CN113039470A - 显微镜装置 - Google Patents

显微镜装置 Download PDF

Info

Publication number
CN113039470A
CN113039470A CN201980075087.XA CN201980075087A CN113039470A CN 113039470 A CN113039470 A CN 113039470A CN 201980075087 A CN201980075087 A CN 201980075087A CN 113039470 A CN113039470 A CN 113039470A
Authority
CN
China
Prior art keywords
pupil
image
microscope device
optical system
intensity modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980075087.XA
Other languages
English (en)
Other versions
CN113039470B (zh
Inventor
林真市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yijingtong Co ltd
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of CN113039470A publication Critical patent/CN113039470A/zh
Application granted granted Critical
Publication of CN113039470B publication Critical patent/CN113039470B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

显微镜装置(1)具有:照明光学系统(12),其对标本(13)进行照明;观察光学系统(14),其引导来自标本(13)的光;以及强度调制部(15),其设置于观察光学系统(14)的光瞳。强度调制部(15)对入射到强度调制部(15)的入射光进行减光。强度调制部(15)在光瞳内的强度透射率分布在第1方向上单调增加或单调减少。

Description

显微镜装置
技术领域
本说明书的公开涉及显微镜装置。
背景技术
作为以无染色方式观察活细胞的方法之一,已知微分干涉观察法(DifferentialInterference Contrast microscopy:微分干涉对比显微镜,以下记为DIC法)。DIC法是以由于偏振光的干涉而产生的明暗的对比度使标本可视化的观察法,例如记载于专利文献1中。DIC法能够通过与相位梯度对应的明亮度来得到具有立体感的图像(以下记为相位梯度图像),因此在容易掌握活细胞的生长状态等这一点上是优异的。
现有技术文献
专利文献
专利文献1:法国专利发明第1059123号说明书
发明内容
发明要解决的课题
可是,活细胞有时收纳在塑料培养皿等塑料容器中。然而,塑料会扰乱入射的偏振光的振动面,因此通过DIC法难以在收纳于塑料容器中的状态下观察活细胞。
根据以上那样的实际情况,本发明的一个方面的目的在于,提供一种即使在将标本收纳在塑料容器中的状态下也能够得到该标本的相位梯度图像的技术。
用于解决课题的手段
本发明的一个方式的显微镜装置具有:照明光学系统,其对标本进行照明;观察光学系统,其引导来自所述标本的光;以及强度调制部,其设置于所述观察光学系统的光瞳或者与所述光瞳光学共轭的位置,对入射到所述强度调制部的入射光进行减光,光利用率分布在第1方向上单调增加或单调减少,该光利用率分布是所述强度调制部在所述光瞳内或者所述光瞳的像内的强度透射率分布。
本发明的另一方式的显微镜装置具有:照明光学系统,其对标本进行照明;观察光学系统,其引导来自所述标本的光;以及强度调制部,其设置于所述观察光学系统的光瞳或者与所述光瞳光学共轭的位置,对入射到所述强度调制部的入射光进行减光,光利用率分布在第1方向上单调增加或单调减少,该光利用率分布是所述强度调制部在所述光瞳内或者所述光瞳的像内的强度反射率分布。
发明效果
根据上述方式,即使在将标本收纳在塑料容器中的状态下,也能够得到该标本的相位梯度图像。
附图说明
图1是例示出显微镜装置1的结构的图。
图2是用于对强度调制部15的作用进行说明的图。
图3是例示出显微镜装置2的结构的图。
图4是例示出强度调制部15的强度透射率分布的图。
图5是例示出显微镜装置3的结构的图。
图6是例示出第1实施方式的显微镜装置100的结构的图。
图7是例示出对比度强调处理的效果的图。
图8是例示出光瞳面上的照明光束的范围的图。
图9是示出被开口光圈限制的照明光学系统的数值孔径与图像的对比度的关系的一例的图。
图10是示出被开口光圈限制的照明光学系统的数值孔径与图像的对比度的关系的另一例的图。
图11是用于说明立体形状显示方法的图。
图12是例示出第2实施方式的显微镜装置300的结构的图。
图13是示出强度调制部的设定与图像的关系的一例的图。
图14是示出强度调制部的设定与图像的关系的另一例的图。
图15是用于说明立体形状显示方法的图。
图16是示出排列有方位不同的多个渐变滤镜的例子的图。
图17是示出变更渐变滤镜的角度的例子的图。
图18是例示出第3实施方式的显微镜装置400的结构的图。
图19是例示出空间光调制器500的图。
图20是例示出第3实施方式的显微镜装置600的结构的图。
图21是示出开口光圈的开口位置与伴随散焦的图像的移动的关系的图。
图22是示出开口光圈的开口位置与伴随散焦的图像的移动的关系的另一图。
具体实施方式
图1是例示出显微镜装置1的结构的图。图1所示的显微镜装置1是得到与由微分干涉显微镜得到的图像类似的相位梯度图像的装置。
显微镜装置1具有对标本13进行照明的照明光学系统12、将来自标本13的光向摄像元件16引导的观察光学系统14以及对入射光进行减光的强度调制部15。显微镜装置1还可以具有射出照明光的光源11、摄像元件16以及显示标本13的图像的显示装置17。
照明光学系统12利用从光源11射出的照明光对标本13进行照明。照明光学系统12包含一枚以上的透镜。标本13是使入射光产生相位变化的相位物体。标本13例如是无染色的生物体标本。观察光学系统14将透射过标本13的光向摄像元件16引导,在摄像元件16的受光面上形成标本13的光学像。观察光学系统14包含透镜14a和透镜14b。
强度调制部15设置在观察光学系统14的光瞳上,对入射到强度调制部15的入射光进行减光。强度调制部15在观察光学系统14的光瞳内的强度透射率分布在特定方向(以下记为第1方向)上单调增加或单调减少。该单调增加或单调减少优选在观察光学系统14的光瞳面上至少在供照明光束通过的区域的范围内实现。
另外,在本说明书中,“方向”由直线定义,“朝向”由箭头定义。也就是说,例如,南北方向是一个方向,但向北和向南是不同的朝向。另外,在本说明书中,将由某个方向定义的2个朝向中的一方表达为某个方向的正朝向,将2个朝向中的另一方表达为某个方向的负朝向。即,例如,将向北表达为南北方向的正朝向,将向南表达为南北方向的负朝向。另外,正负并没有意义,因此,也可以将向北表达为南北方向的负朝向,将向南表达为南北方向的正朝向。
另外,在本说明书中,“单调增加”或“单调减少”除了连续且单调地增加或减少的情况以外,还包含在至少3段以上的步骤中阶段性地单调增加或单调减少的情况。即,强度透射率在第1方向上单调增加是指强度透射率分布相对于第1方向的位置的微分值无论第1方向的位置如何均为0以上。另外,强度透射率在第1方向上单调减少是指强度透射率分布相对于第1方向的位置的微分值无论第1方向的位置如何均为0以下。
强度调制部15例如也可以包含具有强度透射率分布的透射型的减光滤镜。在该情况下,光瞳内的强度透射率分布在第1方向上单调增加或单调减少。另外,减光滤镜例如是渐变滤镜、ND(Neutter Density:中性密度)滤镜等。
光源11射出对标本13进行照明的照明光。光源11例如是卤素灯。摄像元件16是根据由观察光学系统14引导的来自标本13的光而获取标本13的图像数据的图像获取部的一例。摄像元件16例如是CCD(Charge-CoupledDevice:电荷耦合器件)图像传感器、CMOS(Complementary Metal-Oxide-Semiconductor:互补金属氧化物半导体)图像传感器等。显示装置17显示与由微分干涉显微镜得到的图像类似的标本13的相位梯度图像。显示装置17例如是液晶显示器、有机EL(OLED)显示器、CRT(Cathode Ray Tube:阴极射线管)显示器等。
图2是用于对强度调制部15的作用进行说明的图。在图1所示的显微镜装置1中,透射过标本13的光以与标本13的相位梯度对应的强度透射率被强度调制部15减光。以下,参照图2对这一点进行详细地说明。
在图2中,描绘了从光源11射出的照明光束中的从光轴上射出的光束。如图1所示,从光轴上射出的光束被照明光学系统12转换为与光轴平行的平行光束,并照射到标本13。因此,在标本13没有相位梯度的情况下,在与光轴平行的平行光束的状态下从标本13射出,并会聚在光瞳位置。因此,光束整体与标本13中通过的区域无关地在强度调制部15中以相同的强度透射率被减光。与此相对,如图2所示,在标本13具有相位梯度的情况下,入射到标本13的光束因标本13的相位梯度而折射。因此,构成光束的光线根据在标本13中通过的区域产生的相位梯度而通过光瞳面的不同位置,其结果为,在配置于光瞳面的强度调制部15中以不同的强度透射率被减光。
例如,在图2所示的例子中,标本13针对通过点S1、点S3、点S5的光线不具有局部的相位梯度。因此,这些光线在标本13中不折射,在与光轴平行的光线的状态下入射到观察光学系统14,并均通过强度调制部15上的点F2。由此,通过点S1、点S3、点S5的光线在强度调制部15中均以中等程度的强度透射率被减光,并分别入射到摄像元件16上的点P5、点P3、点P1。另外,图2所示的强度调制部15的浓淡表示强度透射率,图2所示的摄像元件16的浓淡表示摄像元件16的受光面的光强度。
另外,标本13针对通过点S2的光线具有局部的相位梯度。因此,通过点S2的光线在标本13中折射,作为相对于光轴倾斜的光线入射到观察光学系统14,并通过强度调制部15上的与点F2不同的点F3。由此,通过点S2的光线在强度调制部15中以低的强度透射率被减光,并入射到摄像元件16上的点P4。
并且,标本13针对通过点S4的光线,具有符号与针对通过点S2的光线所具有的相位梯度相反的局部的相位梯度。因此,通过点S4的光线在标本13中向与通过点S2的光线相反的方向折射,作为相对于光轴向与通过点S2的光线相反的方向倾斜的光线而入射到观察光学系统14。由此,通过点S4的光线通过强度调制部15上的以点F2为基准位于点F3的相反侧的点F1。因此,通过点S4的光线在强度调制部15中以高的强度透射率被减光,并入射到摄像元件16上的点P2。
如上所述,在显微镜装置1中,通过标本13的光线根据标本13的局部的相位梯度而通过光瞳面的不同位置。并且,在显微镜装置1中,单调增加或单调减少的强度透射率被分配到光瞳面,因此在光瞳面中以与局部的相位梯度对应的强度透射率来调制光强度。因此,根据显微镜装置1,能够在摄像元件16上形成具有与相位梯度对应的光强度的光学像,能够得到与由微分干涉显微镜得到的图像类似的相位梯度图像。
另外,在显微镜装置1中,仅通过将强度调制部15设置于光瞳面,就能够得到相位梯度图像。因此,不需要使用在微分干涉显微镜中所需的昂贵的诺马斯基棱镜。另外,与微分干涉显微镜不同,不需要使用专用的物镜和专用的聚光透镜。因此,根据显微镜装置1,容易从现有的显微镜进行扩展,能够比微分干涉显微镜廉价地构成。
并且,在显微镜装置1中,不利用偏振特性,利用由相位梯度引起的光的折射来对图像赋予对比度。因此,即使扰乱偏振光的振动面的塑料被放置在光路上,也不会对观察产生影响。因此,根据显微镜装置1,与微分干涉显微镜不同,能够使用塑料容器,即使在将标本13收纳于塑料容器中的状态下,也能够得到标本13的相位梯度图像。
在图1和图2中,示出了将强度调制部15配置于观察光学系统14的光瞳上的例子,但强度调制部15的配置场所不限于观察光学系统14的光瞳。也可以如图3所示的显微镜装置2那样配置于照明光学系统12的光瞳。另外,透镜12a和透镜12b是构成照明光学系统12的透镜。在该情况下,观察光学系统14的光瞳与照明光学系统12的光瞳也在光学上共轭,因此能够得到同样的效果。
即,强度调制部15只要设置在观察光学系统14的光瞳或者与观察光学系统14的光瞳光学共轭的位置即可。而且,在强度调制部15设置在与观察光学系统14的光瞳光学共轭的位置的情况下,只要投影到观察光学系统14的光瞳的像内的、强度调制部15的强度透射率分布在第1方向上单调增加或单调减少即可,该光瞳的像在与光瞳光学共轭的位置。
图4是例示出强度调制部15的强度透射率分布的图。如图4所示,强度调制部15例如具有由下式(1)表示的强度透射率分布。这里,T表示强度透射率分布,ξ表示光瞳面内的第1方向的位置。位置ξ=0是光瞳面的中心位置,位置ξ=-1、1分别是光瞳面上的光瞳的端部位置。
T(ξ)=exp[-2(ξ-1)2] (1)
式(1)所示的强度透射率分布相对于第1方向的位置的2阶微分值为正。如果光瞳内的强度透射率分布相对于第1方向的位置的2阶微分值为正,则与强度透射率相对于位置线性地变化的情况相比,能够提高相位梯度图像的对比度。因此,优选光瞳内的强度透射率分布相对于第1方向的位置的2阶微分值为正。
另外,式(1)所示的强度透射率分布是第1方向的位置的指数函数。如果光瞳内的强度透射率分布是第1方向的位置的指数函数,则作用于通过标本13的平坦部分的光线的强度透射率与作用于通过标本13的倾斜部分的光线的强度透射率之比无论入射到标本13的光束的角度如何均是恒定的。
例如,在图2中,例示出从光源11的光轴上射出并与光轴平行地入射到标本13的照明光束,但从光源11的光轴外射出的照明光束倾斜地入射到标本13。其结果为,倾斜入射的照明光束在强度调制部15中通过相对于平行入射的照明光束平行移动一定距离后的位置。如果强度透射率分布是指数函数,则在光瞳面上离开一定距离的位置的2个强度透射率之比无论位置如何均被维持为恒定值。因此,平行入射的照明光束和倾斜入射的照明光束以相同的对比度比形成光学像。
入射到摄像元件16的光是来自光源11上的各点的照明光束的集合。因此,通过由各照明光束实现相同的对比度,能够在不相互抵消对比度的情况下实现高对比度。因此,期望光瞳内的强度透射率分布是第1方向的位置的指数函数。
在图1至图3中,例示出不具有开口光圈的显微镜装置1和显微镜装置2,但图5所示的显微镜装置3具有配置在与强度调制部15光学共轭的位置的开口光圈18。通过调整开口光圈18的开口直径,观察光学系统14能够利用与比强度调制部15的开口小的开口对应的光束形成标本13的光学像,其中,该光束是从观察光学系统14射出的光束。由此,与利用通过强度调制部15的整个开口的光束形成光学像的情况相比,能够得到具有高对比度的光学像。另外,通过调整开口光圈18的开口直径,也能够进行对比度的调整。
在图5中,示出了在从光源11到标本13的照明光路上设置强度调制部15,在从标本13到摄像元件16的检测光路上设置开口光圈18的例子,但也可以是在检测光路上配置强度调制部15,在照明光路上配置开口光圈18。这是因为,开口光圈18无论在配置于照明光路上的情况下,还是在配置于检测光路上的情况下,均能够缩窄入射到摄像元件16的光束,能够得到同样的效果。
另外,在本说明书中,在简称为光学系统的数值孔径的情况下,是指由该光学系统的光学设计决定的数值孔径,是该光学系统能够实现的最大的数值孔径。
在强度调制部15配置于检测光路上的情况下,照明光学系统12的数值孔径优选小于观察光学系统14的物体侧的数值孔径。在该情况下,即使不具有开口光圈18,也能够通过与比观察光学系统14的像侧的数值孔径小的数值孔径对应的光束来形成光学像。因此,与调整开口光圈18的开口直径的情况同样地,能够得到具有高对比度的光学像。更具体而言,照明光学系统12的数值孔径例如优选为观察光学系统14的物体侧的数值孔径的90%以下。
以下,对本发明的实施方式具体地进行说明。
<第1实施方式>
图6是例示出本实施方式的显微镜装置100的结构的图。图7是例示出对比度强调处理的效果的图。图8是例示出光瞳面上的照明光束的范围的图。图9和图10是例示出被开口光圈限制的照明光学系统的数值孔径与图像的对比度的关系的图。图11是用于说明立体形状显示方法的图。
如图6所示,显微镜装置100具有在镜座110与镜筒120之间具有适配器130的倒立显微镜、照相机140、控制装置150以及显示装置160。
镜座110具有光源111、具有开口光圈112的聚光器113、载物台114、物镜115、物镜盘116以及成像透镜117。镜筒120是单筒或双筒镜筒,具有目镜121。另外,开口光圈112由叶片光圈等构成,能够调整开口直径。
适配器130具有光路切换镜136。通过变更光路切换镜136的位置,能够切换将成像透镜117形成的光学像投影到目镜121的前侧焦点位置的目视观察状态和将成像透镜117形成的光学像投影到照相机140的拍摄状态。
适配器130还具有中继透镜131、渐变滤镜132、滑块133、拨盘134以及中继透镜135。设置有渐变滤镜132的滑块133设置在中继透镜131与中继透镜135之间,通过将滑块133插入至规定的位置,在渐变滤镜132上投影开口光圈112的像。
渐变滤镜132是上述的强度调制部的一例,具有在特定方向上单调增加或单调减少的强度透射率。另外,渐变滤镜132的方位与设置于滑块133的拨盘134的旋转联动地变化。因此,使用者通过操作拨盘134,能够调整强度透射率单调增加或单调减少的方向。
照相机140是根据由观察光学系统引导的来自标本的光而获取标本的图像数据的图像获取部。照相机140也可以根据图像数据进行强调在显示装置160上显示的标本的图像的对比度的强调处理。即,照相机140是图像获取部,也可以是对比度强调部。
控制装置150是控制照相机140的控制装置,具有拨盘151。通过使用者旋转拨盘151,显微镜装置100能够调整强调处理中的对比度的强调量。另外,控制装置150也可以是控制显示装置160的控制装置。在该情况下,也可以通过使用者旋转拨盘151,从而显示装置160根据图像数据进行强调在显示装置160上显示的标本的图像的对比度的强调处理。
显示装置160具有根据图像数据而强调标本的图像的对比度的对比度强调部161。
根据以上那样构成的显微镜装置100,通过渐变滤镜132的强度透射率分布,能够在照相机140上形成具有与标本的相位梯度对应的光强度的光学像。因此,如图7所示,能够得到与由微分干涉显微镜得到的图像201类似的作为相位梯度图像的图像202和图像203。另外,图像201、图像202以及图像203是拍摄有大小2个半球状的标本的图像。图像202是用照相机140强调对比度前的图像,图像203是用照相机140强调对比度后的图像。
另外,在显微镜装置100中,通过渐变滤镜132将相位梯度转换为对比度,进而通过图像处理来强调对比度。由此,如图7的图像203所示那样,能够得到相位梯度作为对比度而被充分视觉辨认的图像。
另外,在显微镜装置100中,仅通过在现有的显微镜中追加适配器130就能够得到相位梯度图像。另外,能够在不利用偏振特性的情况下得到相位梯度图像。因此,根据显微镜装置100,能够通过廉价的结构,在收纳于塑料容器中的状态下得到标本的相位梯度图像。
并且,在显微镜装置100中,通过调整开口光圈112的开口直径,如图8所示那样,在物镜115的光瞳面上,能够将供照明光束通过的区域D2收纳在物镜115的光瞳D1内。因此,能够抑制依赖于入射光的角度的、对比度的变动,能够得到高对比度。另外,也能够调整对比度。
图9所示的图像204至图像208是通过图像处理强调对比度之前的图像,是将被开口光圈112限制的照明光学系统的数值孔径(NA)从0.55阶段性地减小至0.1时的图像。另外,图10所示的图像209至图像213是通过图像处理强调了对比度后的图像,是将被开口光圈112限制的照明光学系统的数值孔径(NA)从0.55阶段性地减小至0.1时的图像。如图9和图10所示,越是减小被开口光圈112限制的照明光学系统的数值孔径,越能够强调对比度。另一方面,若过于强调对比度,则会失去立体感,因此,期望看对比度与立体感的平衡情况来调整开口光圈112。
另外,散焦特性也根据对比度而变化。如果对比度过强,则随着散焦量变大,不仅像模糊,而且振铃(リンギング)变得明显。因此,除了对比度和立体感之外,还期望考虑散焦特性来调整开口光圈112。
另外,若通过图像处理而过于强调对比度,则噪声会强烈地叠加。因此,期望图像处理前的图像的对比度高到某种程度。具体而言,被开口光圈112限制的照明光学系统的数值孔径优选为物镜115的物体侧的数值孔径的90%以下。
并且,在显微镜装置100中,通过旋转拨盘134,能够变更渐变滤镜132的方位。由此,能够调整在相位梯度图像中产生对比度的方向、即检测相位梯度的方向。另外,如图11所示,也可以通过旋转拨盘134,从而以渐变滤镜132的方位相差90度的朝向获取2张相位梯度图像(图像214和图像215)。通过对方位相差90度的2张相位梯度图像进行运算处理,能够补偿由相位梯度的检测方向引起的信息的缺失,因此如图像216所示那样,能够更准确地显示标本的立体形状。
<第2实施方式>
图12是例示出本实施方式的显微镜装置300的结构的图。图13和图14是例示出强度调制部的设定与图像的关系的图。图15是用于说明立体形状显示方法的图。
显微镜装置300在代替适配器130而具有适配器330这一点、代替控制装置150而具有控制装置180这一点、以及代替显示装置160而具有显示装置190这一点上与显微镜装置100不同。其他方面与显微镜装置100相同。
控制装置180除了具有对照相机140或显示装置190进行的对比度强调处理进行调整的拨盘181以外,还具有对照相机140或显示装置190进行的彩度强调处理进行调整的拨盘182。
显示装置190除了进行对比度强调处理的对比度强调部191以外,还具有进行彩度强调处理的彩度强调部192。彩度强调部192根据图像数据,进行强调在显示装置190上显示的标本的图像的彩度的处理。
适配器330在代替滑块133而具有滑块333这一点上与适配器130不同。滑块333配置在中继透镜131与中继透镜135之间的光路上,设置有多个渐变滤色镜(渐变滤色镜332a、渐变滤色镜332b)。通过将滑块333插入至规定的位置,在包含多个渐变滤色镜的强度调制部上投影出开口光圈112的像。
渐变滤色镜332a和渐变滤色镜332b是分光透射率分布(分光强度透射率分布)不同的多个强度调制元件的一例。渐变滤色镜332a针对第1波长具有在特定方向上单调增加或单调减少的强度透射率。渐变滤镜332b针对与第1波长不同的第2波长具有在特定方向上单调增加或单调减少的强度透射率。另外,第1波长例如是红色的波长,第2波长例如是蓝色的波长。
渐变滤色镜332a的方位能够通过使设置于滑块333的拨盘334a旋转来变更。渐变滤色镜332b的方位能够通过使设置于滑块333的拨盘334b旋转来变更。
通过以上那样构成的显微镜装置300,也能够由包含多个渐变滤色镜的强度调制部根据相位梯度进行减光,因此与显微镜装置100同样地,能够得到与由微分干涉显微镜得到的图像类似的相位梯度图像。
另外,在显微镜装置300中,通过操作拨盘334a和拨盘334b使2枚渐变滤色镜的方位朝向相反,如图13所示,强度调制部在光瞳内的针对第1波长的第1强度透射率分布在第1方向的正朝向上单调增加,强度调制部在光瞳内的针对第2波长的第2强度透射率分布在第1方向的负朝向上单调增加。由此,如图像217所示,能够根据第1方向的相位梯度的符号得到颜色不同的相位梯度图像。具体而言,例如,能够得到在箭头A1的朝向上红色变浓、在箭头A2的朝向上蓝色变浓的图像。因此,除了浓淡以外,还能够根据颜色的差异来识别标本的形状、特别是凹凸,还能够根据颜色的差异来识别相位梯度的正负。因此,与显微镜装置100相比,能够容易准确地识别标本的形状。
另外,在显微镜装置300中,通过对拨盘334a和拨盘334b进行操作而使2枚渐变滤色镜的方位例如错开90度,从而如图14所示那样,强度调制部在光瞳内的针对第1波长的第1强度透射率分布在第1方向上单调增加或者单调减少,强度调制部在光瞳内的针对第2波长的第2强度透射率分布在与第1方向不同的方向上单调增加或者单调减少。由此,如图像218所示那样,能够根据相位梯度的方向得到色调(颜色的平衡)不同的相位梯度图像。具体而言,例如,能够得到在箭头A3的朝向上红色变浓,在箭头A4的朝向上蓝色变浓的图像。因此,除了浓淡以外,还能够根据颜色的差异来识别标本的形状、特别是厚度方向的二维分布,还能够根据色调的差异来识别相位梯度的朝向。因此,与显微镜装置100相比,能够容易准确地识别标本的形状。
另外,在显微镜装置300中,如图15所示,也可以将由照相机140获取的相位梯度图像分解为R成分的图像219、G成分的图像220、B成分的图像221。通过从这些图像中分别检测不同方向的相位梯度,能够确定标本的立体形状,能够像图像222所示那样立体显示所确定的标本的立体形状。
另外,以上,示出了在渐变滤色镜332a和渐变滤色镜332b中强度透射率单调增加或单调减少的方向或朝向不同的例子,但也可以使它们朝向相同的方向。在该情况下,优选在渐变滤色镜332a和渐变滤色镜332b中强度透射率的增加率或减少率不同。即,光瞳内的强度透射率分布优选根据波长而在第1方向的正朝向上具有不同的增加率或减少率。由此,在第1方向的正朝向上波长间的强度透射率的比产生差异,因此能够根据相位梯度得到色调不同的相位梯度图像。
在图6所示的显微镜装置100和图12所示的显微镜装置300中,示出了通过使设置于滑块的拨盘旋转来变更渐变滤镜或者渐变滤色镜的方位、即相位梯度的检测方向的例子,但相位梯度的检测方向也可以通过其他方法来变更。例如如图16所示,显微镜装置100也可以在滑块133上设置包含多个强度调制元件的强度调制部。多个强度调制元件是具有单调增加或单调减少的朝向互不相同的强度透射率分布的多个渐变滤镜(渐变滤镜132a、渐变滤镜132b、渐变滤镜132c、渐变滤镜132d)。也可以使滑块133沿与观察光学系统的光轴交叉的方向滑动,使多个强度调制元件移动,由此变更放置于光路上的强度调制元件,由此变更相位梯度的检测方向。
在图6中,示出了旋转强度调制部的拨盘134作为变更单元而发挥功能的例子,该变更单元变更光瞳内或光瞳的像内的强度调制部的强度透射率分布,在图16中,示出了滑块133作为变更单元而发挥功能的例子,但变更单元不限于这些例子。例如如图17所示,变更单元也可以是变更强度调制部(渐变滤镜132)相对于观察光学系统的光轴的角度的旋转轴132e。通过使旋转轴132e依照物镜的光瞳直径进行旋转,能够使渐变滤镜132的强度透射率最高的区域和最低的区域与光瞳的端部一致。因此,能够有效地利用渐变滤镜132的强度透射率分布而得到高对比度。
<第3实施方式>
图18是例示出本实施方式的显微镜装置400的结构的图。显微镜装置400在代替适配器130而具有适配器430这一点上与显微镜装置100不同。其他方面与显微镜装置100相同。
适配器430在代替中继透镜131而具有可变焦点光学系统431这一点、具有对滑块133进行引导的引导件432这一点上与适配器130不同。
可变焦点光学系统431包含在观察光学系统中,配置在渐变滤镜132与标本之间的光路上。通过变更可变焦点光学系统431的焦距,投影到渐变滤镜132上的物镜115的光瞳的像的大小发生变化。因此,通过变更可变焦点光学系统431的焦距,能够调整对渐变滤镜132所具有的强度透射率分布的哪个范围进行利用。另外,对于伴随物镜的更换的光瞳直径的变化,也能够通过变更可变焦点光学系统431的焦距来应对。
引导件432是通过引导滑动件133沿光轴方向的移动而使渐变滤镜132沿光轴方向运动的移动单元的一例。通过移动单元使包含渐变滤镜132的强度调制部沿光轴方向运动,从而能够调整强度调制部与光瞳面的位置关系。这在光瞳面的位置因物镜的更换而变化的情况下特别有效。
通过以上那样构成的显微镜装置400,也能够由强度调制部根据相位梯度进行减光,因此与显微镜装置100同样地,能够得到与由微分干涉显微镜得到的图像类似的相位梯度图像。
另外,在图6、图12、图18中,示出了强度调制部包含渐变滤镜的例子,但强度调制部不限于渐变滤镜。例如可以是图19所示那样的多个像素501呈格子状排列的空间光调制器500,也可以通过空间光调制器500实现在第1方向上单调增加或单调减少的强度透射率分布。
<第4实施方式>
图20是例示出本实施方式的显微镜装置600的结构的图。显微镜装置600具有显微镜主体610、计算机640以及显示装置160。另外,PMT 631和计算机640构成图像获取部650。
显微镜主体610是扩展了激光扫描型显微镜而得的主体,通过与计算机640协作而能够得到共焦图像。从激光源611射出的激光在扩束器612中被扩大了光束直径,然后经由开口光圈613、分色镜614、检流镜615以及中继透镜616入射到安装于物镜盘617的物镜618。在物镜盘617上,除了物镜618以外,还安装有倍率不同的物镜619。物镜618对激光进行会聚,并照射到放置在载物台620上的塑料培养皿621内的培养细胞622的一点。激光的聚光位置能够通过检流镜615中的激光的偏转方向来控制。因此,通过控制检流镜615,能够二维地扫描培养细胞622。
在被照射了激光的培养细胞622中,产生荧光,经由物镜618、中继透镜616、检流镜615入射到分色镜614。然后,被分色镜614反射的荧光通过透镜623而照射到共焦光圈624,仅从焦点位置产生的荧光通过设置于共焦光圈624的针孔,入射到光电倍增管(以下记为PMT)625。
计算机640通过使用激光的扫描位置二维地映射在培养细胞622的扫描中从PMT625输出的信号,得到共焦图像。
显微镜主体610还具有通用聚光器626、透镜630以及PMT 631。在通用聚光器626的转台中收纳有多个调制元件(调制元件627、调制元件628、调制元件629),能够将从多个调制元件中选择的调制元件配置在光路上。
收纳在通用聚光器626中的多个调制元件中的至少1个是强度调制部。在该例子中,调制元件628例如是具有在特定方向上单调增加或单调减少的强度透射率分布的渐变滤镜,配置在与物镜618的光瞳光学共轭的位置。
照射到培养细胞622的激光透射过塑料培养皿621而入射到通用聚光器626。然后,由通用聚光器626内的调制元件628以与相位梯度对应的强度透射率进行减光,并经由透镜630入射到PMT 631。
计算机640通过使用激光的扫描位置二维地映射在培养细胞622的扫描中从PMT631输出的信号,得到相位梯度图像。另外,计算机640可以进行强调相位梯度图像的对比度的图像处理,也可以代替计算机640而进行由显示装置160的对比度强调部161强调对比度的图像处理。
在得到相位梯度图像的情况下,优选预先调整开口光圈613的开口直径,使得从物镜618射出的光束的数值孔径比通用聚光器626的数值孔径小。由此,能够得到高对比度的相位梯度图像。
根据以上那样构成的显微镜装置600,能够在得到共焦图像的同时得到与由微分干涉显微镜得到的图像类似的相位梯度图像。因此,对于运动的活细胞,能够准确地掌握荧光色素的位置与细胞的构造的相关。
上述实施方式示出了用于容易理解发明的具体例,本发明的实施方式不限于此。也可以将上述的实施方式的一部分应用于其他实施方式而构成本发明的又一实施方式。在不脱离权利要求书的记载的范围内,显微镜装置能够进行各种变形、变更。
例如,在上述实施方式中,示出了利用倒立显微镜获取相位梯度图像的例子,但相位梯度图像也可以通过正立显微镜来获取。另外,在上述实施方式中,示出了根据透射光获取相位梯度图像的例子,但相位梯度图像也可以根据反射光来获取。即,也可以使用落射照明光学系统来获取相位梯度图像。并且,在上述实施方式中,示出了强度调制部包含渐变滤镜的例子,但也可以包含强度反射率具有分布的渐变反射镜。在该情况下,强度调制部在光瞳内或光瞳的像内的强度反射率分布只要在第1方向上单调增加或单调减少即可。
另外,强度调制部的强度透射率分布和强度调制部的强度反射率分布均为表示入射到强度调制部的光强度与从强度调制部射出的光强度的比率的分布。即,强度调制部的强度透射率分布和强度调制部的强度反射率分布均是表示强度调制部中的光利用率的光利用率分布的一例。另外,强度调制部的分光强度透射率分布和强度调制部的分光强度反射率分布是表示强度调制部中的分光光利用率的分光光利用率分布的一例。
在上述实施方式中,示出了开口光圈的开口的中心位于光轴上的例子,但开口光圈也可以具有使开口位置偏心的构造。偏心的构造没有特别限定,例如也可以采用凸轮、滑块等。图21和图22是示出开口光圈的开口位置与伴随散焦的图像的移动的关系的图。如图21的(a)所示,在开口位置(供照明光束通过的区域D2)位于光轴上时,有时像图21的(b)所示的图像291那样,伴随散焦而图像在与光轴垂直的方向上移动。如图22的(a)所示,通过使开口位置相对于光轴偏心,即,通过使供照明光束通过的区域D2相对于光瞳D1偏心,从而如图22的(b)所示那样,能够抑制伴随散焦的图像的移动。
标号说明
1、2、3、100、300、400、600:显微镜装置;11、111:光源;12:照明光学系统;12a、12b、14a、14b、623、630:透镜;13:标本;14:观察光学系统;15:强度调制部;16:摄像元件;17、160、190:显示装置;18、112、613:开口光圈;110:镜座;113:聚光器;114、620:载物台;115、618、619:物镜;116、617:物镜盘;117:成像透镜;120:镜筒;121:目镜;130、330、430:适配器;131、135、616:中继透镜;132、132a-132d:渐变滤镜;132e:旋转轴;133:滑块;134、151、181、182、334a、334b:拨盘;136:光路切换镜;140:照相机;150、180:控制装置;161、191:对比度强调部;192:彩度强调部;201-222、291、292:图像;332a、332b:渐变滤色镜;500:空间光调制器;501:像素;333:滑块;431:可变焦点光学系统;432:引导件;610:显微镜主体;611:激光源;612:扩束器;614:分色镜;615:检流镜;621:塑料培养皿;622:培养细胞;624:共焦光圈;625、631:PMT;626:通用聚光器;627-629:调制元件;640:计算机;650:图像获取部。

Claims (25)

1.一种显微镜装置,其特征在于,
该显微镜装置具有:
照明光学系统,其对标本进行照明;
观察光学系统,其引导来自所述标本的光;以及
强度调制部,其设置于所述观察光学系统的光瞳或者与所述光瞳光学共轭的位置,对入射到所述强度调制部的入射光进行减光,
光利用率分布在第1方向上单调增加或单调减少,该光利用率分布是所述强度调制部在所述光瞳内或者所述光瞳的像内的强度透射率分布。
2.一种显微镜装置,其特征在于,
该显微镜装置具有:
照明光学系统,其对标本进行照明;
观察光学系统,其引导来自所述标本的光;以及
强度调制部,其设置于所述观察光学系统的光瞳或者与所述光瞳光学共轭的位置,对入射到所述强度调制部的入射光进行减光,
光利用率分布在第1方向上单调增加或单调减少,该光利用率分布是所述强度调制部在所述光瞳内或者所述光瞳的像内的强度反射率分布。
3.根据权利要求1或2所述的显微镜装置,其特征在于,
该显微镜装置还具有:
图像获取部,其根据由所述观察光学系统引导的来自所述标本的光,获取所述标本的图像数据;以及
对比度强调部,其根据由所述图像获取部获取到的所述图像数据,进行强调在显示装置上显示的所述标本的图像的对比度的处理。
4.根据权利要求3所述的显微镜装置,其特征在于,
该显微镜装置还具有所述显示装置。
5.根据权利要求1至4中的任意一项所述的显微镜装置,其特征在于,
所述观察光学系统利用从所述观察光学系统射出的、与比所述观察光学系统的像侧的数值孔径小的数值孔径对应的光束形成所述标本的光学像。
6.根据权利要求5所述的显微镜装置,其特征在于,
所述照明光学系统的数值孔径比所述观察光学系统的物体侧的数值孔径小。
7.根据权利要求6所述的显微镜装置,其特征在于,
所述照明光学系统的数值孔径为所述观察光学系统的物体侧的数值孔径的90%以下。
8.根据权利要求5至7中的任意一项所述的显微镜装置,其特征在于,
该显微镜装置还具有开口光圈。
9.根据权利要求1至8中的任意一项所述的显微镜装置,其特征在于,
所述光瞳内或所述光瞳的像内的所述光利用率分布的相对于所述第1方向的位置的2阶微分值为正。
10.根据权利要求9所述的显微镜装置,其特征在于,
所述光瞳内或所述光瞳的像内的所述光利用率分布是所述第1方向的位置的指数函数。
11.根据权利要求3或4所述的显微镜装置,其特征在于,
该显微镜装置具有彩度强调部,该彩度强调部根据所述图像数据,进行强调在所述显示装置上显示的所述标本的图像的彩度的处理。
12.根据权利要求1至11中的任意一项所述的显微镜装置,其特征在于,
所述光瞳内或所述光瞳的像内的所述光利用率分布根据波长而在所述第1方向的正朝向上具有不同的增加率或减少率。
13.根据权利要求1至12中的任意一项所述的显微镜装置,其特征在于,
所述强度调制部在所述光瞳内或所述光瞳的像内的针对第1波长的第1光利用率分布在所述第1方向的正朝向上单调增加,
所述强度调制部在所述光瞳内或所述光瞳的像内的针对第2波长的第2光利用率分布在所述第1方向的负朝向上单调增加,
所述第1波长与所述第2波长不同。
14.根据权利要求1至11中的任意一项所述的显微镜装置,其特征在于,
所述强度调制部在所述光瞳内或所述光瞳的像内的针对第1波长的第1光利用率分布在所述第1方向上单调增加或单调减少,
所述强度调制部在所述光瞳内或所述光瞳的像内的针对第2波长的第2光利用率分布在与所述第1方向不同的方向上单调增加或单调减少,
所述第1波长与所述第2波长不同。
15.根据权利要求12至14中的任意一项所述的显微镜装置,其特征在于,
所述强度调制部包含分光光利用率分布不同的多个强度调制元件。
16.根据权利要求1至15中的任意一项所述的显微镜装置,其特征在于,
该显微镜装置还具有对所述光瞳内或所述光瞳的像内的所述光利用率分布进行变更的变更单元。
17.根据权利要求16所述的显微镜装置,其特征在于,
所述变更单元使所述强度调制部旋转。
18.根据权利要求16所述的显微镜装置,其特征在于,
所述强度调制部包含多个强度调制元件,
所述多个强度调制元件具有单调增加或单调减少的朝向互不相同的光利用率分布,
所述变更单元使所述多个强度调制元件沿与所述观察光学系统的光轴或所述照明光学系统的光轴交叉的方向移动。
19.根据权利要求16所述的显微镜装置,其特征在于,
所述变更单元变更所述强度调制部相对于所述观察光学系统的光轴或所述照明光学系统的光轴的角度。
20.根据权利要求16所述的显微镜装置,其特征在于,
所述强度调制部配置在检测光路上,
所述变更单元是所述观察光学系统中包含的可变焦点光学系统,并且所述可变焦点光学系统配置在所述强度调制部与所述标本之间的光路上。
21.根据权利要求1至20中的任意一项所述的显微镜装置,其特征在于,
该显微镜装置还具有移动单元,该移动单元使所述强度调制部在所述观察光学系统的光轴的方向或所述照明光学系统的光轴的方向上运动。
22.根据权利要求1或2所述的显微镜装置,其特征在于,
所述强度调制部包含多个像素呈格子状排列的空间光调制器。
23.根据权利要求1所述的显微镜装置,其特征在于,
所述强度调制部包含具有所述强度透射率分布的渐变滤镜。
24.根据权利要求2所述的显微镜装置,其特征在于,
所述强度调制部包含具有所述强度反射率分布的渐变反射镜。
25.根据权利要求8所述的显微镜装置,其特征在于,
所述开口光圈具有使开口位置相对于光轴偏心的构造。
CN201980075087.XA 2018-11-19 2019-11-15 显微镜装置 Active CN113039470B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018-216359 2018-11-19
JP2018216359A JP7193989B2 (ja) 2018-11-19 2018-11-19 顕微鏡装置
PCT/JP2019/044855 WO2020105554A1 (ja) 2018-11-19 2019-11-15 顕微鏡装置

Publications (2)

Publication Number Publication Date
CN113039470A true CN113039470A (zh) 2021-06-25
CN113039470B CN113039470B (zh) 2023-04-14

Family

ID=70774434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980075087.XA Active CN113039470B (zh) 2018-11-19 2019-11-15 显微镜装置

Country Status (4)

Country Link
US (1) US20210311294A1 (zh)
JP (1) JP7193989B2 (zh)
CN (1) CN113039470B (zh)
WO (1) WO2020105554A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624900B2 (en) * 2019-12-24 2023-04-11 National Taiwan University System for quantitative differential phase contrast microscopy with isotropic transfer function
WO2023165667A1 (en) * 2022-03-01 2023-09-07 Danmarks Tekniske Universitet Light-field imaging based on tilt-aberration

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177418A (ja) * 1985-02-01 1986-08-09 Olympus Optical Co Ltd 内視鏡用光源装置の絞り装置
CN1160216A (zh) * 1995-12-26 1997-09-24 奥林巴斯光学工业株式会社 入射光荧光显微镜
JP2003121749A (ja) * 2001-08-09 2003-04-23 Olympus Optical Co Ltd 顕微鏡
JP2004126590A (ja) * 2002-10-02 2004-04-22 Leica Microsystems Wetzler Gmbh 顕微鏡で位相差観察または変調コントラスト観察を実現するための位相シフト方法および装置
CN101351736A (zh) * 2005-12-27 2009-01-21 奥林巴斯株式会社 发光测量装置及发光测量方法
CN103439305A (zh) * 2013-08-28 2013-12-11 北京信息科技大学 全内反射荧光显微成像方法及装置
CN105209956A (zh) * 2013-04-30 2015-12-30 奥林巴斯株式会社 标本观察装置和标本观察方法
WO2017098657A1 (ja) * 2015-12-11 2017-06-15 オリンパス株式会社 観察装置
CN108369330A (zh) * 2015-12-18 2018-08-03 奥林巴斯株式会社 观察装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3958554B2 (ja) 2001-10-24 2007-08-15 オリンパス株式会社 変調コントラスト顕微鏡
JP4128405B2 (ja) * 2002-07-22 2008-07-30 オリンパス株式会社 顕微鏡用撮像装置
JP6289526B2 (ja) * 2016-03-03 2018-03-07 キヤノン株式会社 光学素子及びそれを有する光学系
US11269122B2 (en) 2016-12-09 2022-03-08 Leica Microsystems Cms Gmbh Optical device having at least one spectrally selective component
JP6776215B2 (ja) * 2017-11-21 2020-10-28 キヤノン株式会社 光学素子及びそれを有する光学系

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177418A (ja) * 1985-02-01 1986-08-09 Olympus Optical Co Ltd 内視鏡用光源装置の絞り装置
CN1160216A (zh) * 1995-12-26 1997-09-24 奥林巴斯光学工业株式会社 入射光荧光显微镜
JP2003121749A (ja) * 2001-08-09 2003-04-23 Olympus Optical Co Ltd 顕微鏡
JP2004126590A (ja) * 2002-10-02 2004-04-22 Leica Microsystems Wetzler Gmbh 顕微鏡で位相差観察または変調コントラスト観察を実現するための位相シフト方法および装置
CN101351736A (zh) * 2005-12-27 2009-01-21 奥林巴斯株式会社 发光测量装置及发光测量方法
CN105209956A (zh) * 2013-04-30 2015-12-30 奥林巴斯株式会社 标本观察装置和标本观察方法
CN103439305A (zh) * 2013-08-28 2013-12-11 北京信息科技大学 全内反射荧光显微成像方法及装置
WO2017098657A1 (ja) * 2015-12-11 2017-06-15 オリンパス株式会社 観察装置
CN108369330A (zh) * 2015-12-18 2018-08-03 奥林巴斯株式会社 观察装置

Also Published As

Publication number Publication date
US20210311294A1 (en) 2021-10-07
JP7193989B2 (ja) 2022-12-21
WO2020105554A1 (ja) 2020-05-28
CN113039470B (zh) 2023-04-14
JP2020085988A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
Jonkman et al. Any way you slice it—a comparison of confocal microscopy techniques
US20180307005A1 (en) Multifunction Autofocus System and Method for Automated Microscopy
US7532323B2 (en) Spatial light modulator apparatus and method
US20160202460A1 (en) 3D Microscopy With Illumination Engineering
EP2758825B1 (en) Slide scanner with a tilted image plane
US20120200693A1 (en) Microscope with a sheet of light
US9804377B2 (en) Low numerical aperture exclusion imaging
JPH0735986A (ja) 倒立型及び正立型顕微鏡
CN113039470B (zh) 显微镜装置
Sanderson Fundamentals of microscopy
US20120140057A1 (en) Microscope for Measuring Total Reflection Fluorescence
CN103168265A (zh) 成像系统和其关联的方法
US6590612B1 (en) Optical system and method for composing color images from chromatically non-compensated optics
JP7251957B2 (ja) 拡大観察装置
US20220091402A1 (en) Observation apparatus
Sanderson Confocal microscopy
US10067059B2 (en) Device for simultaneous fluorescence contrasting effect in transmitted light and reflected light
JP2004177732A (ja) 光学測定装置
JP2004021004A (ja) カラー顕微鏡
EP1169662A1 (en) A chromatically uncompensated optical system for composing colour images
US20220365328A1 (en) Light sheet microscope having streamlined field of view changes
US20230350180A1 (en) Automatic correction of spherical aberration in selective plane illumination microscopy
Peres Contemporary Light Microscopy Practices
Peres Confocal Microscopy
JP2024060420A (ja) 画像取得装置、画像取得方法、及びプログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220923

Address after: Nagano

Applicant after: Yijingtong Co.,Ltd.

Address before: Tokyo, Japan

Applicant before: OLYMPUS Corp.

GR01 Patent grant
GR01 Patent grant