CN112844357A - 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法 - Google Patents

一种二氧化钛包覆层状氧化物二维核壳材料的制备方法 Download PDF

Info

Publication number
CN112844357A
CN112844357A CN202011420538.XA CN202011420538A CN112844357A CN 112844357 A CN112844357 A CN 112844357A CN 202011420538 A CN202011420538 A CN 202011420538A CN 112844357 A CN112844357 A CN 112844357A
Authority
CN
China
Prior art keywords
tio
ldh
ldo
core
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011420538.XA
Other languages
English (en)
Other versions
CN112844357B (zh
Inventor
张瑞康
王灿
高元哲
韩占刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Normal University
Original Assignee
Hebei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Normal University filed Critical Hebei Normal University
Priority to CN202011420538.XA priority Critical patent/CN112844357B/zh
Publication of CN112844357A publication Critical patent/CN112844357A/zh
Application granted granted Critical
Publication of CN112844357B publication Critical patent/CN112844357B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种制备层状双金属氧化物(Layed Double Oxides,LDO)为核,外面包覆二氧化钛(TiO2)的二维核壳结构复合材料的方法。首先通过溶剂环境调控层状双金属氢氧化物(Layed Double Hydroxides,LDH)金属层板上羟基的配位能力,使钛源前驱体包覆生长在二维LDH材料表面形成无定型TiO2;进一步经过高温处理,LDH失水转变为LDO,无定型TiO2转化为锐钛矿TiO2,最后得到结构规整的LDO外面包覆TiO2(LDO@TiO2)的二维核壳结构复合材料。壳层的TiO2纳米片具有优异的光催化性能,核层的LDO具有较好的催化或吸附性能,提升了壳层TiO2纳米片的性能。本发明提供了一种在LDH模板上生长TiO2纳米片的方法,得到的二氧化钛/金属氧化物纳米片材料,可广泛应用于光催化分解水,污染物吸附、降解等领域。

Description

一种二氧化钛包覆层状氧化物二维核壳材料的制备方法
技术领域
本发明属于无机纳米材料合成领域,特别涉及一种以层状双金属氢氧化物为模板,通过调控溶剂、钛源前驱体来合成二氧化钛包覆层状氧化物二维核壳材料的制备方法。
背景技术
在无机合成领域,核壳结构纳米材料以其优异的物理化学性能引起了研究者的广泛关注。核壳结构由位于中心的核体和包覆在外部的壳层组成,壳层材料通过强的共价键或弱相互作用包覆在核体外层,从而形成有序组装结构的复合材料。与单一组分的材料相比,核壳结构材料整合了核层、壳层两种材料的性质。相比于两种物质的简单混合,内外层物质空间上紧密联系,具有结构和功能互补的协同特性。因此具有很大的应用前景。以二氧化钛(TiO2)这种典型的半导体材料为例:为了克服其具有较宽禁带宽度和较快载流子复合速率的缺点,制备TiO2核壳结构复合材料可以大大拓展其在光催化领域的应用性能。二维纳米材料近年来因其独特电子特性和较高比表面积的特点也得到了材料合成领域的广泛关注。二维层状材料中,层内原子一般通过共价键等强相互作用键合,层间原子以静电作用等弱相互作用连接,形成c方向上单层或者几层的稳定结构,因此常表现出其他维度化合物不具有的特异光、电、磁、力学性能。层状双金属氢氧化物(Layed Double Hydroxides,LDH)是一类阴离子型层状材料,常表现为典型的六边形片状结构,其直径大小可以从几百纳米到几十个微米,厚度从几十纳米到几百纳米不等。LDH由主体层板和层间客体分子构成,其中主体层板原子以共价键方式结合,主体层板与客体分子间主要通过库伦力,氢键等弱相互作用结合。LDH主体层板表面富含的羟基易于吸附水形成极性较弱的羟基,这种由二维刚性层板提供的弱极性环境适用于一些特定的微合成反应。LDH在进一步发生的合成反应中既提供生长的环境,又可以通过控制LDH的组分和形貌来调控复合材料的形貌和成分。TiO2材料具有高的稳定性和光催化活性,且价格低廉,因此结合二维材料和核壳材料的优势,制备基于TiO2的二维核壳结构材料具有很大的应用前景。复合材料具有纳米片结构表面反应位点高,核壳材料功能多样化的优点,可以极大拓展TiO2的相关性能及应用领域。
发明内容
本发明的目的是提供一种二氧化钛包覆层状氧化物二维核壳材料的制备方法,其步骤简单且易于大规模生产,所得到的结构规整的LDO外面包覆TiO2(LDO@TiO2)的复合材料具有优异的光催化性能。
本发明的构思是这样的,针对TiO2二维纳米片难以直接合成,以及单一组分性能受限的不足,以二维LDH为生长模板,在特定溶剂环境下,利用二维LDH表面弱极性环境,通过钛源前驱体在其表面原位生长无定型TiO2,进而通过焙烧处理,LDH失水转变为LDO,无定型TiO2转化为锐钛矿TiO2,得到结构规整、结晶度良好的LDO@TiO2二维核壳材料。
具体的,本发明给出的一种二氧化钛包覆层状氧化物二维核壳材料的制备方法,包括以
下步骤:
(1)将制备好的0.2-2 g LDH材料分散在25-1000 mL由水、乙醇和乙腈体积比为(0-0.1):1.0:0-0.5组成的混合溶液中;
(2)室温条件下,在上述混合溶液中加入0.1-10 mL钛源前驱体溶液,搅拌5-30min后放入反应容器中,进一步在20-120℃下反应2-24 h;
(3)将得到的固体产物洗涤、干燥,置于高温炉中,在200-900℃下焙烧1-6 h得到LDO@TiO2二维核壳材料。
本发明步骤(1)中所用的LDH材料为ZnAl-LDH、CoAl-LDH、MgAl-LDH和NiCo-LDH中的一种或几种的任意混合。
本发明步骤(2)中所用的钛源前驱体溶液为钛酸四丁酯、钛酸四异丙酯和四氯化钛中的一种或几种的任意混合。
本发明取得的有益效果在于:本发明实现了微米级别TiO2纳米片的制备,并且LDH模板转化形成的不同类型LDO与TiO2功能互补,适用于多种类型材料的合成。制备方法简单高效,可应用于大规模批量化生产。本发明提供了一种在LDH模板上生长TiO2纳米片的方法,所得到的二氧化钛/金属氧化物纳米片材料,可广泛应用于污染物降解、吸附和光催化等领域。
附图说明
图1是实施例1中以ZnAl-LDH为模板制备LDO@TiO2二维核壳材料的流程示意图。
图2是实施例1中所用ZnAl-LDH的扫描电镜图。
图3是实施例1中在ZnAl-LDH表面生长TiO2后的扫描电镜图。
图4是实施例1中通过焙烧处理后得到的LDO@TiO2的扫描电镜图。
图5是实施例1中ZnAl-LDH,LDH@TiO2和LDO@TiO2的XRD图。
由图1可知,制备LDO@TiO2二维核壳材料从LDH出发需要两步。
由图2可知,ZnAl-LDH纳米片的厚度为~100 nm,直径为5-8 μm。
由图3可知,LDH@TiO2纳米片的厚度为300-400 nm,直径为5-8 μm。
由图4可知,LDO@TiO2纳米片的厚度为250-350 nm,直径为5-8 μm。
由图5可知,成功制备了ZnAl-LDH,LDH@TiO2和LDO@TiO2样品。
具体实施方式
以下实施例用于说明本发明。
实施例1 在ZnAl-LDH表面合成TiO2形成ZnAl-LDO@TiO2材料
a: 取0.1 ZnAl-LDH分散到50 mL水、乙醇和乙腈体积比为0.05:1.00:0.10的混合溶液中;
b: 在上述悬浊液中加入2 mL钛酸四丁酯溶液,搅拌10 min;
c: 放入反应釜,在80℃下反应6 h。得到的固体产物洗涤、干燥;
d: 将步骤c中得到的产品放入马弗炉中,升温速率为5°C/min,600°C焙烧2 h。
实施例2 在CoAl-LDH表面合成TiO2形成CoAl-LDO@TiO2材料
a: 取0.2 CoAl-LDH分散到100 mL水、乙醇和乙腈体积比为0.10:1.00:0.05的混合溶液中;
b: 在上述悬浊液中加入5 mL钛酸四丁酯溶液,搅拌20 min;
c: 放入反应釜,在90℃下反应10 h。得到的固体产物洗涤、干燥;
d: 将步骤c中得到的产品放入管式炉中,升温速率为2°C/min,500°C焙烧3 h。
实施例3 在MgAl-LDH表面合成TiO2形成MgAl-LDO@TiO2材料
a: 取0.5 MgAl-LDH分散到500 mL水、乙醇和乙腈体积比为0.15:1.00:0.15的混合溶液中;
b: 在上述悬浊液中加入25 mL四氯化钛溶液,搅拌30 min;
c: 放入反应釜,在70℃下反应15 h。得到的固体产物洗涤、干燥;
d: 将步骤c中得到的产品放入马弗炉中,升温速率为2°C/min,400°C焙烧4 h。
实施例4 在CoNi-LDH表面合成TiO2形成CoNi-LDO@TiO2材料
a: 取0.8 CoNi-LDH分散到1000 mL水、乙醇和乙腈体积比为0.05:1.00:0.05的混合溶液中;
b: 在上述悬浊液中加入30 mL钛酸四异丙酯溶液,搅拌15 min;
c: 放入反应釜,在110℃下反应5 h。得到的固体产物洗涤、干燥;
d: 将步骤c中得到的产品放入管式炉中,升温速率为2°C/min,600°C焙烧2 h。

Claims (3)

1.一种二氧化钛包覆层状氧化物二维核壳材料的制备方法,其特征在于包括以下步骤:
(1)将制备好的0.2-2 g LDH材料分散在25-1000 mL由水、乙醇和乙腈体积比为(0-0.1):1.0:0-0.5组成的混合溶液中;
(2)室温条件下,在上述混合溶液中加入0.1-10 mL钛源前驱体溶液,搅拌5-30 min后放入反应容器中,进一步在20-120℃下反应2-24 h;
(3)将得到的固体产物洗涤、干燥,置于高温炉中,在200-900℃下焙烧1-6 h得到LDO@TiO2二维核壳材料。
2.根据权利要求1所述的制备方法,其特征在于步骤(1)中所用的LDH材料为ZnAl-LDH、CoAl-LDH、MgAl-LDH和NiCo-LDH中的一种或几种的任意混合。
3.根据权利要求1所述的制备方法,其特征在于步骤(2)中所用的钛源前驱体溶液为钛酸四丁酯、钛酸四异丙酯和四氯化钛中的一种或几种的任意混合。
CN202011420538.XA 2020-12-08 2020-12-08 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法 Active CN112844357B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011420538.XA CN112844357B (zh) 2020-12-08 2020-12-08 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011420538.XA CN112844357B (zh) 2020-12-08 2020-12-08 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法

Publications (2)

Publication Number Publication Date
CN112844357A true CN112844357A (zh) 2021-05-28
CN112844357B CN112844357B (zh) 2022-08-26

Family

ID=75997037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011420538.XA Active CN112844357B (zh) 2020-12-08 2020-12-08 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法

Country Status (1)

Country Link
CN (1) CN112844357B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114887582A (zh) * 2022-05-12 2022-08-12 重庆文理学院 一种回收废水中亚磷酸根离子的方法
CN114907619A (zh) * 2022-04-29 2022-08-16 南通大学 有机无机协同的层板/核壳复合结构光稳定剂及制备方法
CN115233254A (zh) * 2022-06-20 2022-10-25 厦门大学 核壳结构的TiO2/NiCoAl-LDH纳米棒阵列复合电极及其制备方法和应用
CN115259188A (zh) * 2022-08-02 2022-11-01 郑州大学 一种片状氧化铝夹心复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016329A1 (ja) * 2009-08-05 2011-02-10 ダイセル化学工業株式会社 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法
CN102786071A (zh) * 2012-07-25 2012-11-21 北京化工大学 一种复合金属氧化物气敏材料及其制备方法
CN104860348A (zh) * 2015-04-22 2015-08-26 武汉理工大学 一种纳米片构筑的核壳结构二氧化钛及其制备方法与应用
CN108993516A (zh) * 2018-08-17 2018-12-14 太原理工大学 一种以镍钛水滑石为前驱体的复合氧化物催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016329A1 (ja) * 2009-08-05 2011-02-10 ダイセル化学工業株式会社 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法
CN102786071A (zh) * 2012-07-25 2012-11-21 北京化工大学 一种复合金属氧化物气敏材料及其制备方法
CN104860348A (zh) * 2015-04-22 2015-08-26 武汉理工大学 一种纳米片构筑的核壳结构二氧化钛及其制备方法与应用
CN108993516A (zh) * 2018-08-17 2018-12-14 太原理工大学 一种以镍钛水滑石为前驱体的复合氧化物催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KUN LAN 等: "Uniform Ordered Two-Dimensional Mesoporous TiO2 Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly", 《J. AM. CHEM. SOC.》 *
XIA AN ETAL.: "Synthesis of mesoporous N-doped TiO2/ZnAl-layered double oxides nanocomposite for efficient photodegradation of methyl orange", 《MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING》 *
李明明: "介孔纳米二氧化钛的制备及其光催化活性", 《中国优秀硕士毕业论文全文数据库工程科技Ⅰ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907619A (zh) * 2022-04-29 2022-08-16 南通大学 有机无机协同的层板/核壳复合结构光稳定剂及制备方法
CN114887582A (zh) * 2022-05-12 2022-08-12 重庆文理学院 一种回收废水中亚磷酸根离子的方法
CN114887582B (zh) * 2022-05-12 2023-08-15 重庆文理学院 一种回收废水中亚磷酸根离子的方法
CN115233254A (zh) * 2022-06-20 2022-10-25 厦门大学 核壳结构的TiO2/NiCoAl-LDH纳米棒阵列复合电极及其制备方法和应用
CN115259188A (zh) * 2022-08-02 2022-11-01 郑州大学 一种片状氧化铝夹心复合材料及其制备方法
CN115259188B (zh) * 2022-08-02 2024-02-27 郑州大学 一种片状氧化铝夹心复合材料及其制备方法

Also Published As

Publication number Publication date
CN112844357B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
CN112844357B (zh) 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法
Hu et al. Synthesis, structures and applications of single component core-shell structured TiO2: a review
Wahi et al. Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area
CN106315695B (zh) 一种杨梅状钴酸镍纳米材料及其制备方法
Shin et al. Template synthesis of porous titania using cellulose nanocrystals
CN103991903B (zh) 一种混相二氧化钛纳米片光催化剂的制备方法
Li et al. Heterostructured (Ba, Sr) TiO3/TiO2 core/shell photocatalysts: influence of processing and structure on hydrogen production
CN108671907B (zh) 一种铂/二氧化钛纳米花复合材料及其制备方法与应用
Li et al. Synthesis of anatase TiO2 nanowires by modifying TiO2 nanoparticles using the microwave heating method
CN108772092B (zh) 一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法
Liu et al. Microwave-assisted hydrothermal synthesis of cellulose/ZnO composites and its thermal transformation to ZnO/carbon composites
CN101857267B (zh) 一种具有核壳结构的二氧化钛纳米材料的制备方法
CN113698617B (zh) 一种超薄二维分级多孔zif-67的合成方法
CN111013587A (zh) 一种单分散的α-Fe2O3@TiO2椭球的制备方法
CN108393080B (zh) 一种纳米碳/氧化钛多孔微球的制备方法
Huang et al. Ethanol solution plasma loads carbon dots onto 2D HNb3O8 for enhanced photocatalysis
US8075867B2 (en) Method for manufacturing a nanoporous framework and a nanoporous framework thus produced
CN109999774B (zh) 纳米二氧化钛/γ-氧化铝复合材料粉末的制备方法
Zhao et al. Hydrothermal synthesis of Litchi‐like SrTiO3 with the help of ethylene glycol
CN115140764B (zh) 一种层级结构的钙钛矿相钛酸铅、水热合成方法及应用
CN108380194B (zh) 一种光催化剂及其制备方法和应用
CN103232043A (zh) 晶化介孔硅酸锌/氧化硅复合粉体及其制备方法
Sun et al. Acid-regulated hydrolysis and condensation of titanium cation toward controllable synthesis of multiphase mesoporous TiO2 for effectively enhance photocatalytic H2 evolution
CN114560498A (zh) 一种制备中空棒状结构二氧化钛的方法
CN104609467B (zh) 一种光致变红色氧化钛及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant