CN112909248B - 一种基于3D打印的Li2S正极材料及其制备方法 - Google Patents

一种基于3D打印的Li2S正极材料及其制备方法 Download PDF

Info

Publication number
CN112909248B
CN112909248B CN202110193470.4A CN202110193470A CN112909248B CN 112909248 B CN112909248 B CN 112909248B CN 202110193470 A CN202110193470 A CN 202110193470A CN 112909248 B CN112909248 B CN 112909248B
Authority
CN
China
Prior art keywords
printing
positive electrode
preparation
electrode material
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110193470.4A
Other languages
English (en)
Other versions
CN112909248A (zh
Inventor
熊杰
薛兰馨
雷天宇
陈伟
胡音
晏超贻
王显福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Chengkeguo Renewable Energy Co ltd
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110193470.4A priority Critical patent/CN112909248B/zh
Publication of CN112909248A publication Critical patent/CN112909248A/zh
Application granted granted Critical
Publication of CN112909248B publication Critical patent/CN112909248B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • C01B17/24Preparation by reduction
    • C01B17/26Preparation by reduction with carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供的一种基于3D打印的Li2S正极材料及其制备方法,包括多孔碳骨架和均匀分布在多孔碳骨架上的Li2S颗粒,Li2S正极材料中Li2S颗粒的质量百分数为30wt%;多孔碳骨架的孔径为2~8nm,Li2S颗粒的尺寸为500nm~2μm。制备方法为将硫酸锂、棉花纤维素和碳纳米管按照质量比为1:1:1的比例加入去离子水中,再加入均为棉花纤维素质量的20%的次磷酸钠和1,2,3,4‑丁四羧酸,搅拌后得到墨水,3D打印得到打印电极,经冷冻干燥后,在氩气氛围中800~880℃高温碳化4~6h。本发明所得Li2S正极材料具有超高面容量密度,可应用于高负载的锂硫电池。

Description

一种基于3D打印的Li2S正极材料及其制备方法
技术领域
本发明属于锂硫电池正极材料领域,具体涉及一种基于3D打印的Li2S正极材料及其制备方法。
背景技术
锂硫电池作为锂离子电池的一种,凭借其高理论容量密度和低成本的优势受到了能源界的广泛关注。锂硫电池以硫作为正极材料,但是硫的绝缘性使得活性材料的利用率较低,导致电池的实际容量密度较低,极大限制了商业化锂硫电池的发展。尤其在高负载的锂硫电池中,电解液的浸润变得更加困难,电解液中锂离子的传输受阻,极化增加,这为高负载锂硫电池的应用带来了严重挑战。
发明内容
针对上述现有技术中存在的问题,本发明提供了一种基于3D打印的Li2S正极材料及其制备方法,具有超高面容量密度,可应用于高负载的锂硫电池。
一种基于3D打印的Li2S正极材料,其特征在于,所述Li2S正极材料包括多孔碳骨架和均匀分布在多孔碳骨架上的Li2S颗粒,Li2S正极材料中Li2S颗粒的质量百分数为30wt%;所述多孔碳骨架的孔径为2~8nm,Li2S颗粒的尺寸为 500nm~2μm。
进一步地,所述Li2S正极材料通过3D打印技术呈栅格状,利于电解液的浸润。
一种制备上述基于3D打印的Li2S正极材料的方法,其特征在于,包括以下步骤:
步骤1:将硫酸锂(Li2SO4)、棉花纤维素(TCNF)和碳纳米管按照质量比为 1:1:1的比例加入去离子水中,搅拌得到悬浊液;其中,悬浊液中棉花纤维素的浓度为0.02~0.04g/mL;
步骤2:分别将质量均为棉花纤维素质量的20%的次磷酸钠(SHP)和1,2,3,4- 丁四羧酸(BTCA)加入上述悬浊液中,充分搅拌后,得到用于3D打印的墨水;
步骤3:将上述墨水进行3D打印,获得打印电极;
步骤4:上述打印电极经冷冻干燥后,在氩气氛围中800~880℃高温碳化4~6 h,原位生成Li2S颗粒,最终制得Li2S正极材料。
进一步地,步骤1中搅拌的条件为1000~6000r/min的转速下搅拌0.5~2h。
进一步地,步骤3中3D打印的条件为在15psi的压力下以5~10mm/s的针头速率打印。
进一步地,步骤3中按照栅格状结构进行3D打印。
进一步地,步骤4中冷冻干燥的时间为8~16h,冷冻干燥的温度设置为 -50~-70℃。
本发明还提出了一种应用基于3D打印的Li2S正极材料的锂硫电池正极,其中,Li2S的负载为2~10mg/cm2
与现有技术相比,本发明的有益效果如下:
1、本发明提出了一种基于3D打印的Li2S正极材料及其制备方法,通过高温碳还原Li2SO4,原位生成Li2S颗粒,使得Li2S颗粒在碳骨架中分布更加均匀,且与碳骨架的接触更加紧密,从而提高Li2S正极材料的导电性,降低Li2S正极材料的活化势垒;同时由于在高温碳化过程中有CO2气体生成,使得碳骨架存在大量微孔,为电解液中锂离子的传输提供通道,利于改善电池的电化学动力学;
2、通过利用3D打印墨水的自修复特性,本发明所得Li2S正极材料可以用于高负载情况,在具有高导电性的同时,保证循环过程中锂离子的快速传输,极化不会随着高负载而增加,使得容量密度随着负载的增加只有轻微的下降,而面容量密度随着负载的增加呈线性增加,因此高负载下的锂硫电池依然能取得优异的性能;例如,10mg/cm2的高负载的电池在0.5C的电流密度下依然保持着6.29 mAh/cm2的单位面积容量;
3、优选的,本发明通过3D打印技术将Li2S正极材料打印呈栅格状,更加利于电解液的浸润和锂离子传输。
附图说明
图1为本发明实施例1中基于3D打印的Li2S正极材料的SEM图;
图2为本发明实施例1中基于3D打印的Li2S正极材料在不同负载下首圈的单位质量容量密度及面容量密度的性能图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
本实施例制备了一种基于3D打印的Li2S正极材料,具体包括以下步骤:
步骤1:将硫酸锂、棉花纤维素和碳纳米管按照质量比为1:1:1的比例加入去离子水中,在6000r/min的转速下搅拌2h,得到悬浊液;其中,悬浊液中棉花纤维素的浓度为0.03g/mL;
步骤2:分别将质量均为棉花纤维素质量的20%的次磷酸钠和1,2,3,4-丁四羧酸加入上述悬浊液中,充分搅拌后,得到用于3D打印的墨水;
步骤3:将上述墨水加到容量为30 CC的注射器中,将空气压缩机的压力参数设置为15psi,将3D打印机的针头速度设置为8mm/s,按照栅格状结构进行 3D打印,获得打印电极;
步骤4:将上述打印电极在-50℃的温度下冷冻干燥12h后,在氩气氛围中 840℃高温碳化6h,原位生成Li2S颗粒,最终制得Li2S正极材料。
本实施例所得Li2S正极材料的SEM图如图1所示,Li2S颗粒均匀分布在多孔碳骨架上,多孔碳骨架的孔径为2~8nm,Li2S颗粒的尺寸为500nm~2μm。
将本实施例所得Li2S正极材料作为锂硫电池正极,Li2S的负载为10mg/cm2,测试在0.5C的电流密度下,不同负载下首圈的单位质量容量密度及面容量密度,如图2所示,可知单位质量容量密度随着负载的增加只有轻微的下降,而面容量密度随着负载的增加线性增加,表明高负载下的锂硫电池依然具有优异的性能。
实施例2
本实施例制备了一种基于3D打印的Li2S正极材料,制备步骤与实施例1 相比,仅将步骤4中840℃的高温碳化温度调整为800℃的高温碳化温度;其余步骤不变。
实施例3
本实施例制备了一种基于3D打印的Li2S正极材料,制备步骤与实施例1 相比,仅将步骤4中840℃的高温碳化温度调整为880℃的高温碳化温度;其余步骤不变。

Claims (4)

1.一种基于3D打印的Li2S正极材料的制备方法,其特征在于,包括以下步骤:
步骤1:将硫酸锂、棉花纤维素和碳纳米管按照质量比为1:1:1的比例加入去离子水中,搅拌后得到棉花纤维素的浓度为0.02~0.04 g/mL的悬浊液;
步骤2:分别将均为棉花纤维素质量的20%的次磷酸钠和1,2,3,4-丁四羧酸加入上述悬浊液中,搅拌后得到墨水;
步骤3:将上述墨水在15 psi的压力下以5~10 mm/s的针头速率进行3D打印,获得打印电极;
步骤4:上述打印电极经冷冻干燥后,在氩气氛围中800~880℃高温碳化4~6 h,最终制得Li2S正极材料。
2.根据权利要求1所述基于3D打印的Li2S正极材料的制备方法,其特征在于,步骤1中搅拌的条件为1000~6000 r/min的转速下搅拌0.5~2 h。
3.根据权利要求1所述基于3D打印的Li2S正极材料的制备方法,其特征在于,步骤3中按照栅格状结构进行3D打印。
4. 根据权利要求1所述基于3D打印的Li2S正极材料的制备方法,其特征在于,步骤4中冷冻干燥的时间为8~16 h,冷冻干燥的温度为-50~-70℃。
CN202110193470.4A 2021-02-20 2021-02-20 一种基于3D打印的Li2S正极材料及其制备方法 Active CN112909248B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110193470.4A CN112909248B (zh) 2021-02-20 2021-02-20 一种基于3D打印的Li2S正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110193470.4A CN112909248B (zh) 2021-02-20 2021-02-20 一种基于3D打印的Li2S正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112909248A CN112909248A (zh) 2021-06-04
CN112909248B true CN112909248B (zh) 2022-03-15

Family

ID=76124109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110193470.4A Active CN112909248B (zh) 2021-02-20 2021-02-20 一种基于3D打印的Li2S正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112909248B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406034A (zh) * 2015-10-27 2016-03-16 浙江大学 一种三维多孔石墨烯负载碳包覆硫化锂正极材料及其制备方法和应用
WO2016076636A1 (ko) * 2014-11-12 2016-05-19 한국기술교육대학교 산학협력단 리튬-설퍼 전지
CN106920930A (zh) * 2017-02-25 2017-07-04 浙江大学 一种用于锂硫电池正极的复合材料及其制备方法和应用
WO2017139984A1 (zh) * 2016-02-19 2017-08-24 肖丽芳 一种硫掺杂三维结构锂硫电池正极材料的制备方法
CN111525094A (zh) * 2020-04-29 2020-08-11 武汉理工大学 3d打印制备自支撑高负载的碳基材料/硫复合锂硫电池正极的方法
CN112186257A (zh) * 2020-08-28 2021-01-05 西安交通大学 一种基于直写成型3d打印技术的三维锂电池制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076636A1 (ko) * 2014-11-12 2016-05-19 한국기술교육대학교 산학협력단 리튬-설퍼 전지
CN105406034A (zh) * 2015-10-27 2016-03-16 浙江大学 一种三维多孔石墨烯负载碳包覆硫化锂正极材料及其制备方法和应用
WO2017139984A1 (zh) * 2016-02-19 2017-08-24 肖丽芳 一种硫掺杂三维结构锂硫电池正极材料的制备方法
CN106920930A (zh) * 2017-02-25 2017-07-04 浙江大学 一种用于锂硫电池正极的复合材料及其制备方法和应用
CN111525094A (zh) * 2020-04-29 2020-08-11 武汉理工大学 3d打印制备自支撑高负载的碳基材料/硫复合锂硫电池正极的方法
CN112186257A (zh) * 2020-08-28 2021-01-05 西安交通大学 一种基于直写成型3d打印技术的三维锂电池制备方法

Also Published As

Publication number Publication date
CN112909248A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
Wu et al. Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries
CN109273680B (zh) 一种多孔硅碳负极材料及其制备方法和锂离子电池
CN106935856B (zh) 一种钠离子电池碳基复合负极材料及其制备方法
CN107359338B (zh) 一种具有十二面体结构的氧化钴/碳复合中空纳米结构材料及其在锂电池负极中的应用
CN110993961B (zh) 一种核壳型八硫化九钴纳米颗粒复合氮硫共掺碳纳米纤维复合材料及其制备方法和应用
CN107910506B (zh) 一种NaCl改性石墨烯网包覆β-FeOOH锂离子电池负极材料的制备方法
CN111244455A (zh) 一种锂离子电池硅碳复合负极材料复合导电剂、负极片及其制备方法
Gong et al. Anchoring high-mass iodine to nanoporous carbon with large-volume micropores and rich pyridine-N sites for high-energy-density and long-life Zn-I2 aqueous battery
CN115911284B (zh) 一种利用离子辐照技术改性硬炭材料的方法和应用
CN111285354A (zh) 一种硼掺杂碳纳米管及其制备和应用
CN111653783A (zh) 多孔氮化硼纤维/多壁碳纳米管/硫复合型锂硫电池正极材料
CN113193196A (zh) 一种钠离子电池用多功能水性粘结剂及其应用
CN114361409A (zh) 一种提升层状正极材料厚电极高电压下长循环性能的方法
CN110165179B (zh) 一种锂电池负极材料及其制备方法与包含该负极材料的锂电池
Wang et al. Aqueous Zn-ion batteries using amorphous Zn-buserite with high activity and stability
CN114883573A (zh) 集流体及其制备方法、电极及其制备方法
CN113363452B (zh) 自支撑磷/碳三维导电网络复合电极材料及其制备方法和应用
CN114824239A (zh) 一种锡锑氧化物复合材料及其制备方法与其在制备电池负极上的应用
CN106887591B (zh) 锂离子电池复合导电剂及其制备方法
CN114447329A (zh) 一种多孔碳材料及其制备方法和应用
CN112909248B (zh) 一种基于3D打印的Li2S正极材料及其制备方法
CN116081589B (zh) 一种富锂硫磷酸铁锰锂材料及其制备方法
CN114784253B (zh) 用于二次电池的氧化亚硅碳复合负极材料及制备和应用
CN115275194A (zh) 一种晶粒尺寸可控的多孔导电骨架钠离子电池正极材料的制备方法
CN111313020A (zh) 一种硫掺杂富氮碳材料的制备方法、电极及其在钠/钾离子电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240110

Address after: Building 1, High tech Industrial Park, Science and Technology City New Area, Mianyang City, Sichuan Province, 621000

Patentee after: Sichuan Chengkeguo Renewable Energy Co.,Ltd.

Address before: 611731, No. 2006, West Avenue, Chengdu hi tech Zone (West District, Sichuan)

Patentee before: University of Electronic Science and Technology of China

TR01 Transfer of patent right