CN112877663A - 一种应用于燃料电池的柔性正极材料及其制备方法 - Google Patents

一种应用于燃料电池的柔性正极材料及其制备方法 Download PDF

Info

Publication number
CN112877663A
CN112877663A CN202110043033.4A CN202110043033A CN112877663A CN 112877663 A CN112877663 A CN 112877663A CN 202110043033 A CN202110043033 A CN 202110043033A CN 112877663 A CN112877663 A CN 112877663A
Authority
CN
China
Prior art keywords
porous
fuel cell
conductive substrate
flexible
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110043033.4A
Other languages
English (en)
Other versions
CN112877663B (zh
Inventor
陈君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Champion Coating Technology Co ltd
Original Assignee
Suzhou Champion Coating Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Champion Coating Technology Co ltd filed Critical Suzhou Champion Coating Technology Co ltd
Priority to CN202110043033.4A priority Critical patent/CN112877663B/zh
Publication of CN112877663A publication Critical patent/CN112877663A/zh
Application granted granted Critical
Publication of CN112877663B publication Critical patent/CN112877663B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • H01M4/8871Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明涉及一种应用于燃料电池的柔性正极材料的制备方法,该制备方法包括如下步骤:S1、提供导电基底,在导电基底表面沉积Zn‑Cu‑Mo合金;S2、对Zn‑Cu‑Mo合金脱合金化处理得到多孔Cu‑Mo前躯体;S3、对多孔Cu‑Mo前躯体磷化处理得到多孔Cu‑Mo‑P,得到柔性正极材料,不需使用粘结剂,提高了多孔Cu‑Mo‑P与导电基底之间的结合稳定性,并提升燃料电池的使用寿命,得到的柔性正极材料比表面积大,且对氧还原反应的催化活性高,有效降低正极材料表面氧还原反应过程的过电位,从而提升燃料电池的能量转换效率。

Description

一种应用于燃料电池的柔性正极材料及其制备方法
技术领域
本发明涉及一种应用于燃料电池的柔性正极材料及其制备方法,属于燃料电池电极材料技术领域。
背景技术
传统的化石燃料燃烧发电造成不可再生资源短缺以及严重的环境污染,因此寻求绿色、环保、可持续发展的新型可再生能源转换装置成为研究热点。空气燃料电池拥有反应过程无污染、反应原料来源广泛等优点,在汽车、航天等移动电源领域具有广阔的发展前景。然而,在燃料电池正极区域发生的反应,即氧还原反应,在其反应过程中存在较高的反应动力学障碍,会使电池的能量转换效率降低。为了减小或消除这种反应动力学障碍,通常可以通过以下途径:1、在电极的导电基底(即集流体)表面负载对氧还原反应具有较高本征催化活性的电化学活性物质;2、提升电极的比表面积。以Pt、Ru和Ir等贵金属材料作为电化学活性物质,被证明能够有效提升燃料电池的能量转换效率,但它们价格昂贵、储量稀少,限制了它们的工业化应用。
在传统的电极材料制备技术中,是将电化学活性物质与导电剂、粘结剂混合后涂覆于导电基底表面,从而形成最终的电极材料。但是,粘结剂的存在会导致电极材料的电导率降低、电化学活性物质的大量反应位点被掩蔽;同时,单纯靠粘结剂的粘结作用,电化学活性物质与导电基底之间的结合不稳定,在拉伸、弯曲等力学载荷下,涂覆在导电基底表面的电化学活性物质极易脱落,造成电极材料不稳定,进而影响整个电池的使用寿命。
发明内容
本发明的目的在于提供一种应用于燃料电池的柔性正极材料的制备方法,提高了电化学活性物质与导电基底之间的结合稳定性,得到的柔性正极材料可有效提升燃料电池能量转换效率。
为达到上述目的,本发明提供如下技术方案:一种应用于燃料电池的柔性正极材料的制备方法,所述制备方法包括如下步骤:
S1、提供导电基底,在所述导电基底表面沉积Zn-Cu-Mo合金;
S2、对所述Zn-Cu-Mo合金脱合金化处理得到多孔Cu-Mo前躯体;
S3、对所述多孔Cu-Mo前躯体磷化处理得到多孔Cu-Mo-P,得到柔性正极材料。
进一步地,所述导电基底为碳纤维布。
进一步地,所述Zn-Cu-Mo合金由磁控溅射方法进行Zn、Cu、Mo三靶共溅射制备形成。
进一步地,Zn靶功率为30-80W/cm2,Cu靶功率为40-120W/cm2,Mo靶功率为40-120W/cm2,溅射时间为40-100min。
进一步地,所述多孔Cu-Mo前躯体的制备方法具体为:使用稀盐酸化学腐蚀去除所述Zn-Cu-Mo合金中的Zn。
进一步地,所述稀盐酸浓度为0.1-0.6mol/L,酸处理时长为0.5-5h。
进一步地,所述多孔Cu-Mo前躯体的孔径为50-500nm。
进一步地,所述多孔Cu-Mo-P的制备方法具体为:将所述具有多孔Cu-Mo前躯体的导电基底和磷源置于管式炉内进行磷化处理,所述磷化处理的温度为250-350℃,时间为1.5-3h,升温速率为3-6℃/min,气氛为纯Ar气氛。
进一步地,所述磷源次亚磷酸钠。
本发明还提供一种应用于燃料电池的柔性正极材料,所述柔性正极材料由所述制备方法制备得到。
本发明的有益效果在于:本发明通过在导电基底上形成多孔Cu-Mo-P,不需使用粘结剂,提高了多孔Cu-Mo-P与导电基底之间的结合稳定性,并提升燃料电池的使用寿命,得到的柔性正极材料比表面积大,且对氧还原反应的催化活性高,有效降低正极材料表面氧还原反应过程的过电位,从而提升燃料电池的能量转换效率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明所示的应用于燃料电池的柔性正极材料的结构示意图;
图2为图1中所述应用于燃料电池的柔性正极材料的局部结构放大图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参见图1和图2,本发明所示的一种应用于燃料电池的柔性正极材料,其包括导电基底1、以及形成在导电基底1表面上的电化学活性物质2,该电化学活性物质2为多孔Cu-Mo-P。其中,导电基底1为碳纤维布(CC),但不仅限于此,导电基底还可以为其他导电材料,在此不一一列举。碳纤维布具备机械性能好,电导率高和比表面积大等优点,是一种良好的柔性电极导电基底材料(即柔性集流体材料)。
过渡金属(TM,例如:Fe、Co、Ni、Cu、Mo等)、过渡金属磷化物(TMPs)因为具备特殊的电子结构,被陆续证明在电化学氧还原反应过程中拥有较高的本征催化活性,可有效降低燃料电池正极表面氧还原反应过程的过电位,可提升燃料电池的能量转换效率。且过渡金属价格相对贵金属价格便宜,可降低燃料电池的制备成本。多孔Cu-Mo-P的比表面积大,且对氧还原反应的催化活性高,有效降低正极材料表面氧还原反应过程的过电位,从而提升燃料电池的能量转换效率。
本发明还提供了一种用以制备上述应用于燃料电池的柔性正极材料的制备方法,制备方法包括如下步骤:
S1、提供导电基底,在导电基底表面沉积Zn-Cu-Mo合金;
S2、对Zn-Cu-Mo合金脱合金化处理得到多孔Cu-Mo前躯体;
S3、对多孔Cu-Mo前躯体磷化处理得到多孔Cu-Mo-P,得到柔性正极材料。
该导电基底为碳纤维布,在碳纤维布表面原位制备多孔Cu-Mo-P作为电化学活性物质,以得到自支撑结构的柔性电极材料,可满足燃料电池装置的应用,同时可以有效避免使用粘结剂,提高了碳纤维布与电化学活性物质之间的结合稳定性,提高燃料电池的使用寿命。
Zn-Cu-Mo合金由磁控溅射方法进行Zn、Cu、Mo三靶共溅射制备形成。其中,Zn靶功率为30-80W/cm2,Cu靶功率为40-120W/cm2,Mo靶功率为40-120W/cm2,溅射时间为40-100min。
脱合金化处理是通过化学腐蚀以去除多元合金中的某种金属,从而形成均匀稳定的多孔材料的常见方法。由于多元合金间复合程度高,脱合金化可制备具有纳米级多孔的材料结构,从而极大幅度提升材料的比表面积。
多孔Cu-Mo前躯体的制备方法具体为:使用稀盐酸化学腐蚀去除Zn-Cu-Mo合金中的Zn。其中,稀盐酸浓度为0.1-0.6mol/L,酸处理时长为0.5-5h,得到是多孔Cu-Mo前躯体的孔径为50-500nm。在其他实施例中,还可以使用其他酸进行化学腐蚀,在此不做具体限定。
多孔Cu-Mo-P的制备方法具体为:将具有多孔Cu-Mo前躯体的导电基底和磷源置于管式炉内经过气固相反应进行磷化处理,磷化处理的温度为250-350℃,时间为1.5-3h,升温速率为3-6℃/min,气氛为纯Ar气氛。其中,磷源次亚磷酸钠,但不仅限于此,磷源还可以为其他材料,在此不一一列举。
关于应用于燃料电池的柔性正极材料的制备方法,下面以具体实施例进行说明:
步骤一、利用高真空三靶共磁控溅射设备,在碳纤维布表面沉积Zn-Cu-Mo三元合金,具体的:将磁控溅射设备抽真空至1.0×10-3Pa以上真空度,通入纯度为99.999%的氩气(Ar),将纯度为99.99%的Zn靶、Cu靶和Mo靶三种靶材分别安装于真空室内的磁控溅射源上,同时开启直流电源,Zn靶为40W/cm2、Cu靶为60W/cm2、Mo靶为60W/cm2,溅射时长均为60min,得到Zn-Cu-Mo/CC材料。需要说明的是,样品基座位于磁控溅射设备腔体内的上方,将碳纤维布垂直悬挂于样品基座上,Zn靶、Cu靶和Mo靶位于碳纤维布的侧下方,溅射过程中,样品基座以3-6r/min的转速水平自转,使得三靶材溅射的金属原子可以在碳纤维布表面均匀、全面的沉积。
步骤二、对Zn-Cu-Mo/CC材料进行脱合金化处理,具体的:将Zn-Cu-Mo/CC材料在0.6mol/L稀盐酸中浸泡4h,去除Zn-Cu-Mo三元合金中的Zn,形成均匀多孔的Cu-Mo/CC材料。
步骤三、对Cu-Mo/CC材料进行磷化处理,具体的:将1.5g次亚磷酸钠与Cu-Mo/CC材料置于管式炉中,次亚磷酸钠置于Cu-Mo/CC材料的前端位置;在Ar气保护气氛下,5℃/min升温速率至300℃,保温2h后,管式炉冷却至室温,制备得到多孔Cu-Mo-P/CC柔性正极材料。
制备得到的多孔Cu-Mo-P/CC柔性正极材料在0.1M KOH溶液中,氧还原反应的最高起始电位为0.986V(在2mA/cm2电流密度下),半波电位为0.887V。另外,该多孔Cu-Mo-P/CC柔性正极材料在0.1M KOH溶液中进行50h稳定性测试,其对氧还原反应的催化性能无明显衰减,性能优异。
综上,本发明通过在导电基底上形成多孔Cu-Mo-P,不需使用粘结剂,提高了多孔Cu-Mo-P与导电基底之间的结合稳定性,并提升燃料电池的使用寿命,得到的柔性正极材料比表面积大,且对氧还原反应的催化活性高,有效降低正极材料表面氧还原反应过程的过电位,从而提升燃料电池的能量转换效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种应用于燃料电池的柔性正极材料的制备方法,其特征在于,所述制备方法包括如下步骤:
S1、提供导电基底,在所述导电基底表面沉积Zn-Cu-Mo合金;
S2、对所述Zn-Cu-Mo合金脱合金化处理得到多孔Cu-Mo前躯体;
S3、对所述多孔Cu-Mo前躯体磷化处理得到多孔Cu-Mo-P,得到柔性正极材料。
2.如权利要求1所述的应用于燃料电池的柔性正极材料的制备方法,其特征在于,所述导电基底为碳纤维布。
3.如权利要求1所述的应用于燃料电池的柔性正极材料的制备方法,其特征在于,所述Zn-Cu-Mo合金由磁控溅射方法进行Zn、Cu、Mo三靶共溅射制备形成。
4.如权利要求3所述的应用于燃料电池的柔性正极材料的制备方法,其特征在于,Zn靶功率为30-80W/cm2,Cu靶功率为40-120W/cm2,Mo靶功率为40-120W/cm2,溅射时间为40-100min。
5.如权利要求1所述的应用于燃料电池的柔性正极材料的制备方法,其特征在于,所述多孔Cu-Mo前躯体的制备方法具体为:使用稀盐酸化学腐蚀去除所述Zn-Cu-Mo合金中的Zn。
6.如权利要求5所述的应用于燃料电池的柔性正极材料的制备方法,其特征在于,所述稀盐酸浓度为0.1-0.6mol/L,酸处理时长为0.5-5h。
7.如权利要求1所述的应用于燃料电池的柔性正极材料的制备方法,其特征在于,所述多孔Cu-Mo前躯体的孔径为50-500nm。
8.如权利要求1所述的应用于燃料电池的柔性正极材料的制备方法,其特征在于,所述多孔Cu-Mo-P的制备方法具体为:将所述具有多孔Cu-Mo前躯体的导电基底和磷源置于管式炉内进行磷化处理,所述磷化处理的温度为250-350℃,时间为1.5-3h,升温速率为3-6℃/min,气氛为纯Ar气氛。
9.如权利要求8所述的应用于燃料电池的柔性正极材料的制备方法,其特征在于,所述磷源次亚磷酸钠。
10.一种应用于燃料电池的柔性正极材料,其特征在于,所述柔性正极材料由权利要求1-9项中任一项所述制备方法制备得到。
CN202110043033.4A 2021-01-13 2021-01-13 一种应用于燃料电池的柔性正极材料及其制备方法 Active CN112877663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110043033.4A CN112877663B (zh) 2021-01-13 2021-01-13 一种应用于燃料电池的柔性正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110043033.4A CN112877663B (zh) 2021-01-13 2021-01-13 一种应用于燃料电池的柔性正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112877663A true CN112877663A (zh) 2021-06-01
CN112877663B CN112877663B (zh) 2022-12-23

Family

ID=76045505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110043033.4A Active CN112877663B (zh) 2021-01-13 2021-01-13 一种应用于燃料电池的柔性正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112877663B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005086A1 (en) * 2000-03-29 2002-01-17 Dorfman Leonid P. Mo-Cu composite powder
US20050282062A1 (en) * 2003-02-18 2005-12-22 Takashi Manako Fuel cell electrode, fuel cell and their production processes
JP2008043907A (ja) * 2006-08-21 2008-02-28 Sumitomo Metal Mining Co Ltd 水素透過複合膜およびその製造方法
CN104451547A (zh) * 2014-12-05 2015-03-25 国家纳米科学中心 一种磁控溅射制备纳米多孔金属薄膜的方法
CN107980072A (zh) * 2015-03-31 2018-05-01 Inl-国际伊比利亚纳米技术实验室 多孔电极材料的制造方法
CN109023412A (zh) * 2018-08-24 2018-12-18 北京科技大学 一种纳米多孔镍铜/非晶复合电极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005086A1 (en) * 2000-03-29 2002-01-17 Dorfman Leonid P. Mo-Cu composite powder
US20050282062A1 (en) * 2003-02-18 2005-12-22 Takashi Manako Fuel cell electrode, fuel cell and their production processes
JP2008043907A (ja) * 2006-08-21 2008-02-28 Sumitomo Metal Mining Co Ltd 水素透過複合膜およびその製造方法
CN104451547A (zh) * 2014-12-05 2015-03-25 国家纳米科学中心 一种磁控溅射制备纳米多孔金属薄膜的方法
CN107980072A (zh) * 2015-03-31 2018-05-01 Inl-国际伊比利亚纳米技术实验室 多孔电极材料的制造方法
CN109023412A (zh) * 2018-08-24 2018-12-18 北京科技大学 一种纳米多孔镍铜/非晶复合电极材料及其制备方法

Also Published As

Publication number Publication date
CN112877663B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN106898778B (zh) 一种金属二次电池负极用三维集流体及其制备方法和用途
CN106602092B (zh) 一种单壁碳纳米管空心球氧还原催化剂的制备方法及应用
CN105839131A (zh) 自支撑金属掺杂磷化钴纳米结构的水电解制氢催化电极
CN110846680B (zh) 一种多缺陷和活性位点的电催化剂的制备方法
CN111437841B (zh) 一种碲化钨-硼化钨异质结电催化剂及其制备方法和应用
CN107785586A (zh) 用于二次金属锂电池负极的三维多孔铜/石墨烯复合集流体
CN112090436B (zh) 一种镍基催化剂、制备方法及应用
CN111841589B (zh) 一种镍钴钨磷化物催化剂及其制备方法和应用
CN114744224B (zh) 一种氮掺杂碳纳米管负载镍钴复合纳米线的制备与应用
CN115692746A (zh) 一步沉积制备orr和oer双功能催化剂的方法
CN114695904A (zh) 自支撑氮掺杂碳纳米管负载铂纳米簇状物的制备与应用
CN110649276A (zh) 一种基于n2等离子刻蚀的立体式多孔氮掺杂碳纳米管电催化剂及其制备方法
CN110952110A (zh) 一种纳米多孔Pd-Fe-P-C材料及其制备方法和其电解水制氢中应用
CN112680745B (zh) 一种限域负载钌纳米团簇的氮化钨纳米多孔薄膜一体化电极及其制备方法和应用
CN113782731A (zh) 一种水系锌二次电池用负极材料及其制备方法
CN111939914B (zh) 一种利用废弃铜箔制备高活性三元金属析氧催化剂的方法
CN113725444B (zh) 一种钌/碳纳米管柔性正极材料及其制备方法和应用
CN112877715A (zh) 一种多孔碳负载磷化钌催化剂的制备方法及其应用
CN112877663B (zh) 一种应用于燃料电池的柔性正极材料及其制备方法
CN113488656A (zh) 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用
CN114804039B (zh) 一种碳基体复合氮化钒纳米阵列及其制备方法与应用
CN114411016B (zh) 自支撑纳米多孔Ni4Mo/Ni合金材料的制备方法及应用
CN108336373B (zh) 一种应用于锌空电池的过渡金属氧化物氮磷掺杂催化剂的制备方法
JP2006140134A (ja) 燃料電池用膜電極接合体、その製造方法および燃料電池
CN114481101B (zh) 一种调控金属镀层晶面取向的方法获得的金属材料和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant