CN112898023B - 一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料及其制备方法 - Google Patents

一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料及其制备方法 Download PDF

Info

Publication number
CN112898023B
CN112898023B CN202110125659.XA CN202110125659A CN112898023B CN 112898023 B CN112898023 B CN 112898023B CN 202110125659 A CN202110125659 A CN 202110125659A CN 112898023 B CN112898023 B CN 112898023B
Authority
CN
China
Prior art keywords
hfc
sic
ceramic matrix
matrix composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110125659.XA
Other languages
English (en)
Other versions
CN112898023A (zh
Inventor
倪德伟
邹雪刚
董绍明
周海军
张翔宇
丁玉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202110125659.XA priority Critical patent/CN112898023B/zh
Publication of CN112898023A publication Critical patent/CN112898023A/zh
Application granted granted Critical
Publication of CN112898023B publication Critical patent/CN112898023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage

Abstract

本发明涉及一种Cf/Ta4HfC5‑SiC超高温陶瓷基复合材料及其制备方法,所述Cf/Ta4HfC5‑SiC超高温陶瓷基复合材料包括:碳纤维预制体、填充在碳纤维预制体中的SiC基体,以及分布在SiC基体和碳纤维预制体之间的Ta4HfC5基体。

Description

一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料及其制备方法
技术领域
本发明涉及一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料及其制备方法,属于陶瓷基复合材料技术领域。
背景技术
新型高速飞行器是空天技术的新制高点,受到世界各国的广泛关注。以连续纤维为增强体,超高温陶瓷为基体所制备的超高温陶瓷基复合材料,从根本上克服了陶瓷材料固有的脆性,同时具有轻质、耐超高温、非脆性断裂、抗氧化烧蚀、可设计性强等优点,成为高速飞行器热防护及新一代超燃冲压发动机防热部件的首选材料。但现有掺杂(例如,ZrC、HfC、ZrB2等),所得复合材料的力学性能和抗氧化烧蚀性能提升有限。
发明内容
为此,本发明的目的在于提供一种具有优异力学性能和抗氧化烧蚀的Cf/Ta4HfC5-SiC 超高温陶瓷基复合材料及其制备方法。
一方面,本发明提供了一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料,包括:碳纤维预制体、填充在碳纤维预制体中的SiC基体,以及分布在SiC基体和碳纤维预制体之间的Ta4HfC5基体。
在本公开中,Ta4HfC5是目前已知熔点最高的陶瓷材料,将其作为超高温陶瓷基体制备复合材料,可以提升超高温陶瓷基复合材料和热结构的耐温极限。
较佳的,所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料中Ta4HfC5基体的含量为50~70wt%,优选为50~66wt%。
较佳的,所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料中碳纤维预制体的体积分数为30~50vol%(优选45~50vol%)。所述碳纤维预制体中碳纤维表面还包括界面层,选自PyC 层、SiC层、Py/SiC复合界面层中的至少一种。
较佳的,在室温条件下,所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度≥300MPa,拉伸强度≥150MPa,断裂韧性≥10MPa·m1/2
较佳的,在4MW/m2热流密度空气等离子烧蚀条件下,所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的质量烧蚀率≤1mg/s,线烧蚀率≤1μm/s。
另一方面,本发明还提供了一种上述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的制备方法,采用前驱体浸渍裂解方法依次向碳纤维预制体中引入Ta4HfC5基体和SiC陶瓷基体,得到所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料。
