CN113012886B - 高抗直流叠加低功耗的一体成型电感材料及其制备方法 - Google Patents

高抗直流叠加低功耗的一体成型电感材料及其制备方法 Download PDF

Info

Publication number
CN113012886B
CN113012886B CN202110229281.8A CN202110229281A CN113012886B CN 113012886 B CN113012886 B CN 113012886B CN 202110229281 A CN202110229281 A CN 202110229281A CN 113012886 B CN113012886 B CN 113012886B
Authority
CN
China
Prior art keywords
powder
power consumption
resistance
integrally formed
low power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110229281.8A
Other languages
English (en)
Other versions
CN113012886A (zh
Inventor
谈敏
聂敏
刘成华
肖更新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Shunluo Power Device Co.,Ltd.
Original Assignee
Shenzhen Sunlord Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Sunlord Electronics Co Ltd filed Critical Shenzhen Sunlord Electronics Co Ltd
Priority to CN202110229281.8A priority Critical patent/CN113012886B/zh
Publication of CN113012886A publication Critical patent/CN113012886A/zh
Application granted granted Critical
Publication of CN113012886B publication Critical patent/CN113012886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • H01F1/1475Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated
    • H01F1/14758Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种高抗直流叠加低功耗的一体成型电感材料的制备方法,包括:S1、准备合金粉末,包含88~96wt%Fe、2.9~4.5wt%Si、0.5~3.0wt%P、0.5~3.0wt%B、0.05~0.75wt%Co、0.05~0.75wt%C;S2、将合金粉末进行酸化处理后与硅烷醇、水玻璃、甲基铝或铝醇盐混合,然后在300℃~400℃的氮气、氩气、氢气中的一种或几种混合气氛中处理;S3、将Fe、FeSiAl、FeNi、FeSiCr、Fe基非晶、Fe基纳米晶粉末中的一种或几种与树脂溶液混合,制备成固含量磁性粘结剂;S4、将步骤S2得到的材料与磁性粘结剂按照质量比为8:2‑6:4进行级配并添加混合粉末重量0.005wt%‑0.05wt%的氧化铝或氧化硅粉末,混合并进行干燥后得到混合粉末;S5、将混合粉末压制制得一体电感材料。使用本发明的制备方法得到的一体成型电感材料能够很好地满足电感器件对于高抗直流叠加和低功耗的需求。

Description

高抗直流叠加低功耗的一体成型电感材料及其制备方法
技术领域
本发明涉及软磁合金材料制备的技术领域,尤其是一种高抗直流叠加低功耗的一体成型电感材料及其制备方法。
背景技术
随着大数据、云计算、物联网的发展,数据中心对高效率和高功率密度的需求日益增长。目前,48V的中间总线架构(intermediate bus architecture,IBA)因具有效率高、成本低、灵活性好等优势,取代了传统的12V体系结构,得到了广泛的应用。IBA的大部分功率转换是在服务器主板上进行的,从48V(40~60V)总线电压利用中间总线变换器(intermediate bus converter,IBC)转换到12V(9~12V),再利用负载点(point-of-load,POL)变换器转换到所需的3.3V、1.2V等低电压。近年来,宽禁带半导体功率器件 (GaN、SiC)的发展和高功率密度陶瓷电容技术的提高,将推动着功率转换到更高的效率和密度,相关技术领域对滤波器、电感等器件的技术要求越来越高,提升抗直流叠加性和降低功耗仍是亟待解决的问题。
软磁合金材料高Bs、高磁导率、优异的电流叠加和高居里温度等特点被广泛用于电子设备电源技术中,在能量转换方面具有至关重要的作用。
但合金软磁材料电阻率低,高频下涡流大,发热严重从而限制其高频下使用,而随着电子器件对高频化及高转换效率的要求,对提升材料的使用频率和降低材料的发热量十分关键。为克服该弱点,需对合金粉料表面进行绝缘包覆或内部非晶化、纳米晶化从而提升其电阻率,降低合金材料颗粒间和颗粒内部的涡流,降低损耗,提升能量转换的效率。
所以对合金粉料进行成分设计对于降低材料的功耗对产品开发具有重要作用,因此开发新的高性能的低功耗软磁材料技术十分必要。
CN111383835A公开了一种用于一体成型电感的FeSiCr颗粒料及其制备方法,以FeSiCr合金粉末为原料经磷酸钝化、初次烘烤、配胶、包覆胶料、造粒、风干、二次烘烤、混料后制成,所述配胶原料为有机溶剂、二氧化硅包覆纳米氮化铝、甲基苯基硅树脂、环氧树脂、环氧树脂固化剂。并记载,该制备方法相比现有技术具有以下优点:该制备方法条件可控,二氧化硅包覆纳米氮化铝具有较好的润滑性和导热性,在颗粒料表面形成膜层增强颗粒料的机械强度、导热性和耐储存稳定性,所得电感坯体,减少在坯体成型过程中的破损,使其具有高密度、高阻率和高饱和磁感应强度,稳定性好,适于一体。该发明通过对FeSiCr材料进行包覆,并通过有机树脂包覆形成双层包覆提升材料的绝缘降低损耗,并提供粘结力,但因FeSiCr材料本身的磁滞损耗较高,而该发明以FeSiCr材料为主体材料,材料的损耗较高,且FeSiCr材料本身的Ms相对非晶等材料的Ms较低,所以导致抗直流叠加较小。
CN 110648814A公开了一种纳米晶复合材料的制备方法及其电子元件,其中纳米晶复合材料包括占总重量百分比为10~80%的纳米晶软磁粉、0.1~0.5%的磷酸、 0.1~1.0的钼酸钠、0.5~2.5%的碳酸钙、0.5~5.5%的环氧类树脂、0.05~0.55%的酸酐类固化剂、0.005~0.03%的咪唑类促进剂,0.3~1.2%偶联剂和20~90%的晶态软磁粉。制备方法为:1.钝化混合磁粉;2.加入辅料球磨复合处理;3.造粒。并记载,该制备方法的有益效果在于:制成的纳米晶复合材料制成的电感具有优良的体绝缘(10MΩ)、耐高温(200℃)、高饱和高效率特征。然而,该纳米晶复合材料主要由纳米晶或非晶组成,而市售纳米晶材料的功耗较低,但抗直流叠加性能较差,而非晶材料磁导率普遍偏低,无法达到使用要求,且该材料添加大量的树脂导致磁导率偏低,从而无法达到低功耗高抗直流叠加的目标。
发明内容
为了克服现有技术上述缺陷的至少一种,本发明提供一种高抗直流叠加低功耗的一体成型电感材料及其制备方法。
一种高抗直流叠加低功耗的一体成型电感材料的制备方法,包括如下步骤:
S1、准备合金粉末,所述合金粉末包含88~96wt%Fe、2.9~4.5wt%Si、0.5~3.0wt%P、 0.5~3.0wt%B、0.05~0.75wt%Co、0.05~0.75wt%C;
S2、将所述合金粉末进行酸化处理,处理后与硅烷醇或水玻璃或甲基铝或铝醇盐混合,然后在300℃~400℃的氮气、氩气、氢气中的一种或几种的混合气氛中处理3-8 小时;
S3、选取Fe、FeSiAl、FeNi、FeSiCr、Fe基非晶、Fe基纳米晶粉末中的一种或几种与树脂溶液混合,制备成固含量88%-92%的磁性粘结剂;
S4、步骤S2得到的材料与所述磁性粘结剂按照质量比为8:2-6:4进行级配并添加相对于合金粉末重量0.005wt%-0.05wt%的氧化铝或氧化硅粉末,混合并进行干燥后得到混合粉末;
S5、将所述混合粉末在温度130℃-200℃下使用100MPa-300MPa压制制得所述一体电感材料。
进一步地:
步骤S1中,将Fe、Si、P、B、Co以及C材料在高频炉中熔炼形成合金液,通过高速气流喷入经过冷却塔内,通过旋转水流并快速冷却,形成所述合金粉末。
所述合金粉末为球形粉末,所述球形粉末的粒度为10μm-70μm。
步骤S2中,用盐酸、磷酸或磷酸盐对所述合金粉末进行酸化处理。
由步骤S2得到的材料中分解物C的残留量小于2000ppm。
步骤S3中,选取粒度为1μm-3μm的Fe、FeSiAl、FeNi、FeSiCr、Fe基非晶、 Fe基纳米晶粉末中的一种或几种与所述树脂溶液混合。
步骤S3中,所述树脂溶液含有环氧树脂、氰酸酯、密胺树脂中的一种或多种的混合物。
所述树脂溶液含有环氧树脂及氰酸酯的混合物,或环氧树脂及密胺树脂的混合物。
步骤S4中,添加所述氧化铝或氧化硅粉末后,在混合机中混合10-60min,并在 50-80℃氮气或氩气气氛下干燥5-10小时,得到所述混合粉末。
一种高抗直流叠加低功耗的一体成型电感材料,是由所述的高抗直流叠加低功耗的一体成型电感材料的制备方法制备得到的电感材料。
本发明的有益效果有:
本发明提供一种高抗直流叠加低功耗的一体成型电感材料及其制备方法,通过对材料成分和工艺控制,在材料内部形成非晶和纳米晶的混合颗粒,且晶粒具有较高的阻抗从而使材料内部的涡流小且磁滞损耗小,且表面包覆耐高温的无机材料而降低颗粒间涡流,并且材料通过磁性粘结剂粘接,具备较高的磁导率且均匀的气隙分布。通过使用该方法能够制备得到高抗直流叠加、低损耗的一体成型电感材料。
使用本发明的制备方法得到的一体成型电感材料,磁滞损耗低,绝缘高,颗粒内部涡流小,功耗得到降低,且分布气隙均匀,能够很好地满足电感器件对于高抗直流叠加和低功耗的需求。
具体实施方式
为了使本发明实施例所要解决的技术问题、技术方案及有益效果更加清楚明白,以下通过实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在一种实施例中,一种高抗直流叠加低功耗的一体成型电感材料的制备方法,包括如下步骤:
S1、准备合金粉末,所述合金粉末包含88~96wt%Fe、2.9~4.5wt%Si、0.5~3.0wt%P、0.5~3.0wt%B、0.05~0.75wt%Co、0.05~0.75wt%C;
S2、将所述合金粉末进行酸化处理,处理后与硅烷醇或水玻璃或甲基铝或铝醇盐混合,然后在300℃~400℃的氮气、氩气、氢气中的一种或几种的混合气氛中处理3-8 小时;
S3、选取Fe、FeSiAl、FeNi、FeSiCr、Fe基非晶、Fe基纳米晶粉末中的一种或几种与树脂溶液混合,制备成固含量88%-92%的磁性粘结剂;
S4、步骤S2得到的材料与所述磁性粘结剂按照质量比为8:2-6:4进行级配并添加相对于合金粉末重量0.005wt%-0.05wt%的氧化铝或氧化硅粉末,混合并进行干燥后得到混合粉末;
S5、将所述混合粉末在温度130℃-200℃下使用100MPa-300MPa压制制得所述一体电感材料。
在优选的实施例中,步骤S1中,将Fe、Si、P、B、Co以及C材料在高频炉中熔炼形成合金液,通过高速气流喷入经过冷却塔内,通过旋转水流并快速冷却,形成所述合金粉末。
在优选的实施例中,所述合金粉末为球形粉末,所述球形粉末的粒度为10μm-70 μm。
在优选的实施例中,步骤S2中,用盐酸、磷酸或磷酸盐对所述合金粉末进行酸化处理。
在优选的实施例中,由步骤S2得到的材料中分解物C的残留量小于2000ppm。
在优选的实施例中,步骤S3中,选取粒度为1μm-3μm的Fe、FeSiAl、FeNi、 FeSiCr、Fe基非晶、Fe基纳米晶粉末中的一种或几种与所述树脂溶液混合。
在优选的实施例中,步骤S3中,所述树脂溶液含有环氧树脂、氰酸酯、密胺树脂中的一种或多种的混合物。在更优选的实施例中,所述树脂溶液含有环氧树脂及氰酸酯的混合物,或环氧树脂及密胺树脂的混合物。
在优选的实施例中,步骤S4中,添加所述氧化铝或氧化硅粉末后,在混合机中混合10-60min,并在50-80℃氮气或氩气气氛下干燥5-10小时,得到所述混合粉末。
在另一种实施例中,一种高抗直流叠加低功耗的一体成型电感材料,是由所述的高抗直流叠加低功耗的一体成型电感材料的制备方法制备得到的电感材料。
一个具体实施例中,高抗直流叠加低功耗的一体成型电感材料的制备方法包括以下步骤:
选取材料,材料成分为88~96wt%Fe、2.9~4.5wt%Si、0.5~3.0wt%P、0.5~3.0wt%B、0.05~0.75wt%Co、0.05~0.75wt%C。将材料在高频炉中熔炼形成合金液,通过高速气流喷入经过冷却塔内,通过旋转水流并快速冷却,冷却速度103K/S,形成合金球形粉末,球形粉末的粒度在10μm-70μm间;将处理后的粉末与盐酸、磷酸或磷酸盐进行酸化处理,处理后与硅烷醇或水玻璃或甲基铝或铝醇盐混合,将混合后的在300℃~400℃的氮气、氩气、氢气或混合气氛中处理3-8小时,分解物C的残留量小于2000ppm;选取1-3μm的Fe、FeSiAl、FeNi、FeSiCr、Fe基非晶、Fe基纳米晶粉末其中一种或几种与环氧树脂、氰酸酯、密胺树脂等树脂溶液混合,制备成固含量88%-92%的磁性粘结剂;将处理粉末材料与高固含量磁性粘结剂材料按照质量比为8:2-6:4进行级配并添加相对于合金粉末重量0.005wt%-0.05wt%的氧化铝或氧化硅粉末,在混合机中混合 10-60min得到混合粉末,并在50-80℃氮气或氩气气氛下干燥5-10小时,得到混合粉末;将得到的混合粉末在温度130℃-200℃的模具内使用100MPa-300MPa压制制得一体成型电感材料。
实施例1:
选取材料,其成分为88wt%Fe、4.5wt%Si、3.0wt%P、3.0wt%B、0.75wt%Co、0.75wt%C。将材料在高频炉中熔炼形成合金液,通过高速气流喷入经过冷却塔内,通过旋转水流并快速冷却,冷却速度103K/S,形成合金球形粉末,球形粉末的粒度在15 μm-60μm间;将处理后的粉末与盐酸进行酸化处理,其中盐酸浓度为5%,酸值为 3.15,处理后与水玻璃(Na2SiO3*5H2O)混合,将混合后的在400℃的氮气气氛中处理3小时,分解物C的残留量小于2000ppm;选取3μm的Fe粉末与环氧树脂和密胺树脂混合,其中环氧树脂为含有12个咪唑端基的-C-N-柔性链结构的超支化环氧树脂、密胺树脂酸值(mgKOH/g)≤1.0,其中环氧树脂和密胺树脂按照重量比为52:48混合,制备成固含量92%的磁性粘结剂;将处理粉末材料与高固含量磁性粘结剂材料按照质量比为6:4进行级配并添加相对于合金粉末重量0.005wt%的纳米氧化铝粉末,纳米氧化铝粉末粒度15nm,在混合机中混合60min得到混合粉末,并在50℃氮气气氛下干燥 10小时,得到混合粉末;将得到的混合粉末在温度200℃的模具内使用100MPa压制制得一体成型电感材料。压制磁环的尺寸为外径(OD)*内径(ID)*厚度(TH)= 8.0mm*5.0mm*2.0mm;采用气氛箱式炉对压制后的磁环进行烧结处理,烧结气氛采用氮气:氢气=体积比9:1,固化温度控制在180℃,保温时间为4h,烧结后磁环随炉冷却至室温。
实施例2:
选取材料,其成分为96wt%Fe、2.9wt%Si、0.5wt%P、0.5wt%B、0.05wt%Co、0.05wt%C。将材料在高频炉中熔炼形成合金液,通过高速气流喷入经过冷却塔内,通过旋转水流并快速冷却,冷却速度103K/S,形成合金球形粉末,球形粉末的粒度在10 μm-50μm间;将处理后的粉末与磷酸进行酸化处理,其中磷酸浓度为10%,酸值为 5.3,处理后与甲基铝混合,将混合后的在300℃的氩气气氛中处理8小时,分解物C 的残留量小于2000ppm;选取1μm的FeSiCr粉末与环氧树脂和氰酸酯混合,其中环氧树脂为双酚A型缩水甘油醚环氧树脂,环氧值0.52,氰酸酯为双环戊二烯型氰酸酯,其中环氧树脂和氰酸酯按照重量比为67:33混合,并在120℃下混合搅拌3H,制备成固含量88%的磁性粘结剂;将处理粉末材料与高固含量磁性粘结剂材料按照质量比为 8:2进行级配并添加相对于合金粉末重量0.05wt%的纳米氧化硅粉末,氧化硅粉末粒度为8nm,在混合机中混合10得到混合粉末,并在80℃氩气气氛下干燥5小时,得到混合粉末;将得到的混合粉末在温度130℃的模具内使用300MPa压制制得测试样品。压制磁环的尺寸为外径(OD)*内径(ID)*厚度(TH)=8.0mm*5.0mm*2.0mm;采用气氛箱式炉对压制后的磁环进行烧结处理,烧结气氛采用氮气:氢气=体积比9:1,固化温度控制在180℃,保温时间为4h,烧结后磁环随炉冷却至室温。
实施例3:
选取材料,其成分为92wt%Fe、3.6wt%Si、1.8wt%P、1.8wt%B、0.35wt%Co、0.45wt%C。将材料在高频炉中熔炼形成合金液,通过高速气流喷入经过冷却塔内,通过旋转水流并快速冷却,冷却速度103K/S,形成合金球形粉末,球形粉末的粒度在10 μm-70μm间;将处理后的粉末与盐酸进行酸化处理,其中盐酸浓度为3%,酸值为 4.15,处理后与水玻璃(Na2SiO3*5H2O)混合,将混合后的在350℃的氮气气氛中处理6小时,分解物C的残留量小于2000ppm;选取2μm的Fe粉末与环氧树脂和密胺树脂,其中环氧树脂为含有24个咪唑端基的-C-N-柔性链结构的超支化环氧树脂、密胺树脂酸值(mgKOH/g)≤3.0,其中环氧树脂和密胺树脂按照重量比为52:48混合,制备成固含量92%的磁性粘结剂;将处理粉末材料与高固含量磁性粘结剂材料按照质量比为7:3进行级配并添加相对于合金粉末重量0.005wt%的纳米氧化铝粉末,纳米氧化铝粉末粒度10nm,在混合机中混合30min得到混合粉末,并在70℃氮气气氛下干燥 8小时,得到混合粉末;将得到的混合粉末在温度160℃的模具内使用200MPa压制制得测试样品。压制磁环的尺寸为外径(OD)*内径(ID)*厚度(TH)=8.0mm*5.0mm*2.0mm;采用气氛箱式炉对压制后的磁环进行烧结处理,烧结气氛采用氮气:氢气=体积比9:1,固化温度控制在180℃,保温时间为4h,烧结后磁环随炉冷却至室温。
实施例4:
选取材料,其成分为94wt%Fe、4.0wt%Si、1.0wt%P、0.8wt%B、0.08wt%Co、0.12wt%C。将材料在高频炉中熔炼形成合金液,通过高速气流喷入经过冷却塔内,通过旋转水流并快速冷却,冷却速度103K/S,形成合金球形粉末,球形粉末的粒度在20 μm-70μm间;将处理后的粉末与盐酸进行酸化处理,其中盐酸浓度为2%,酸值为 6.35,处理后与水玻璃(Na2SiO3*5H2O)混合,将混合后的在350℃的氮气气氛中处理6小时,分解物C的残留量小于2000ppm;选取2μm的FeSiAl粉末与环氧树脂,其中环氧树脂为含有6个咪唑端基的-C-N-柔性链结构的超支化环氧树脂、密胺树脂酸值(mgKOH/g)≤3.0,其中环氧树脂和密胺树脂按照重量比为52:48混合,制备成固含量92%的磁性粘结剂;将处理粉末材料与高固含量磁性粘结剂材料按照质量比为7:3 进行级配并添加相对于合金粉末重量0.05wt%的纳米氧化铝粉末,纳米氧化铝粉末粒度 15nm,在混合机中混合45min得到混合粉末,并在60℃氮气气氛下干燥8小时,得到混合粉末;将得到的混合粉末在温度180℃的模具内使用150MPa-压制制得测试样品。压制磁环的尺寸为外径(OD)*内径(ID)*厚度(TH)=8.0mm*5.0mm*2.0mm;采用气氛箱式炉对压制后的磁环进行烧结处理,烧结气氛采用氮气:氢气=体积比9:1,固化温度控制在180℃,保温时间为4h,烧结后磁环随炉冷却至室温。
对比例1:
选取D50=15μm的FeSiCr气雾化粉料200g,其中Fe质量占比90.5%,Si质量占比5.5%,Al质量占比4%,粉料不经其他处理。
对比例2:
选取50份纳米晶软磁粉(FeSiBNbCu)和50份FeSi软磁粉,混合均匀,称取50 重量份的0.5wt%的磷酸溶液、25重量份的1.0wt.%的钼酸钠溶液、25重量份的2wt%的碳酸钙溶液搅拌至粘稠状,然后在70℃下烘干后过300目及以上筛网,得到钝化的混合磁粉。
将对比例1的粉料同固含量为3%环氧树脂的胶水中混合并置于搅拌罐中混合10min,将浆料放置空气中风干,待干燥后置于烘箱中进行进一步烘干,温度选择100℃;待粉料完全干燥后将其破碎并用60-300目筛网进行过筛,过筛后的粉料采用粉末成型压机进行压制成型,在温度130℃-200℃的模具内使用100MPa-300MPa压制成测试磁环,压制磁环的尺寸为外径(OD)*内径(ID)*厚度(TH)=8.0mm*5.0mm*2.0mm;采用气氛箱式炉对压制后的磁环进行烧结处理,烧结气氛采用氮气:氢气=体积比9:1,固化温度控制在180℃,保温时间为4h,烧结后磁环随炉冷却至室温。
对比例2的混合磁粉也同样进行上述处理。
性能测试
对实施例1-4以及对比例 1-2固化后的磁环进行性能评估,绕线匝数N=13Ts圈,使用3260B型LCR测试仪测试磁环样品的起始磁导率μi(1V/1MHz)和叠加电流下的电感值;用IWATSU-SY-8218型磁滞回线仪测试磁环的功耗,50mT&1MHz)。
表1.实施例和对比例性能对比
Figure BDA0002957333540000081
比较实施例和对比例得到的材料下降30%电感量的电流值要高于对比例,而功耗方面要明显低于对比例,这表明果成分控制和工艺处理对高饱和低功耗十分重要。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

Claims (10)

1.一种高抗直流叠加低功耗的一体成型电感材料的制备方法,其特征是,包括如下步骤:
S1、准备合金粉末,所述合金粉末包含88~96wt%Fe、2.9~4.5wt%Si、0.5~3.0wt%P、0.5~3.0wt%B、0.05~0.75wt%Co、0.05~0.75wt%C;
S2、将所述合金粉末进行酸化处理,处理后与硅烷醇或水玻璃或甲基铝或铝醇盐混合,然后在300℃~400℃的氮气、氩气、氢气中的一种或几种的混合气氛中处理3-8小时;
S3、选取Fe、FeSiAl、FeNi、FeSiCr、Fe基非晶、Fe基纳米晶粉末中的一种或几种与树脂溶液混合,制备成固含量88%-92%的磁性粘结剂;
S4、将步骤S2得到的材料与所述磁性粘结剂按照质量比为8:2-6:4进行级配并添加相对于所述合金粉末重量0.005wt%-0.05wt%的氧化铝或氧化硅粉末,混合并进行干燥后得到混合粉末;
S5、将所述混合粉末在温度130℃-200℃下使用100MPa-300MPa压制制得所述一体成型电感材料。
2.根据权利要求1所述的高抗直流叠加低功耗的一体成型电感材料的制备方法,其特征是,步骤S1中,将Fe、Si、P、B、Co以及C材料在高频炉中熔炼形成合金液,通过高速气流喷入经过冷却塔内,通过旋转水流并快速冷却,形成所述合金粉末。
3.根据权利要求1所述的高抗直流叠加低功耗的一体成型电感材料的制备方法,其特征在于,所述合金粉末为球形粉末,所述球形粉末的粒度为10μm-70μm。
4.根据权利要求1所述的高抗直流叠加低功耗的一体成型电感材料的制备方法,其特征在于,步骤S2中,用盐酸、磷酸或磷酸盐对所述合金粉末进行酸化处理。
5.根据权利要求1所述的高抗直流叠加低功耗的一体成型电感材料的制备方法,其特征在于,由步骤S2得到的材料中分解物C的残留量小于2000ppm。
6.根据权利要求1至5任一项所述的高抗直流叠加低功耗的一体成型电感材料的制备方法,其特征在于,步骤S3中,选取粒度为1μm-3μm的Fe、FeSiAl、FeNi、FeSiCr、Fe基非晶、Fe基纳米晶粉末中的一种或几种与所述树脂溶液混合。
7.根据权利要求1至5任一项所述的高抗直流叠加低功耗的一体成型电感材料的制备方法,其特征在于,步骤S3中,所述树脂溶液含有环氧树脂、氰酸酯、密胺树脂中的一种或多种的混合物。
8.根据权利要求7所述的高抗直流叠加低功耗的一体成型电感材料的制备方法,其特征在于,所述树脂溶液含有环氧树脂及氰酸酯的混合物,或环氧树脂及密胺树脂的混合物。
9.根据权利要求1至5任一项所述的高抗直流叠加低功耗的一体成型电感材料的制备方法,其特征在于,步骤S4中,添加所述氧化铝或氧化硅粉末后,在混合机中混合10-60min,并在50-80℃氮气或氩气气氛下干燥5-10小时,得到所述混合粉末。
10.一种高抗直流叠加低功耗的一体成型电感材料,其特征是,是由权利要求1至9任一项所述的高抗直流叠加低功耗的一体成型电感材料的制备方法制备得到的电感材料。
CN202110229281.8A 2021-03-02 2021-03-02 高抗直流叠加低功耗的一体成型电感材料及其制备方法 Active CN113012886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110229281.8A CN113012886B (zh) 2021-03-02 2021-03-02 高抗直流叠加低功耗的一体成型电感材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110229281.8A CN113012886B (zh) 2021-03-02 2021-03-02 高抗直流叠加低功耗的一体成型电感材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113012886A CN113012886A (zh) 2021-06-22
CN113012886B true CN113012886B (zh) 2022-05-10

Family

ID=76402210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110229281.8A Active CN113012886B (zh) 2021-03-02 2021-03-02 高抗直流叠加低功耗的一体成型电感材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113012886B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113436876B (zh) * 2021-06-25 2022-03-22 广东精密龙电子科技有限公司 高防锈高饱和电感材料、制备方法及一体成型电感
CN113414383B (zh) * 2021-06-28 2022-04-19 广东精密龙电子科技有限公司 一种高频高饱和复合材料、制备方法及共模电感
CN114178536B (zh) * 2021-12-07 2024-01-23 深圳市百斯特电子有限公司 一种热压电感材料、制备方法及一体成型电感

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240041A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp 軟磁性粉末、圧粉磁心および磁性素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071211B2 (ja) * 2011-02-22 2017-02-01 三菱マテリアル株式会社 低磁歪高磁束密度複合軟磁性材とその製造方法
WO2018012458A1 (ja) * 2016-07-15 2018-01-18 Dowaエレクトロニクス株式会社 鉄粉およびその製造方法並びに前駆体の製造方法並びにインダクタ用成形体およびインダクタ
JP6867965B2 (ja) * 2018-03-09 2021-05-12 Tdk株式会社 軟磁性合金粉末、圧粉磁心および磁性部品
CN109273185B (zh) * 2018-09-05 2021-01-08 中国科学院宁波材料技术与工程研究所 一种用铁基纳米晶合金粉末制备磁粉芯的方法
CN111627638A (zh) * 2020-05-11 2020-09-04 深圳顺络电子股份有限公司 一种非晶合金材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240041A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp 軟磁性粉末、圧粉磁心および磁性素子

Also Published As

Publication number Publication date
CN113012886A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN113012886B (zh) 高抗直流叠加低功耗的一体成型电感材料及其制备方法
CN107170575B (zh) 一种软磁复合粉芯的制备方法
CN111451515B (zh) 一种低功耗软磁合金材料及其制备方法、电子器件
CN109216006B (zh) 软磁合金粉芯及其制备方法
CN112530655B (zh) 一种低功耗软磁合金材料及其制备方法和应用
JP7059593B2 (ja) 軟磁性材料、コア及びインダクタ
CN107275033A (zh) 一种软磁合金材料及其制备方法
CN106571205B (zh) 低损耗铁硅镍磁粉芯复合材料的制备方法
US20200139444A1 (en) Method for manufacturing magnetic powder core
CN111383835A (zh) 一种用于一体成型电感的FeSiCr颗粒料及其制备方法
CN113628824B (zh) 一种高强度陶瓷包覆的铁基复合软磁材料及其制备方法
KR100933371B1 (ko) 유전체층의 기능이 부여된 연자성체층을 포함하는 전자파흡수체 및 그 연자성체층의 형성방법
CN114156037A (zh) 一种铁硅铬软磁粉体材料
CN109694243A (zh) 一种利用纳米颗粒制备的软磁铁氧体材料及其制备工艺
CN113724957A (zh) 一种软磁复合粉末、软磁粉芯及其制备方法
KR20090089277A (ko) 유전체층의 기능이 부여된 연자성체층을 포함하는 전자파 흡수체 및 그 연자성체층의 형성방법
CN114038643A (zh) 一种提高软磁金属粉末绝缘阻抗的方法
CN108899152B (zh) 一种多绝缘层铁硅基软磁粉芯及其制备方法
CN114496544B (zh) 一种低功耗铁镍钼磁粉心的制作方法
CN113223845B (zh) 一种软磁合金粉末的绝缘包覆方法
CN113096948B (zh) 一种高磁导率高饱和软磁合金材料及其制备方法
WO2022084812A1 (en) High frequency power inductor material including magnetic multilayer flakes
CN114156034A (zh) 低损耗铁镍磁粉芯复合包覆方法
CN115116733B (zh) 一种高频低损耗mpp软磁合金粉芯的制备方法
CN114178536B (zh) 一种热压电感材料、制备方法及一体成型电感

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231117

Address after: Room 401, Building 1, No.1 Fengtai Road, Tangxia Town, Dongguan City, Guangdong Province, 523000

Patentee after: Dongguan Shunluo Power Device Co.,Ltd.

Address before: 518110 Guanlan Industrial Park, DAFUYUAN Industrial Park, Guanlan street, Longhua District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN SUNLORD ELECTRONICS Co.,Ltd.