CN113024262A - 一种氮化铝微球的制备方法 - Google Patents

一种氮化铝微球的制备方法 Download PDF

Info

Publication number
CN113024262A
CN113024262A CN202110392859.1A CN202110392859A CN113024262A CN 113024262 A CN113024262 A CN 113024262A CN 202110392859 A CN202110392859 A CN 202110392859A CN 113024262 A CN113024262 A CN 113024262A
Authority
CN
China
Prior art keywords
aluminum nitride
following
steps
preparing
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110392859.1A
Other languages
English (en)
Inventor
杨大胜
施纯锡
冯家伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Original Assignee
FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD filed Critical FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Priority to CN202110392859.1A priority Critical patent/CN113024262A/zh
Publication of CN113024262A publication Critical patent/CN113024262A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及氮化铝制备领域,提供一种氮化铝微球的制备方法,解决采用现有技术制备的氮化铝球形度不高、密实度不够及易团聚的问题。包括以下制备步骤:(1)制备氮化铝微球的前驱体:以六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺为前驱体的原料,将六水合氯化铝、蒸馏水、乙醇和甲酰胺混合,搅拌使六水合氯化铝完全溶解,再加入环氧丙烷,搅拌,静置1-2h后进行干燥处理;(2)将步骤(1)制得的前驱体投入反应炉中,升温至520-550℃,保温2.5-3h,通入氨气,再将温度升至1300-1350℃,恒温反应2-2.5h,得到氮化铝微球;(3)改性球状氮化铝;(4)球磨分散;(5)级配。

Description

一种氮化铝微球的制备方法
技术领域
本发明涉及氮化铝制备领域,尤其涉及一种氮化铝微球的制备方法。
背景技术
导热材料广泛应用于换热、散热、电子电器等领域。传统导热材料多为金属、金属氮化物、金属氧化物以及一些非金属材料,但是,有些领域不仅对材料的导热有要求,还需要材料具有良好的电绝缘性、耐腐蚀性、轻质和易加工等性能。如用于电子电器的封装材料需要有电绝缘性,应用于化工生产的材料需要具有耐腐蚀性,因此,传统的导热材料无法满足需求。高分子聚合物,例如聚乙烯、聚丙烯、尼龙、聚苯乙烯等,因其具有耐腐蚀、质量轻、易加工的特点在导热领域中得到较为广泛的应用,但这些高分子聚合物往往热导率都比较低。
AlN是原子晶体,是以【AlN4】四面体为结构单元的共价键化合物,具有纤锌矿型结构,属六方晶系,其化学组成为Al:65.81%,N:34.19%,比重3.261g/cm3,白色或灰白色,单晶无色透明,常压下的升华分解温度为2450℃,是一种高温耐热材料,也是极好的导热材料,其综合性能优于氧化铝和碳化硅及氧化铍,被认为是高集成度半导体基片和电子器件封装的理想材料,但是氮化铝易吸收空气中的水发生水解反应,使其表面包覆一层氢氧化铝薄膜,导致热导通路中断且声子的传递收到影响,并且大含量填充的聚合物粘度会大大提高,不利于生产加工。
为了获得同时具有高热导、耐腐蚀、易加工的材料,往往在高分子聚合物中填充氮化铝微球,而传统的氮化铝粉末常见的制备方法有:铝粉直接氮化法、氧化铝碳热还原法、自蔓延高温合成法、化学气相沉积法、等离子体法、溶胶凝胶法。其中,铝粉直接氮化法成本低廉、工艺简单,但产物氮化不完全、易团聚,难以合成高纯度、细粒度的产品;氧化铝碳热还原法合成产物纯度高、粒度均匀,但反应温度高、保温时间长、需后期除碳;自蔓延高温合成法反应速度快、节能环保、产物活性高,但反应难控制、纯度不高、产物极易团聚;化学气相沉积法合成产物纯度高、颗粒形貌好,但原料成本高昂、设备要求高、不宜工业生产;等离子体法合成产物粒度细、比表面积大、纯度高、活性高,但设备昂贵复杂、能耗高、不宜工业生产;传统溶胶凝胶法工艺简单、合成产物纯度高、颗粒分布均匀,但原料常用有机铝盐,成本相对偏高。
而用于填充聚合物以提高热导性能的氮化铝微球需要避免出现球形度不够、密度小、松散多孔、易团聚等问题。
201510276621.7.一种球形大颗粒氮化铝粉末的制备方法,将氮化铝粉末、粘结剂、助烧剂,分散剂在有机溶剂中进行混合,配成浆料,通过喷雾造粒制得球形氮化铝团聚体作为造粒料,再经高温煅烧、球磨分散工艺制得球形氮化铝粉末;具体制备方式如下:步骤一,配料:将氮化铝粉末、粘结剂、助烧剂,分散剂、酒精按照质量百分比配料:氮化铝粉体30%-60%,粘结剂0.03%-5 %,助烧剂2%-10%,分散剂0.5%-5%,酒精30%-65%;步骤二,配制浆料:采用球磨,搅拌、或超声波分散将步骤一中原料进行混合,制成稳定的浆料;步骤三,喷雾造粒:将步骤二中制备的浆料通过蠕动泵控制进料加入喷雾造粒机中,通过控制料浆进口、出口温度,喷雾压力,得到氮化铝造粒料;步骤四,煅烧:将制得氮化铝造粒料置于烧舟中,在流动氮气气氛下于烧结炉中煅烧;步骤五,球磨分散制得球形氮化铝粉末。采用这种方法制得的氮化铝粉末球形度及密实度均不高,无法应用到高端的电子元器件领域。
发明内容
因此,针对上述的问题,本发明提供一种氮化铝微球的制备方法,解决采用现有技术制备的氮化铝球形度不高、密实度不够及易团聚的问题。
为实现上述目的,本发明采用了以下技术方案:一种氮化铝微球的制备方法,包括以下制备步骤:
(1)制备氮化铝微球的前驱体:以六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺为前驱体的原料,将六水合氯化铝、蒸馏水、乙醇和甲酰胺混合,搅拌使六水合氯化铝完全溶解,再加入环氧丙烷,搅拌,静置1-2h后进行干燥处理;
(2)将步骤(1)制得的前驱体投入反应炉中,升温至520-550℃,保温 2.5-3h,通入氨气,再将温度升至1300-1350℃,恒温反应2-2.5h,得到球状氮化铝,备用;
(3)改性球状氮化铝:将上述部分球状氮化铝加入改性聚合物溶液中,浸渍处理3-5h,升温排胶,再在1500-1700℃温度下、氮气保护气氛下煅烧2-3h, 所述改性聚合物具有如下结构a和结构式b:
结构式a:
Figure RE-GDA0003073390310000031
结构式b:
Figure RE-GDA0003073390310000032
其中R1和R2均为H或烷基;
(4)球磨分散;
(5)级配:将步骤(2)的剩余球状氮化铝与步骤(4)球磨分散处理后的粉体按重量比为1:2-3混合均匀,制得氮化铝微球。
进一步的改进是:所述改性聚合物溶液以乙醇为溶剂,改性聚合物的质量浓度为5-8%。
进一步的改进是:所述六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺的用量比以重量份计=65-68:5-10:5-10:10-15:10-15。
进一步的改进是:所述六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺的用量比以重量份计=65:5:7:13:10。
进一步的改进是:排胶温度为400-600℃。
进一步的改进是:排胶时升温速率为1-3℃/min。
进一步的改进是:R1和R2均为甲烷基。
通过采用前述技术方案,本发明的有益效果为:本发明的氮化铝微球的制备方法,先以六水合氯化铝及环氧丙烷为主原料制备出氮化铝微球的前驱体,再以氨气为保护气氛制氮化铝微球,且以改性聚合物对氮化铝微球进行改性,改性聚合物带有较长的烷基链以及偶联剂基团,接枝到氮化铝表面,使其具有防水性,使微球之间不容易发生团聚;另外,由于所选用的高分子基体一般属于饱和体系,内部不存在自由电子,热传导主要是晶格振动的结果,即,声子是其主要的热能载荷者,由于高分子基体的相对分子量比较大且分散,分子链之间相互缠结,导致高分子基体的结晶度不高,其中含有很多非晶部分,这致使高分子基体的导热系数很低,提高结晶度或者增加分子链的热运动有利于高分子基体导热系数的提升,对于导热复合材料,热量传递主要是高分子基体到高分子基体、高分子基体到填料、填料到填料三种方式,所以热导复合材料的导热性能最终由高分子基体和高热导填充物共同决定,将本发明的氮化铝微球填充到高分子基体中,填充量超过临界值,氮化铝微球之间相互接触且在由高分子基体和填充物组成的体系中形成类似链状或网状的结构,即导热通路,形成的导热通路多,进而使导热系数得到较大的提升。
本发明在步骤(3)中,通过控制温度在1500-1700℃,使经过步骤(2)处理后的球状氮化铝粉体团聚尺寸增加,再采用两种物质的级配,使最终的尺寸、球形度均能达到合适的范围,通过级配来提升填充量,进而具有较多的导热通路,进而提升导热系数。
具体实施方式
现结合具体实施方式对本发明进一步说明。
本发明实施例为:
一种氮化铝微球的制备方法,包括以下制备步骤:
(1)制备氮化铝微球的前驱体:以六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺为前驱体的原料,将六水合氯化铝、蒸馏水、乙醇和甲酰胺混合,搅拌使六水合氯化铝完全溶解,再加入环氧丙烷,搅拌,静置1h后进行干燥处理;所述六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺的用量比以重量份计=65:5:10:10:10;
(2)将步骤(1)制得的前驱体投入反应炉中,升温至520℃,保温2.5h,通入氨气,再将温度升至1300℃,恒温反应2h,得到球状氮化铝;
(3)改性球状氮化铝:将上述部分球状氮化铝加入改性聚合物溶液中,所述改性聚合物溶液以乙醇为溶剂,改性聚合物的质量浓度为5%,浸渍处理3h, 升温排胶,排胶温度为400℃,排胶时升温速率为1℃/min,再在1600℃温度下、氮气保护气氛下煅烧2h,所述改性聚合物具有如下结构a和结构式b:
结构式a:
Figure RE-GDA0003073390310000061
结构式b:
Figure RE-GDA0003073390310000062
其中R1和R2均为H;
(4)球磨分散;
(5)级配:将步骤(2)的剩余球状氮化铝与步骤(4)球磨分散处理后的粉体按重量比为1:2-3混合均匀,制得氮化铝微球。
实施例二
参考实施例一,所述六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺的用量比以重量份计=65:5:7:13:10,其他方案与实施例一相同。
实施三
一种氮化铝微球的制备方法,包括以下制备步骤:
(1)制备氮化铝微球的前驱体:以六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺为前驱体的原料,将六水合氯化铝、蒸馏水、乙醇和甲酰胺混合,搅拌使六水合氯化铝完全溶解,再加入环氧丙烷,搅拌,静置1-2h后进行干燥处理;所述六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺的用量比以重量份计=68:10:10:15:10;
(2)将步骤(1)制得的前驱体投入反应炉中,升温至-550℃,保温3h,通入氨气,再将温度升至1350℃,恒温反应2.5h,得到氮化铝微球;
(3)改性氮化铝微球:将上述部分氮化铝微球加入改性聚合物溶液中,所述改性聚合物溶液以乙醇为溶剂,改性聚合物的质量浓度为8%,浸渍处理5h, 升温排胶,排胶温度为600℃,排胶时升温速率为3℃/min,再在1700℃温度下、氮气保护气氛下煅烧3h,所述改性聚合物具有如下结构a和结构式b:
结构式a:
Figure RE-GDA0003073390310000071
结构式b:
Figure RE-GDA0003073390310000072
其中R1和R2均为甲烷基。
(4)球磨分散;
(5)级配:将步骤(2)的剩余球状氮化铝与步骤(4)球磨分散处理后的粉体按重量比为1:3混合均匀,制得氮化铝微球。
对实施例一至三制得的氮化铝微球的性能进行测试,测试结果如下表:
项目 松散密度 振实密度 球形度 粒径(μm)
实施例一 1.08 1.18 0.85 20
实施例二 1.20 1.25 0.90 50
实施例三 1.15 1.21 0.89 30
松装密度是指粉末在规定条件下自由充满标准容器后所测得的堆积密度,即粉末松散填装时单位体积的质量,单位以g/cm3表示,振实密度是指在规定条件下容器中的粉末经振实后所测得的单位容积的质量,单位以g/cm3表示。
将本发明实施例一的氮化铝微球进行检测,其结果为:
Figure RE-GDA0003073390310000073
Figure RE-GDA0003073390310000081
备注:1.测试项目4-6是由通标标准技术服务有限公司广州分公司执行的。
2.测试项目7是由中国台湾检验科技股份有限公司执行的。
3.测试项目3的样品是客户爹二次重复验证送样。
4.测试项目7的样品是客户第三次重复验证送样。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (7)

1.一种氮化铝微球的制备方法,其特征在于,包括以下制备步骤:
(1)制备氮化铝微球的前驱体:以六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺为前驱体的原料,将六水合氯化铝、蒸馏水、乙醇和甲酰胺混合,搅拌使六水合氯化铝完全溶解,再加入环氧丙烷,搅拌,静置1-2h后进行干燥处理;
(2)将步骤(1)制得的前驱体投入反应炉中,升温至520-550℃,保温2.5-3h,通入氨气,再将温度升至1300-1350℃,恒温反应2-2.5h,得到球状氮化铝,备用;
(3)改性球状氮化铝:将上述部分球状氮化铝加入改性聚合物溶液中,浸渍处理3-5h,升温排胶,再在1500-1700℃温度下、氮气保护气氛下煅烧2-3h,所述改性聚合物具有如下结构a和结构式b:
结构式a:
Figure FDA0003017439490000011
结构式b:
Figure FDA0003017439490000012
其中R1和R2均为H或烷基;
(4)球磨分散;
(5)级配:将步骤(2)的剩余球状氮化铝与步骤(4)球磨分散处理后的粉体按重量比为1:2-3混合均匀,制得氮化铝微球。
2.根据权利要求1所述的一种氮化铝微球的制备方法,其特征在于:所述改性聚合物溶液以乙醇为溶剂,改性聚合物的质量浓度为5-8%。
3.根据权利要求1所述的一种氮化铝微球的制备方法,其特征在于:所述六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺的用量比以重量份计=65-68:5-10:5-10:10-15:10-15。
4.根据权利要求1所述的一种氮化铝微球的制备方法,其特征在于:所述六水合氯化铝、环氧丙烷、蒸馏水、乙醇、甲酰胺的用量比以重量份计=65:5:7:13:10。
5.根据权利要求1所述的一种氮化铝微球的制备方法,其特征在于:排胶温度为400-600℃。
6.根据权利要求5所述的一种氮化铝微球的制备方法,其特征在于:排胶时升温速率为1-3℃/min。
7.根据权利要求1所述的一种氮化铝微球的制备方法,其特征在于:R1和R2均为甲烷基。
CN202110392859.1A 2021-04-13 2021-04-13 一种氮化铝微球的制备方法 Pending CN113024262A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110392859.1A CN113024262A (zh) 2021-04-13 2021-04-13 一种氮化铝微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110392859.1A CN113024262A (zh) 2021-04-13 2021-04-13 一种氮化铝微球的制备方法

Publications (1)

Publication Number Publication Date
CN113024262A true CN113024262A (zh) 2021-06-25

Family

ID=76456381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110392859.1A Pending CN113024262A (zh) 2021-04-13 2021-04-13 一种氮化铝微球的制备方法

Country Status (1)

Country Link
CN (1) CN113024262A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114570475A (zh) * 2022-03-23 2022-06-03 福建华清电子材料科技有限公司 一种高圆球度氮化铝粉末的加工设备及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335992A (ja) * 2004-05-26 2005-12-08 Denki Kagaku Kogyo Kk 窒化アルミニウム質焼結体の製造方法
CN106045523A (zh) * 2016-07-29 2016-10-26 张宁 一种基于拜耳法生产氮化铝陶瓷粉体的方法
CN107954725A (zh) * 2017-11-29 2018-04-24 上海宇昂水性新材料科技股份有限公司 抗水解氮化铝粉体及其制备方法
CN108203301A (zh) * 2018-01-09 2018-06-26 浙江工业大学 一种氮化铝粉末的表面疏水改性方法
CN109437131A (zh) * 2018-12-27 2019-03-08 沈阳金瓷科技开发有限责任公司 基于表面改性低温合成氮化铝陶瓷粉体的方法
CN109824936A (zh) * 2019-01-28 2019-05-31 徐扣华 一种利用聚多巴胺改性氮化铝微球制备散热膜的方法
CN111875386A (zh) * 2020-08-07 2020-11-03 福建臻璟新材料科技有限公司 一种氮化铝陶瓷基板及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335992A (ja) * 2004-05-26 2005-12-08 Denki Kagaku Kogyo Kk 窒化アルミニウム質焼結体の製造方法
CN106045523A (zh) * 2016-07-29 2016-10-26 张宁 一种基于拜耳法生产氮化铝陶瓷粉体的方法
CN107954725A (zh) * 2017-11-29 2018-04-24 上海宇昂水性新材料科技股份有限公司 抗水解氮化铝粉体及其制备方法
CN108203301A (zh) * 2018-01-09 2018-06-26 浙江工业大学 一种氮化铝粉末的表面疏水改性方法
CN109437131A (zh) * 2018-12-27 2019-03-08 沈阳金瓷科技开发有限责任公司 基于表面改性低温合成氮化铝陶瓷粉体的方法
CN109824936A (zh) * 2019-01-28 2019-05-31 徐扣华 一种利用聚多巴胺改性氮化铝微球制备散热膜的方法
CN111875386A (zh) * 2020-08-07 2020-11-03 福建臻璟新材料科技有限公司 一种氮化铝陶瓷基板及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114570475A (zh) * 2022-03-23 2022-06-03 福建华清电子材料科技有限公司 一种高圆球度氮化铝粉末的加工设备及制备方法

Similar Documents

Publication Publication Date Title
US10427939B2 (en) Method for producing spherical aluminum nitride power
JP5065198B2 (ja) 六方晶窒化ホウ素の製造方法
CN103497739B (zh) 导热膏及其制备方法
TWI610884B (zh) 氮化鋁粉末
JP5673539B2 (ja) 球状化窒化ほう素の製造法
JP2016135730A (ja) 窒化ホウ素凝集粒子、該粒子の製造方法、該粒子を含む組成物、及び該粒子を含む成形体
CN106001595B (zh) 一种六方氮化硼包裹纳米铜颗粒的制备方法
TWI818901B (zh) 六方晶氮化硼粉末及其製造方法
CN113024262A (zh) 一种氮化铝微球的制备方法
JP2012171842A (ja) ホウ酸メラミンと窒化ホウ素の複合粒子、及びそれを用いた窒化ホウ素粒子の製造方法。
CN101525238B (zh) 一种低氧含量球形氮化铝粉体的制备方法
CN109868118A (zh) 一种具有高热导率的氮化铝-氧化铝核壳结构的制备方法
JP2015195287A (ja) 放熱シートおよび放熱シート用塗布液、並びにパワーデバイス装置
KR20180039516A (ko) 구상 알파-알루미나 입자 분말의 제조 방법
CN111099596B (zh) 一种在二氧化硅气凝胶颗粒表面包覆高疏水氮化硼纳米片薄层的简易方法
CN108689715A (zh) 一种氮化铝粉体及其制备方法
CN101723684A (zh) 一种低氧含量球形氮化铝粉体的制备方法
Xu et al. Combustion synthesis of MgSiN2 powders and Si3N4‐MgSiN2 composite powders: Effects of processing parameters
JP2021161005A (ja) 粒子材料、その製造方法、フィラー材料及び熱伝導物質
CN104725049A (zh) 一种氮化铝/氮化硼复合陶瓷粉末的制备方法
CN105884372A (zh) 有机网络法合成AlN陶瓷粉体方法
Wang et al. Carbothermal synthesis of approximately spherical Si3N4 particles with homogeneous size distribution
JPS63315515A (ja) マグネシア造粒体およびその製造方法
CN106629816A (zh) 一种尺寸可控的氧化锌微球的制备方法
CN110015900A (zh) 具有低温烧结性能的复合纳米氮化铝粉体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210625