在本发明人前期研究过程中,发现由于Ta4HfC5为多相固溶体,如何将Ta4HfC5陶瓷组分有效引入碳纤维预制体是Cf/Ta4HfC5-SiC超高温陶瓷基复合材料制备面临的一大难题,为此,本发明人采用前驱体浸渍裂解方法实现了Ta4HfC5基体的高效引入,在前驱体稳定的前提下,应偏向于高浓度、低粘度。
较佳的,引入Ta4HfC5基体的方法包括:
(1)将碳纤维预制体真空浸渍在Ta4HfC5前驱体溶液中并取出,再经固化和热处理,得到 Cf/Ta4HfC5中间体;优选地,在Ta4HfC5前驱体溶液的固化和热处理过程中,所述固化的温度为170~250℃、时间为4~10小时,所述高温热处理的温度为1600~2000℃、时间为 1~2小时、气氛为真空或惰性气氛;
(2)重复步骤(1)至少4次(例如4~10次,优选4~8次。随着次数增多可提高引入的Ta4HfC5基体含量,提升材料烧蚀性能,但过多的高温处理会导致纤维损伤,影响材料力学性能),得到Cf/Ta4HfC5复合材料。
较佳的,所述Ta4HfC5前驱体为聚钽铪氧烷和酚醛树脂的乙醇溶液,其中,聚钽铪氧烷(polytantahafnoxane,简称PTHO)含量为40~50wt%,酚醛树脂含量为20~25wt%,乙醇含量为25~40wt%,各组分质量百分比之和为100wt%。所述Ta4HfC5前驱体溶液的粘度为30~200mPa·s。
较佳的,引入SiC陶瓷基体的方法包括:
(1)将Cf/Ta4HfC5复合材料真空浸渍在SiC前驱体溶液中并取出,再经固化和裂解,得到 Cf/Ta4HfC5-SiC中间体;优选地,在SiC前驱体溶液固化和裂解过程中,所述固化的温度为 80~150℃、时间为2~4小时,所述裂解的温度为900~1300℃、时间为1~2小时、气氛为真空或惰性气氛;
(2)重复步骤(1)3~5次,得到所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料。
较佳的,所述SiC前驱体溶液为聚碳硅烷溶液,浓度为45~65wt%。
较佳的,将所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料进行高温致密化处理,以实现致密度与高温稳定性的提高;所述高温致密化处理的温度为1800~2000℃,保温时间为1~ 2小时,气氛为真空或惰性气氛。
有益效果:
本发明工艺简单,成本低,对设备要求不高;通过控制Ta-Hf-C前驱体和PCS浸渍次数,可实现Cf/Ta4HfC5-SiC复合材料基体组成的方便调控;后期高温致密化处理有效实现复合材料致密度与高温稳定性的提高。所制备的Cf/Ta4HfC5-SiC复合材料成分均匀,具有良好的力学性能和抗烧蚀性能。
附图说明
图1为本发明中Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的制备工艺路线图;
图2为实施例1制备的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的XRD图谱;
图3为实施例1制备的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的SEM照片;
图4为实施例1制备未经高温致密化处理的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的SEM 照片;
图5为实施例1制备的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料烧蚀前后光学照片。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,以含有Ta-Hf-C的低粘度液态前驱体和聚碳硅烷(PCS)溶液为初始原料,采用前驱体浸渍裂解方法分步向纤维预制体中引入Ta4HfC5基体和SiC基体,优选再结合高温致密化处理工艺,最终获得了高温稳定性良好的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料。
在本发明实施方式中,通过控制Ta-Hf-C前驱体溶液和PCS溶液的浸渍次数,可实现Cf/Ta4HfC5-SiC复合材料基体组成的调控。
以下示例性地说明本发明提供的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的制备方法,如图1中所示。
基体的选择。碳纤维预制体为连续碳纤维预制体。在前驱体浸渍裂解致密化之前,首先采用化学气相沉积方法在碳纤维预制体表面制备界面相,所述界面相为PyC、SiC或(PyC/SiC)n,其中1<n<6,所述界面层的总厚度可为0.05μm~1μm,优选可为150~500 nm。
含有Ta-Hf-C的低粘度(例如,30~200mPa·s)液体为Ta4HfC5前驱体溶液,具有良好的流动性,能充分浸渍到碳纤维预制体中。本发明中,所用Ta4HfC5前驱体溶液可商业购买获得。或者,本发明中Ta4HfC5前驱体溶液中各组分为聚钽铪氧烷、酚醛树脂和溶剂乙醇组成,其中,聚钽铪氧烷含量为40~50wt%,酚醛树脂含量为20~25wt%,乙醇含量为 25~40wt%。
以质量分数为45~65wt%聚碳硅烷(PCS)溶液作为SiC前驱体溶液,其粘度较低,(例如,30~200mPa·s)具有良好的流动性,能充分浸渍到碳纤维预制体中。溶剂可选自汽油、二甲苯、汽油和二甲苯混合物等的至少一种。
Ta4HfC5基体引入。将Ta-Hf-C前驱体通过真空浸渍方法引入碳纤维预制体中,经170~250℃下固化和1600~2000℃下高温处理,以实现Ta-Hf-C前驱体的分解、陶瓷化及固溶,(其中固化对应前驱体由液态变为固体,热处理过程中包括前驱体分解、碳热还原以及固溶反应等)得到Cf/Ta4HfC5中间体。重复真空浸渍-固化-高温处理的次数可为6~8次,得到Cf/Ta4HfC5复合材料。其中,真空浸渍真空度可为-0.08~-0.10MPa,浸渍时间可为 0.5~4小时。所述Ta4HfC5前驱体的固化温度为170~250℃,固化时间4~10小时。优选,固化的升温速率为1~5℃/分钟。高温热处理气氛为真空或惰性气氛,温度为1600~ 2000℃,时间1~2小时。优选,高温热处理的升温速率可为1~10℃/分钟。
将PCS通过真空浸渍方法引入到Cf/Ta4HfC5复合材料中,经80-150℃固化和900-1300℃裂解。然后重复真空浸渍-固化-裂解的次数可为3~5次,得到Cf/Ta4HfC5-SiC超高温陶瓷基复合材料。其中,真空浸渍真空度可为-0.08~-0.10MPa,浸渍时间可为0.5~4小时。所述PCS的固化温度可为80~150℃,固化时间可为2~4小时。优选,固化的升温速率为1~5℃/分钟。所述PCS的裂解气氛为真空或惰性气氛,温度可为900~1300℃,时间可为1~2小时。优选,裂解制度的升温速率可为1~5℃/分钟。
若无特殊说明,上述固化的气氛可为大气气氛。
将Cf/Ta4HfC5-SiC超高温陶瓷基复合材料进行高温致密化处理,以提高Cf/Ta4HfC5- SiC超高温陶瓷基复合材料的致密度与高温稳定性。所述高温致密化处理的气氛可为真空或惰性气氛,温度可为1800~2000℃,时间可为1~2小时。优选地,所述高温致密化处理升温速率可为1~20℃/分钟。
在本公开中,所制备的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料成分均匀,具有良好的力学性能和抗烧蚀性能。采用力学万能试验机测试Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的室温弯曲强度≥300MPa;力学万能试验机测试Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的室温拉伸强度≥150MPa;采用单边切口梁法测试Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的室温断裂韧性≥10MPa·m1/2。经过4MW/m2热流密度空气等离子烧蚀300s后,用分析天平和光学显微镜测量Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的质量烧蚀率≤1mg/s,线烧蚀率≤1 μm/s。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。其中,聚钽铪氧烷购自中国科学院化学研究所。
实施例1
按照图1所示工艺路线制备Cf/Ta4HfC5-SiC超高温陶瓷基复合材料,具体操作步骤及相关工艺参数如下:
(1)选用碳纤维预制体的体积含量为35vol%,采用化学气相沉积方法在碳纤维预制体表面沉积PyC界面,界面厚度~300nm;
(2)Ta-Hf-C前驱体真空浸渍:采用真空浸渍将聚钽铪氧烷含量为50wt%、酚醛树脂含量为25wt%,粘度为100mPa·s的Ta-Hf-C前驱体乙醇溶液引入碳纤维预制体中,浸渍真空度~-0.10MPa,浸渍时长4h;
(3)Ta4HfC5前驱体固化-高温反应:将浸渍后的材料在180℃空气气氛固化10h,随后在 1700℃氩气气氛下保温2h;
(4)重复步骤(2)-(3)6次,获得Cf/Ta4HfC5复合材料;
(5)PCS真空浸渍:将PCS通过真空浸渍方法引入上述Cf/Ta4HfC5材料中,浸渍真空度~- 0.10MPa,浸渍时长4h;
(6)PCS固化-裂解:将浸渍后的材料在80℃空气气氛固化4h,随后在900℃氩气气氛下保温裂解2h;
(7)重复步骤(5)-(6)5次;
(8)高温致密化:将上述复合材料进一步在2000℃氩气气氛下保温2h,获得Cf/Ta4HfC5- SiC超高温陶瓷基复合材料。
本实施例1中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为368±11MPa,断裂韧性值为14.4±0.3MPa·m1/2,拉伸强度200±10MPa。在4MW/m2热流密度空气等离子烧蚀条件下,Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的质量烧蚀率为0.87mg/s,线烧蚀率为0.72μm/s。
实施例2
与实施例1中的步骤类似,所不同的是:步骤(3)中Ta4HfC5热处理温度为1900℃。
本实施例2中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为345±7MPa,断裂韧性值为12.8±0.5MPa·m1/2,拉伸强度183±8MPa。在4MW/m2热流密度空气等离子烧蚀条件下,质量烧蚀率为0.85mg/s,线烧蚀率为0.70μm/s。
实施例3
与实施例1中的步骤类似,所不同的是:步骤(6)中PCS裂解温度为1300℃;
本实施例3中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为360±8MPa,断裂韧性值为13.9±0.3MPa·m1/2,拉伸强度192±6MPa。在4MW/m2热流密度空气等离子烧蚀条件下,质量烧蚀率为0.82mg/s,线烧蚀率为0.68μm/s。
实施例4
与实施例1中的步骤类似,所不同的是:步骤(8)中高温致密化温度为1800℃;
本实施例4中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为385±4MPa,断裂韧性值为14.8±0.3MPa·m1/2,拉伸强度205±8MPa。在4MW/m2热流密度空气等离子烧蚀条件下,质量烧蚀率为0.95mg/s,线烧蚀率为0.82μm/s。
实施例5
与实施例1中的步骤类似,所不同的是:步骤(4)中Ta-Hf-C前驱体浸渍次数为8次,步骤(7)中PCS浸渍次数为3次:
本实施例5中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为 358±15MPa,断裂韧性值为13.9±0.6MPa·m1/2,拉伸强度192±15MPa,4MW/m2热流密度空气等离子烧蚀条件下,质量烧蚀率为0.69mg/s,线烧蚀率为0.62μm/s。
实施例6
与实施例1中的步骤类似,所不同的是:步骤(1)中碳纤维预制体表面沉积界面为PyC/SiC,界面厚度~200/500nm;
本实施例6中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为 379±11MPa,断裂韧性值为13.7±0.3MPa·m1/2,拉伸强度196±10MPa。在4MW/m2热流密度空气等离子烧蚀条件下,质量烧蚀率为0.83mg/s,线烧蚀率为0.68μm/s。
实施例7
与实施例1中的步骤类似,所不同的是:步骤(3)中Ta4HfC5前驱体高温反应、步骤(6) 中PCS裂解、以及步骤(8)中复合材料高温致密化气氛为真空;
本实施例7中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为 373±11MPa,断裂韧性值为14.7±0.4MPa·m1/2,拉伸强度202±6MPa。在4MW/m2热流密度空气等离子烧蚀条件下,质量烧蚀率为0.83mg/s,线烧蚀率为0.70μm/s。
实施例8
与实施例1中的步骤类似,所不同的是:步骤(4)中Ta-Hf-C前驱体浸渍次数为7次。
本实施例8中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为348±13MPa,断裂韧性值为13.4±0.4MPa·m1/2,拉伸强度186±7MPa。在4MW/m2热流密度空气等离子烧蚀条件下,Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的质量烧蚀率为0.76mg/s,线烧蚀率为0.64μm/s。
实施例9
与实施例1中的步骤类似,所不同的是:步骤(4)中Ta-Hf-C前驱体浸渍次数为8次。
本实施例9中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为340±6MPa,断裂韧性值为12.6±0.6MPa·m1/2,拉伸强度177±11MPa。在4MW/m2热流密度空气等离子烧蚀条件下,Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的质量烧蚀率为0.70mg/s,线烧蚀率为 0.60μm/s。
实施例10
与实施例1中的步骤类似,所不同的是:碳纤维预制体的体积含量为50vol%。
本实施例10中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为379±13MPa,断裂韧性值为14.6±0.9MPa·m1/2,拉伸强度212±11MPa。在4MW/m2热流密度空气等离子烧蚀条件下,Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的质量烧蚀率为0.98mg/s,线烧蚀率为0.89μm/s。
实施例11
与实施例1中的步骤类似,所不同的是:步骤(4)中Ta-Hf-C前驱体浸渍次数为4次。
本实施例11中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为 370±10MPa,断裂韧性值为14.7±0.8MPa·m1/2,拉伸强度201±10MPa209±10。在4MW/m2热流密度空气等离子烧蚀条件下,Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的质量烧蚀率为0.98mg/s,线烧蚀率为0.87μm/s。
实施例12
与实施例1中的步骤类似,所不同的是:步骤(4)中Ta-Hf-C前驱体浸渍次数为10次。
本实施例12中所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的弯曲强度为328±18MPa,断裂韧性值为12.3±0.7MPa·m1/2,拉伸强度170±13MPa。在4MW/m2热流密度空气等离子烧蚀条件下,Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的质量烧蚀率为0.68mg/s,线烧蚀率为0.57μm/s。
表1为Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的组成及其性能参数:
Figure BDA0002923479230000081

Claims (7)

1.一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料,其特征在于,包括:碳纤维预制体、填充在碳纤维预制体中的SiC基体,以及分布在SiC基体和碳纤维预制体之间的Ta4HfC5基体;所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料中Ta4HfC5基体的含量为50~70wt%;
采用前驱体浸渍裂解方法依次向碳纤维预制体中引入Ta4HfC5基体和SiC陶瓷基体,得到所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料;
其中,引入Ta4HfC5基体的方法由以下步骤组成:
(1)将碳纤维预制体真空浸渍在Ta4HfC5前驱体溶液中并取出,再经固化和热处理,得到Cf/Ta4HfC5中间体;在Ta4HfC5前驱体溶液的固化和热处理过程中,所述固化的温度为170~250℃、时间为4~10小时,所述热处理的温度为1600~2000℃、时间为1~2小时、气氛为真空或惰性气氛;所述Ta4HfC5前驱体为聚钽铪氧烷和酚醛树脂的乙醇溶液;
(2)重复步骤(1)至少4次,得到Cf/Ta4HfC5复合材料。
2.根据权利要求1所述的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料,其特征在于,所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料中碳纤维预制体的体积分数为30~50vol%;所述碳纤维预制体中碳纤维表面还包括界面层,选自PyC层、SiC层、Py/SiC复合界面层中的至少一种。
3.根据权利要求1所述的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料,其特征在于,所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的室温弯曲强度≥300MPa,室温拉伸强度≥150MPa,室温断裂韧性≥10MPa·m1/2
在4MW/m2热流密度空气等离子烧蚀条件下,所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的质量烧蚀率≤1 mg/s,线烧蚀率≤1μm/s。
4.根据权利要求1所述的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料,其特征在于,所述聚钽铪氧烷和酚醛树脂的乙醇溶液中,聚钽铪氧烷含量为40~50 wt%,酚醛树脂含量为20~25 wt%,乙醇含量为25~40 wt%,各组分质量百分比之和为100wt%;所述Ta4HfC5前驱体溶液的粘度为30~200 mPa·s。
5.根据权利要求1所述的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料,其特征在于,引入SiC陶瓷基体的方法包括:
(1)将Cf/Ta4HfC5复合材料真空浸渍在SiC前驱体溶液中并取出,再经固化和裂解,得到Cf/Ta4HfC5-SiC中间体;在SiC前驱体溶液的固化和裂解过程中,所述固化的温度为80~150℃、时间为2~4小时,所述裂解的温度为900~1300℃、时间为1~2小时、气氛为真空或惰性气氛;
(2)重复步骤(1)3~5次,得到所述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料。
6.根据权利要求5所述的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料,其特征在于,所述SiC前驱体溶液为聚碳硅烷溶液,浓度为45~65wt%。
7.根据权利要求1-6中任一项所述的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料,其特征在于,将所得Cf/Ta4HfC5-SiC超高温陶瓷基复合材料进行高温致密化处理,以实现致密度与高温稳定性的提高;所述高温致密化处理的温度为1800~2000℃,保温时间为1~2小时,气氛为真空或惰性气氛。
CN202110125659.XA 2021-01-29 2021-01-29 一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料及其制备方法 Active CN112898023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110125659.XA CN112898023B (zh) 2021-01-29 2021-01-29 一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110125659.XA CN112898023B (zh) 2021-01-29 2021-01-29 一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112898023A CN112898023A (zh) 2021-06-04
CN112898023B true CN112898023B (zh) 2022-04-08

Family

ID=76120994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110125659.XA Active CN112898023B (zh) 2021-01-29 2021-01-29 一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112898023B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563091B (zh) * 2021-07-27 2022-05-13 航天特种材料及工艺技术研究所 一种极高温抗烧蚀热疏导复合材料及其制备方法
CN113582710B (zh) * 2021-07-27 2022-07-22 航天特种材料及工艺技术研究所 一种可用于编织的高导热碳纤维棒及其制备方法和应用
CN115286407A (zh) * 2022-08-11 2022-11-04 中国人民解放军国防科技大学 一种Cf/Ta4HfC5-SiC耐超高温复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106342033B (zh) * 2010-04-16 2014-01-15 中国科学院上海硅酸盐研究所 碳纤维增强超高温陶瓷基复合材料的制备方法
CN109265187A (zh) * 2017-07-18 2019-01-25 航天特种材料及工艺技术研究所 一种Cf/HfC-TaC-C复合材料及其制备方法
CN110002892A (zh) * 2019-05-08 2019-07-12 航天特种材料及工艺技术研究所 一种铪钽硅三元复相陶瓷前驱体、碳/铪钽碳固溶体-碳化硅陶瓷基复合材料及其制备方法
WO2020104959A1 (en) * 2018-11-20 2020-05-28 Consiglio Nazionale Delle Ricerche Process for obtaining composite, ultra-refractory, fibre-reinforced ceramic materials
CN111454073A (zh) * 2020-04-23 2020-07-28 中国科学院上海硅酸盐研究所 一种高导热、强结合、耐烧蚀的超高温陶瓷基复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10040724B2 (en) * 2015-12-11 2018-08-07 University Of The Witwatersrand, Johannesburg Ceramic composite and method to prepare the composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106342033B (zh) * 2010-04-16 2014-01-15 中国科学院上海硅酸盐研究所 碳纤维增强超高温陶瓷基复合材料的制备方法
CN109265187A (zh) * 2017-07-18 2019-01-25 航天特种材料及工艺技术研究所 一种Cf/HfC-TaC-C复合材料及其制备方法
WO2020104959A1 (en) * 2018-11-20 2020-05-28 Consiglio Nazionale Delle Ricerche Process for obtaining composite, ultra-refractory, fibre-reinforced ceramic materials
CN110002892A (zh) * 2019-05-08 2019-07-12 航天特种材料及工艺技术研究所 一种铪钽硅三元复相陶瓷前驱体、碳/铪钽碳固溶体-碳化硅陶瓷基复合材料及其制备方法
CN111454073A (zh) * 2020-04-23 2020-07-28 中国科学院上海硅酸盐研究所 一种高导热、强结合、耐烧蚀的超高温陶瓷基复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication and properties of C-f/Ta4HfC5-SiC composite via precursor infiltration and pyrolysis;Zou Xuegang 等;《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》;20210731;第1-13页 *
Reactive Hot Pressing of HfB2-SiC-Ta4HfC5 Ultra-High Temperature Ceramics;Simonenko, EP等;《RUSSIAN JOURNAL OF INORGANIC CHEMISTRY》;20200331;第446-457页 *

Also Published As

Publication number Publication date
CN112898023A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
CN112898023B (zh) 一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料及其制备方法
CN109265188B (zh) 一种碳纤维增强硼化铪-硼化钽-碳陶瓷基复合材料及其制备方法
CN109293383B (zh) 一种纤维增强碳-碳化硅陶瓷基复合材料及其制备方法
CN110028330B (zh) 一种陶瓷基复合材料及其制备方法
CN113563091B (zh) 一种极高温抗烧蚀热疏导复合材料及其制备方法
CN111099911B (zh) 一种碳纤维增强碳-碳化硅-碳化锆复合材料及其制备方法
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN110002892B (zh) 一种铪钽硅三元复相陶瓷前驱体、碳/铪钽碳固溶体-碳化硅陶瓷基复合材料及其制备方法
CN110835273B (zh) 一种在C/SiC复合材料上制备陶瓷防护层的方法以及由此制得的陶瓷防护层
CN110423119B (zh) 一种耐烧蚀C/SiC陶瓷基复合材料的制备方法
CN110655414B (zh) 一种碳纤维增强碳-铪钽碳固溶体复合材料及其制备方法
CN106882974B (zh) 一种高HfC含量C/HfC-SiC复合材料的制备方法
CN109320253B (zh) 一种c/c复合材料及其制备方法
CN111454073A (zh) 一种高导热、强结合、耐烧蚀的超高温陶瓷基复合材料及其制备方法
CN113321510B (zh) 一种高熵陶瓷基复合材料及其制备方法
CN108947588B (zh) 一种C/SiC复合材料和用于该材料的抗氧化涂层及其制备方法
CN109608217B (zh) 一种含MAX相界面层的SiCf/SiC复合材料的制备方法
CN110963799B (zh) 一种液相硅辅助成形热防护类Z-pins硅化物陶瓷棒结构的制备方法
CN112341233A (zh) 多元单相超高温陶瓷TaxHf1-xC改性碳/碳复合材料的制备方法
CN115385712A (zh) 一种高熵超高温陶瓷基复合材料及其制备方法
CN110424068B (zh) 掺入超高温陶瓷复合材料制备SiC纤维及其方法和应用
CN113526972A (zh) 一种抗强烧蚀的稀土改性超高温陶瓷基复合材料及其制备方法
CN106882976B (zh) 一种C/HfC-ZrC-SiC复合材料的制备方法
CN112299865A (zh) 一种改性C/SiC复合材料及其制备方法
CN114524674B (zh) 一种防热-隔热-承载一体化轻质碳-陶复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant