29 2021-03-29 一种氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法

Publications (2)

Publication Number Publication Date
CN113058616A CN113058616A (zh) 2021-07-02
CN113058616B true CN113058616B (zh) 2022-03-08

Family

ID=76564432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110334241.XA Active CN113058616B (zh) 2021-03-29 2021-03-29 一种氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法

Country Status (1)

Country Link
CN (1) CN113058616B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115957780A (zh) * 2023-01-09 2023-04-14 蚌埠学院 一种硫化亚铜-硫化铜纳米复合物的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194082A (ja) * 1984-03-14 1985-10-02 Furukawa Electric Co Ltd:The 電気接点
CN101972654A (zh) * 2010-09-03 2011-02-16 天津工业大学 具有超声降解有机污染物活性的氧族亚铜半导体超声催化剂及其制备方法
CN102580742A (zh) * 2012-02-05 2012-07-18 淮北师范大学 一种活性炭负载氧化亚铜光催化剂及其制备方法
CN104014341A (zh) * 2014-06-12 2014-09-03 淮北师范大学 一种界面还原法制备Cu2O/Ca(OH)2纳米复合光催化剂的方法
CN107089683A (zh) * 2017-04-25 2017-08-25 中国计量大学 一种二硫化钼/硫化铜/氧化亚铜纳米复合材料的制备方法
CN111286753A (zh) * 2020-02-07 2020-06-16 天津大学 氧化亚铜/硫化亚铜/硫化镍三层光电极及制备和应用
CN112121820A (zh) * 2020-07-07 2020-12-25 四川大学 一种界面的硫化亚铜纳米线阵列高效析氧催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY187291A (en) * 2017-08-01 2021-09-19 Petroliam Nasional Berhad Petronas Process for the production of copper sulfide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194082A (ja) * 1984-03-14 1985-10-02 Furukawa Electric Co Ltd:The 電気接点
CN101972654A (zh) * 2010-09-03 2011-02-16 天津工业大学 具有超声降解有机污染物活性的氧族亚铜半导体超声催化剂及其制备方法
CN102580742A (zh) * 2012-02-05 2012-07-18 淮北师范大学 一种活性炭负载氧化亚铜光催化剂及其制备方法
CN104014341A (zh) * 2014-06-12 2014-09-03 淮北师范大学 一种界面还原法制备Cu2O/Ca(OH)2纳米复合光催化剂的方法
CN107089683A (zh) * 2017-04-25 2017-08-25 中国计量大学 一种二硫化钼/硫化铜/氧化亚铜纳米复合材料的制备方法
CN111286753A (zh) * 2020-02-07 2020-06-16 天津大学 氧化亚铜/硫化亚铜/硫化镍三层光电极及制备和应用
CN112121820A (zh) * 2020-07-07 2020-12-25 四川大学 一种界面的硫化亚铜纳米线阵列高效析氧催化剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Conformal Cu2S-coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties;Ignacio Minguez-Bacho et al.,;《Nanotechnology》;20150413;第26卷;第185401页 *
Synthesis of one dimensional Cu2S nanorods using a self-grown sacrificial template for the electrocatalytic oxygen evolution reaction (OER);Shital B. Kale et al.,;《New Journal of Chemistry》;20200422;第44卷(第21期);第8771-8777页 *
Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations;Muwei Ji et al.,;《Nano Research》;20170513;第10卷;第2977-2987页 *

Also Published As

Publication number Publication date
CN113058616A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN105600828B (zh) 一种多孔纳米CuFe2O4的制备方法
CN115364855B (zh) 一种氧化亚铜/二氧化钛/氧化石墨烯三元纳米复合物的制备方法
CN112875755B (zh) 一种钨酸铋纳米粉体的制备方法
CN110124693A (zh) 石墨烯复合金属离子掺杂缺陷型半导体光催化剂制备方法
Yang et al. Investigation of photocatalytic properties based on Fe and Ce Co-doped ZnO via hydrothermal method and first principles
CN108187684B (zh) 一种机械球磨热处理两步法合成三氧化二铋-氧化亚铜纳米复合物的方法
CN113058616B (zh) 一种氧化亚铜-硫化亚铜纳米复合物的自牺牲模板制备方法
CN109663932A (zh) 一种片状银粉的制备方法
CN112536050A (zh) Bi2O2SiO3-Si2Bi24O40-BiOX双异质结复合光催化剂的制备方法
CN114160164A (zh) CeO2-xSx/CdZnS/ZnO纳米材料的制备方法及应用
CN105524617A (zh) 一种硒化钼量子点的制备方法
CN110745790B (zh) 一种硒化铋纳米粉末的水热制备方法
CN106944120B (zh) 一种氮化碳/氧化石墨烯/(040)晶面钒酸铋异质结及其制备方法和应用
CN105366714A (zh) 一种二氧化锡纳米花阵列的合成方法
CN108017086B (zh) 一种碳酸氧铋-氧化石墨烯纳米复合物的制备方法
Lin et al. High-performance α-Bi2O3/CdS heterojunction photocatalyst: innovative design, electrochemical performance and DFT calculation
CN105084409B (zh) 一种(200)晶面暴露单分散CuO纳米片的合成方法
Jiang et al. Solvothermal synthesis of TiO2/Bi2WO6 heterojunction photocatalyst with optimized interface structure and enabled photocatalytic performance
CN106925306B (zh) 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法
Song et al. Intrinsic photocatalytic water reduction over PbGaBO4 comprising edge-sharing GaO6 chains
Yin et al. Convenient synthesis and enhanced photocatalytic activity of BiOI/BiOBr nanostructures with different morphologies
CN110368979B (zh) 一种管状g-C3N4/CuS/Cu2S纳米复合材料及其制备方法和应用
CN109926070B (zh) 一种Mn0.5Cd0.5S/WO3/Au负载型光催化剂的制备方法
CN104445340A (zh) 由纳米块自组装的八面体氧化铈的制备方法
CN109126769B (zh) 原位自生长制备三氧化钨/钨酸锌复合光催化材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant