WO2011016329A1 - 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法 - Google Patents

新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法 Download PDF

Info

Publication number
WO2011016329A1
WO2011016329A1 PCT/JP2010/062131 JP2010062131W WO2011016329A1 WO 2011016329 A1 WO2011016329 A1 WO 2011016329A1 JP 2010062131 W JP2010062131 W JP 2010062131W WO 2011016329 A1 WO2011016329 A1 WO 2011016329A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
rutile
type titanium
crystal plane
dioxide nanoparticles
Prior art date
Application number
PCT/JP2010/062131
Other languages
English (en)
French (fr)
Inventor
横野照尚
Original Assignee
ダイセル化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル化学工業株式会社 filed Critical ダイセル化学工業株式会社
Priority to CN2010800339928A priority Critical patent/CN102448886A/zh
Priority to US13/389,097 priority patent/US8758574B2/en
Priority to EP10806329.8A priority patent/EP2463237A4/en
Publication of WO2011016329A1 publication Critical patent/WO2011016329A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B33/00Oxidation in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to a photocatalyst, rutile titanium dioxide nanoparticles useful as an oxidation catalyst, a production method thereof, a photocatalyst comprising the rutile titanium dioxide nanoparticles, and an organic compound oxidation method using the photocatalyst.
  • Photocatalytic reaction means that when a solid compound having photocatalytic activity is irradiated with ultraviolet rays, excited electrons and holes after the electrons are emitted (holes: holes) are generated, the excited electrons perform a reducing action, and the holes have a strong oxidizing action. In this reaction, the reactant is oxidized or reduced. Titanium dioxide is known as a typical solid compound having photocatalytic activity. Titanium dioxide can exert a strong oxidizing action when it absorbs ultraviolet rays, and has been applied to a wide range of applications such as air purification, water purification, pollution prevention, deodorization, antibacterial infection, hospital infection prevention, and fog prevention.
  • Rutile type and anatase type are known as main crystal forms of titanium dioxide. These crystalline titanium dioxides exhibit higher chemical stability and a higher refractive index than amorphous titanium dioxide (amorphous). Crystalline titanium dioxide can easily control the crystal shape, size, and crystallinity.
  • titanium dioxide particles having a high degree of crystallinity can exhibit superior photocatalytic activity as compared with titanium dioxide powder having a low degree of crystallinity.
  • the larger the crystal size, the better the photocatalytic ability can be exhibited. are known.
  • Patent Document 1 describes a method for producing titanium dioxide crystals in which a newly exposed crystal plane is expressed by subjecting titanium dioxide to alkaline hydrogen peroxide treatment, sulfuric acid treatment, or hydrofluoric acid treatment. It is described that the photocatalyst made of titanium dioxide in which the newly exposed crystal face is developed has high oxidation catalyst performance.
  • the titanium dioxide having the newly exposed crystal plane developed is (1) obtained from rutile type titanium dioxide, titanium dioxide crystal having newly developed (121) plane, and (2) new type obtained from rutile type titanium dioxide.
  • a titanium dioxide crystal having a (001) (121) (021) (010) plane developed thereon (3) a titanium dioxide crystal having a new (021) plane obtained from a rutile-type titanium dioxide, (5) Titanium dioxide crystal newly developed with (120) plane obtained from anatase type titanium dioxide, (5) Titanium dioxide crystal with new (122) plane developed from anatase type titanium dioxide, (6)
  • a novel (112) faced titanium dioxide crystal obtained from anatase type titanium dioxide is disclosed.
  • the conventional titanium dioxide catalyst having a crystal form does not necessarily have sufficient catalytic action depending on the use, and a titanium dioxide photocatalyst having higher catalytic activity has been demanded.
  • an object of the present invention is to provide a novel rutile type titanium dioxide nanoparticle having high photocatalytic activity, a photocatalyst comprising the rutile type titanium dioxide nanoparticle, and a method for oxidizing an organic compound using the photocatalyst.
  • Another object of the present invention is to provide a novel photocatalyst comprising rutile titanium dioxide nanoparticles capable of efficiently oxidizing an organic substance, and an organic compound oxidation method using the photocatalyst.
  • the present inventor is likely to recombine when electrons and holes that cause a photocatalytic reaction approach each other. Therefore, it is important to increase the photocatalytic activity, and titanium dioxide.
  • the present invention was completed by finding that a photocatalyst comprising rutile-type titanium dioxide nanoparticles having an exposed crystal face (001) has high oxidation catalyst performance obtained by hydrothermal treatment in an aqueous medium in the presence of a polymer. .
  • the present invention provides rutile-type titanium dioxide nanoparticles having an exposed crystal plane (001).
  • the present invention also provides a rutile-type titanium dioxide nanoparticle having a rutile-type titanium dioxide nanoparticle having an exposed crystal plane (001) by hydrothermally treating a titanium compound in an aqueous medium in the presence of a hydrophilic polymer. Provides a manufacturing method.
  • polyvinylpyrrolidone is preferable.
  • the present invention further provides a photocatalyst comprising rutile-type titanium dioxide nanoparticles having an exposed crystal plane (001).
  • the present invention further oxidizes an organic compound having an oxidizable site with molecular oxygen or peroxide under light irradiation in the presence of a photocatalyst composed of rutile-type titanium dioxide nanoparticles having an exposed crystal plane (001).
  • a photocatalyst composed of rutile-type titanium dioxide nanoparticles having an exposed crystal plane (001).
  • a method for oxidizing an organic compound is provided.
  • the rod-like crystal of rutile-type titanium dioxide consists of (110) and (111) faces, and the (110) face acts as a reduction site and the (111) face acts as an oxidation site.
  • the (110) face acts as a reduction site and the (111) face acts as an oxidation site.
  • there is a new exposed crystal plane (001) with the (110) plane acting as a reduction site and the (001) plane and (111) plane acting as an oxidation site. Therefore, excited electrons generated by irradiating ultraviolet rays and activated holes can be completely separated, and recombination can be prevented. Therefore, a strong oxidizing action can be exhibited.
  • rutile-type titanium dioxide nanoparticles according to the present invention are used as a photocatalyst, an organic substance can be efficiently oxidized, which is useful for purposes such as air purification, deodorization, water purification, antibacterial, and antifouling.
  • Rutile-type titanium dioxide nanoparticles synthesized at different PVP concentrations in Examples and Comparative Examples [(a) SH5-0PVP, (b) SH5-0.10PVP, (c) SH5-0.25PVP, (d) SH5-0 .5 PVP].
  • CO 2 concentration (CO 2 concentration) produced when acetaldehyde was oxidized using titanium dioxide (MT-600B) and rutile titanium dioxide synthesized at different PVP concentrations in Examples and Comparative Examples as a photocatalyst It is a figure which shows the relationship between UV irradiation amount (UV Irradiation Time).
  • CO 2 concentration CO 2 concentration
  • MT-600B titanium dioxide
  • rutile titanium dioxide synthesized at different PVP concentrations in Examples and Comparative Examples were oxidized as a photocatalyst. It is a figure which shows the relationship between UV irradiation amount (UV Irradiation Time).
  • the rutile-type titanium dioxide nanoparticles according to the present invention are characterized by having a novel exposed crystal plane (001).
  • Rutile-type titanium dioxide nanoparticles having a novel exposed crystal face (001) can be produced by hydrothermally treating a titanium compound in an aqueous medium in the presence of a hydrophilic polymer.
  • a titanium compound is hydrothermally treated in an aqueous medium, rod-like crystals of rutile titanium dioxide composed of (110) and (111) faces are usually obtained.
  • a rod-like crystal of rutile type titanium dioxide having a new exposed crystal plane (001) is formed (see FIG. 1).
  • titanium compound examples include titanium trichloride, titanium tetrachloride, titanium tetrabromide, titanium sulfate, titanium nitrate, titanium alkoxide, and titanium peroxide.
  • titanium trichloride and titanium tetrachloride are preferably used in terms of reactivity under the reaction system conditions in the open form in air and the amount of chloride ions present.
  • the hydrophilic polymer acts as a steric stabilizer or capping agent when synthesizing colloidal nanoparticles, and can prevent the product from aggregating.
  • the hydrophilic polymer include polyalkylene oxides such as polyethylene oxide (PEO) and polypropylene oxide; polyvinyl pyrrolidone (PVP), polyvinyl alcohol, polyvinyl acetate (PVA), polyhydroxyalkyl acrylate, polystyrene sulfonate, a mixture or a co-polymer thereof.
  • PEO polyethylene oxide
  • PVP polyvinyl pyrrolidone
  • PVA polyvinyl alcohol
  • PVA polyvinyl acetate
  • polyhydroxyalkyl acrylate polystyrene sulfonate
  • a polymer etc. can be mentioned.
  • PVP and PVA are preferable as the hydrophilic polymer in the present invention.
  • the polymer is chemically stable, non-toxic, and exhibits excellent solubility in many polar solvents.
  • PVP is preferred because it can be selectively adsorbed on the (111) surface of the titanium nanoparticles and the shape of the rutile titanium dioxide nanoparticles can be controlled.
  • the average molecular weight of PVP is, for example, about 10,000 to 100,000, preferably about 30,000 to 50,000.
  • the average molecular weight is less than 10,000, the function of adsorbing on the specific surface of the rutile-type titanium dioxide nanoparticles to control the shape thereof and the function of preventing the aggregation of the products tend to decrease, while the average molecular weight is 100,000.
  • the viscosity becomes too high, the workability decreases, the dispersibility of the polymer itself decreases, and the ability to control the shape of rutile titanium dioxide nanoparticles decreases due to the inability to interact well with the titanium oxide precursor.
  • PVP-K30 average molecular weight: 40000
  • PVP-K25 average molecular weight: 24000
  • the photocatalytic ability of rutile titanium dioxide nanoparticles is greatly influenced by the crystal structure of the particles. This is because it depends on the crystal structure of the particles whether or not the excited electrons and holes generated when irradiated with ultraviolet rays are easily recombined.
  • the hydrophilic polymer such as PVP is easily adsorbed by the crystal plane (111) among the crystal plane (111) and the crystal plane (110) of the rutile-type titanium dioxide nanoparticles, and adsorbs to the crystal plane (111) and has a ridge or apex. It has the effect of exposing the newly exposed crystal face (001) by eroding the site, and the shape of the newly exposed crystal face (001) can be controlled by adjusting the hydrophilic polymer concentration.
  • the newly exposed crystal face (001) can be exposed depending on the hydrophilic polymer concentration, and the area of the newly exposed face can be increased.
  • the area of the crystal plane (111) decreases in inverse proportion to the increase in hydrophilic polymer concentration.
  • the concentration of the hydrophilic polymer such as PVP is, for example, 0.05 to 1.0 mM, preferably about 0.2 to 0.5 mM, and particularly preferably 0.2 to 0.4 mM. If the hydrophilic polymer concentration is too high, the crystal plane (111) is eroded and becomes too small. As a result, the separation ability between electrons and holes decreases, so that recombination tends to occur and the photocatalytic ability tends to decrease. On the other hand, if the hydrophilic polymer concentration is too thin, it becomes difficult to form a new exposed surface (001) sufficient to separate electrons and holes, and it tends to be difficult to improve the photocatalytic performance.
  • water or a mixed solution of water and a water-soluble organic solvent is used as the aqueous medium used in the hydrothermal treatment.
  • the water-soluble organic solvent include alcohols such as methanol and ethanol; ethers such as ethylene glycol dimethyl ether; ketones such as acetone; nitriles such as acetonitrile; and carboxylic acids such as acetic acid.
  • the amount of the aqueous medium used is generally about 0.0001 to 0.1 parts by weight, preferably about 0.001 to 0.01 parts by weight with respect to 1 part by weight of the titanium compound.
  • a halide to the aqueous medium.
  • the halide include alkali metal halides such as sodium chloride, potassium chloride, lithium chloride, sodium bromide, potassium bromide, and lithium bromide. Among these, alkali metal halides are preferable, and sodium chloride is particularly preferable.
  • alkali metal halides are preferable, and sodium chloride is particularly preferable.
  • the crystallinity, particle size and surface area of the rutile titanium dioxide nanoparticles can be adjusted. As the amount of halide added increases, the particle size and crystallinity tend to improve and the surface area tends to decrease.
  • the amount added in the present invention is about 0.5 to 10M, preferably about 1 to 6M. is there.
  • the treatment temperature of the hydrothermal treatment can be appropriately selected in consideration of the reaction rate and reaction selectivity, but is generally about 100 to 200 ° C. and the treatment time is about 3 to 24 hours.
  • the pressure of the hydrothermal treatment is, for example, about normal pressure to 0.3 MPa (gauge pressure), but is not limited to this range.
  • the rutile-type titanium dioxide nanoparticles in which the novel exposed crystal plane (001) of the present invention is expressed (exposed) can be used as a photocatalyst for various chemical reactions (for example, oxidation reaction, decomposition reaction of harmful substances, etc.) and sterilization. it can.
  • the organic compound oxidation method of the present invention is a method in which an organic compound having an oxidizable site is exposed to molecular oxygen or peroxidation under light irradiation in the presence of a photocatalyst composed of rutile-type titanium dioxide nanoparticles having the exposed crystal plane (001). It is characterized by being oxidized by an object.
  • the organic compound is not particularly limited as long as it is an organic compound having at least one site to be oxidized.
  • Examples of the organic compound having an oxidizable site include (A1) a heteroatom-containing compound having a carbon-hydrogen bond adjacent to the heteroatom, (A2) a compound having a carbon-heteroatom double bond, and (A3) a methine carbon atom.
  • the heteroatom-containing compound (A1) having a carbon-hydrogen bond adjacent to the heteroatom includes (A1-1) primary or secondary alcohol or primary or secondary thiol, (A1-2) An ether having a carbon-hydrogen bond adjacent to an oxygen atom or a sulfide having a carbon-hydrogen bond adjacent to a sulfur atom, (A1-3) an acetal having a carbon-hydrogen bond adjacent to an oxygen atom (also a hemiacetal) Thioacetal (including thiohemiacetal) having a carbon-hydrogen bond at a position adjacent to a sulfur atom.
  • Examples of the compound (A2) having a carbon-heteroatom double bond include (A2-1) carbonyl group-containing compounds, (A2-2) thiocarbonyl group-containing compounds, (A2-3) imines, and the like.
  • the compound (A3) having a methine carbon atom includes (A3-1) a cyclic compound containing a methine group (that is, a methine carbon-hydrogen bond) as a structural unit of the ring, and (A3-2) a chain having a methine carbon atom.
  • A3-1 a cyclic compound containing a methine group (that is, a methine carbon-hydrogen bond) as a structural unit of the ring
  • A3-2 a chain having a methine carbon atom.
  • (A4) having a carbon-hydrogen bond at the adjacent position of the unsaturated bond (A4-1) an aromatic compound having a methyl group or a methylene group at the adjacent position (so-called benzyl position) of the aromatic ring, (A4-2)
  • Non-aromatic compounds having a methyl group or a methylene group at an adjacent position of an unsaturated bond (for example, a carbon-carbon unsaturated bond, a carbon-oxygen double bond, etc.), etc. may be mentioned.
  • the non-aromatic cyclic hydrocarbon (A5) includes (A5-1) cycloalkanes and (A5-2) cycloalkenes.
  • the conjugated compound (A6) includes conjugated dienes (A6-1), ⁇ , ⁇ -unsaturated nitriles (A6-2), ⁇ , ⁇ -unsaturated carboxylic acids or derivatives thereof (for example, esters, amides, acids Anhydride, etc.) (A6-3).
  • Examples of the amines (A7) include primary or secondary amines.
  • aromatic hydrocarbon (A8) examples include an aromatic compound having at least one benzene ring, preferably a condensed polycyclic aromatic compound in which a plurality of (for example, 2 to 10) benzene rings are condensed. Is mentioned.
  • linear alkane (A9) examples include linear alkanes having about 1 to 30 carbon atoms (preferably about 1 to 20 carbon atoms).
  • the olefins (A10) may be any of ⁇ -olefins and internal olefins which may have a substituent (for example, the above-mentioned exemplified substituents such as a hydroxyl group and an acyloxy group), and a diene. Olefins having a plurality of carbon-carbon double bonds such as are also included.
  • the above organic compounds having an oxidizable site may be used alone or in combination of two or more of the same or different types.
  • the amount of the rutile-type titanium dioxide nanoparticles used is, for example, 1 to 10000 parts by weight, preferably 10 to 5000 parts by weight, more preferably 50 to 50 parts by weight with respect to 100 parts by weight of the organic compound used as the substrate. About 2000 parts by weight.
  • an organic compound as a substrate is oxidized with molecular oxygen and / or peroxide under light irradiation.
  • light to be irradiated ultraviolet rays having a wavelength of less than 380 nm are usually used, but depending on the type of titanium dioxide, visible light having a long wavelength of, for example, 380 nm to 650 nm can also be used.
  • molecular oxygen pure oxygen may be used, or oxygen or air diluted with an inert gas such as nitrogen, helium, argon, or carbon dioxide may be used.
  • the amount of molecular oxygen used is, for example, 0.5 mol or more, preferably 1 mol or more, with respect to 1 mol of the organic compound used as the substrate. Often an excess of molecular oxygen is used relative to the organic compound.
  • the peroxide is not particularly limited, and any of peroxide, hydroperoxide, and the like can be used.
  • Representative peroxides include hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, triphenylmethyl hydroperoxide, t-butyl peroxide, benzoyl peroxide, and the like.
  • the hydrogen peroxide pure hydrogen peroxide may be used, but from the viewpoint of handleability, it is usually used in a form diluted with an appropriate solvent such as water (for example, 30% by weight hydrogen peroxide). It is done.
  • the amount of the peroxide used is, for example, about 0.1 to 5 mol, preferably about 0.3 to 1.5 mol, per 1 mol of the organic compound used as the substrate.
  • the above reaction produces a corresponding oxidative cleavage product (for example, aldehyde compound), quinones, hydroperoxide, hydroxyl group-containing compound, carbonyl compound, carboxylic acid and other oxygen atom-containing compounds from the organic compound.
  • a corresponding carbonyl compound (ketone, aldehyde) or carboxylic acid is generated from alcohol, and a corresponding carboxylic acid is generated from aldehyde.
  • 1-adamantanol, 2-adamantanol, 2-adamantanone and the like are produced from adamantane.
  • the organic compound can be finally decomposed into carbon dioxide and water.
  • the reaction product can be separated and purified by a separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination of these.
  • a separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination of these.
  • the photocatalyst composed of titanium dioxide nanoparticles can be easily separated by filtration, and the separated catalyst can be recycled after being subjected to treatment such as washing as necessary.
  • Example 1 A Teflon (registered trademark) -coated autoclave was charged with a 50 mL aqueous solution containing TiCl 3 (0.15 M), NaCl (5 M), and PVP (trade name “PVP-K30”, molecular weight: 40000, 0.25 mM), Hydrothermal treatment was performed in an oven at 180 ° C. for 10 hours. The resulting reaction product was centrifuged, rinsed with deionized water, and dried in a vacuum dryer (vacuum oven).
  • Examples 2-4 In the same manner as in Example 1 except that the concentration of PVP was changed from 0.25 mM to 0.1 mM (Example 2), 0.4 mM (Example 3), and 0.5 mM (Example 4), TiO 2 ( SH5-0.1PVP, SH5-0.4PVP, SH5-0.5PVP) were obtained.
  • TiO 2 obtained in Examples and Comparative Examples were evaluated by the following methods.
  • TiO 2 (trade name “MT-600B”, manufactured by Tayca, specific surface area of 25 to 35 m 2 / g) was used.
  • Pb (NO 3 ) 2 (0.1 M) was added to the obtained aqueous solution (2 g / L) containing Pt-supported TiO 2 , pH was adjusted to 1.0 by adding nitric acid, and a 500 W mercury lamp was used. Then, ultraviolet rays were irradiated for 24 hours (0.1 W / cm 2 ) to obtain TiO 2 having Pt and PbO 2 supported on the surface. The powder color changed from gray to brown by ultraviolet irradiation. From this, it can be seen that Pb 2+ ions were oxidized by Pt-supported TiO 2 and precipitated as PbO 2 .
  • the microstructure was confirmed using a transmission electron microscope (TEM, trade name “H-9000NAR”, manufactured by Hitachi) and a field emission scanning electron microscope (FE-SEM, trade name “JSM-6701FONO”, manufactured by JEOL).
  • TEM transmission electron microscope
  • FE-SEM field emission scanning electron microscope
  • JSM-6701FONO field emission scanning electron microscope
  • the average particle diameter (d) of TiO 2 was obtained by the Scherrer equation shown below.
  • Average particle diameter (d) 0.9 ⁇ / ⁇ cos ⁇ (Where ⁇ is the wavelength of the X-ray used, ⁇ is the half width of the diffraction profile, 2 ⁇ is the diffraction angle)
  • the specific surface area was measured by a Brunauer-Emmett-Teller method (BET method) using a nitrogen adsorption measuring device (trade name “Autosorb-1”, manufactured by Quantachrome).
  • ⁇ Photocatalytic activity evaluation> The photocatalytic ability of TiO 2 obtained in Examples 1 to 4 and Comparative Example 1 was evaluated by oxidizing acetaldehyde or toluene in the gas phase and measuring the amount of CO 2 produced.
  • a Tedlar bag (manufactured by As One Co., Ltd.) was used as a reaction vessel. 100 g of TiO 2 obtained in Examples 1 to 4 and Comparative Example 1 was spread on a glass dish, placed in a reaction vessel, and 500 ppm of acetaldehyde-saturated gas (or 100 ppm of toluene-saturated gas) was blown into the reaction vessel. It is.
  • the amount of CO 2 produced was measured using a gas chromatograph with a flame ionization detector (trade names “GC-8A”, “GC-14A”, manufactured by Shimadzu Corporation) attached with a methanizer. 6, 7).
  • the exposed area of the newly exposed surface (001) of the TiO 2 particles depends on the PVP concentration. Then, TiO 2 photocatalyst ability regardless of the size of the surface area, such as specific surface area and crystal size, it can be seen that due to the surface structure of the crystal. This is because the recombination can be delayed by separating the excited electrons and holes, and a strong catalytic action is exhibited.
  • the rutile-type titanium dioxide nanoparticles having an exposed crystal face (001) according to the present invention holes are located on the (001) face and excited electrons are located on the (110) face, so that the holes and the excited electrons are completely separated. Recombination can be prevented. Thereby, an excellent photocatalytic ability can be exhibited, and an excellent oxidation and decomposition action of an organic compound can be exhibited.
  • the rutile titanium oxide nanoparticles according to the present invention can exert a strong oxidizing action, when used as a photocatalyst, organic substances can be efficiently oxidized, and purification of the atmosphere, deodorization, water purification, antibacterial, antifouling It is useful for such purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

高い光触媒活性を有する新規なルチル型二酸化チタンナノ粒子と、このルチル型二酸化チタンナノ粒子からなる光触媒、及び該光触媒を用いた有機化合物の酸化方法を提供する。本発明のルチル型二酸化チタンナノ粒子は、露出結晶面(001)を有することを特徴とする。このルチル型酸化チタンナノ粒子は、チタン化合物を親水性ポリマーの存在下、水性媒体中で水熱処理することにより製造することができる。親水性ポリマーとしてポリビニルピロリドンなどが使用される。このルチル型酸化チタンナノ粒子からなる光触媒の存在下、被酸化部位を有する有機化合物を光照射下に分子状酸素又は過酸化物により酸化することができる。

Description

新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法
 本発明は、光触媒、酸化触媒として有用なルチル型二酸化チタンナノ粒子、その製造法、該ルチル型二酸化チタンナノ粒子からなる光触媒、及び該光触媒を使用した有機化合物の酸化方法に関する。
 光触媒反応とは、光触媒能を有する固体化合物に紫外線を照射すると励起電子と電子が出たあとの穴(正孔:ホール)が生成し、該励起電子が還元作用を、該ホールが強い酸化作用を有し、これらにより反応物を酸化、あるいは還元する反応である。代表的な光触媒能を有する固体化合物としては二酸化チタンが知られている。二酸化チタンは紫外線を吸収すると、強い酸化作用を発揮することができ、例えば、大気浄化、水質浄化、汚染防止、脱臭、抗菌、院内感染防止、曇り防止など幅広い用途に応用されている。
 二酸化チタンの主な結晶形としては、ルチル型とアナターゼ型が知られている。これらの結晶性二酸化チタンは非晶性二酸化チタン(アモルファス)に比べて高い化学的安定性を示し屈折率が大きい。そして、結晶性二酸化チタンは結晶の形状、サイズ、そして結晶化度を容易にコントロールすることができる。
 また、結晶化度が高い二酸化チタン粒子は、結晶化度が低い二酸化チタン粉末に比べて優れた光触媒能を発揮することができ、結晶のサイズが大きいほど、優れた光触媒能を発揮することが知られている。
 さらに、特許文献1には、二酸化チタンにアルカリ性過酸化水素水処理、硫酸処理、又はフッ化水素酸処理を施して新規露出結晶面が発現した二酸化チタン結晶を作る方法が記載されており、得られた新規露出結晶面が発現した二酸化チタンからなる光触媒は高い酸化触媒性能を有することが記載されている。前記新規露出結晶面が発現した二酸化チタンとしては、(1)ルチル型二酸化チタンから得られる、新規に(121)面を発現させた二酸化チタン結晶、(2)ルチル型二酸化チタンから得られる、新規に(001)(121)(021)(010)面を発現させた二酸化チタン結晶、(3)ルチル型二酸化チタンから得られる、新規に(021)面を発現させた二酸化チタン結晶、(4)アナターゼ型二酸化チタンから得られる、新規に(120)面を発現させた二酸化チタン結晶、(5)アナターゼ型二酸化チタンから得られる、新規に(122)面を発現させた二酸化チタン結晶、(6)アナターゼ型二酸化チタンから得られる、新規に(112)面を発現させた二酸化チタン結晶が開示されている。
 しかしながら、従来の結晶形を有する二酸化チタン触媒では、用途によっては触媒作用が必ずしも十分とは言えず、より高い触媒活性を有する二酸化チタン光触媒が求められていた。
特開2005−298296号公報
 従って、本発明の目的は、高い光触媒活性を有する新規なルチル型二酸化チタンナノ粒子と、このルチル型二酸化チタンナノ粒子からなる光触媒、及び該光触媒を用いた有機化合物の酸化方法を提供することにある。
 本発明の他の目的は、有機物質を効率よく酸化できる新規なルチル型二酸化チタンナノ粒子からなる光触媒、及び該光触媒を用いた有機化合物の酸化方法を提供することにある。
 本発明者は、上記課題を解決するため鋭意検討した結果、光触媒反応を引き起こす電子とホールは近づくと再結合し易いため、それらを分離することが光触媒能を高める上で重要であり、二酸化チタン結晶に新規露出結晶面(001)を露出させることにより、電子とホールとの分離を促進することができること、及びこの露出結晶面(001)を有するルチル型二酸化チタンナノ粒子は、チタン化合物を親水性ポリマーの存在下、水性媒体中で水熱処理することにより得られ、該露出結晶面(001)を有するルチル型二酸化チタンナノ粒子からなる光触媒は高い酸化触媒性能を有することを見出し、本発明を完成した。
 すなわち、本発明は露出結晶面(001)を有するルチル型二酸化チタンナノ粒子を提供する。
 本発明は、また、チタン化合物を親水性ポリマーの存在下、水性媒体中で水熱処理して、露出結晶面(001)を有するルチル型二酸化チタンナノ粒子を得ることを特徴とするルチル型二酸化チタンナノ粒子の製造法を提供する。
 親水性ポリマーとしては、ポリビニルピロリドンが好ましい。
 本発明は、さらに、露出結晶面(001)を有するルチル型二酸化チタンナノ粒子からなる光触媒を提供する。
 本発明はさらにまた、露出結晶面(001)を有するルチル型二酸化チタンナノ粒子からなる光触媒の存在下、被酸化部位を有する有機化合物を光照射下に分子状酸素又は過酸化物により酸化することを特徴とする有機化合物の酸化方法を提供する。
 ルチル型二酸化チタンのロッド状結晶は(110)と(111)面からなり、(110)面が還元サイト、(111)面が酸化サイトとして作用するが、本発明に係るルチル型二酸化チタンナノ粒子は露出結晶面(110)と(111)面に加えて、新たな露出結晶面(001)を有し、(110)面が還元サイト、(001)面及び(111)面が酸化サイトとして作用するため、紫外線を照射することにより生成する励起電子と活性化されたホールを完全に分離することができ、再結合を防止することができる。そのため、強い酸化作用を発揮することができる。本発明に係るルチル型二酸化チタンナノ粒子を光触媒として使用すると、有機物質を効率よく酸化することができるため、大気の浄化、脱臭、浄水、抗菌、防汚などの目的に有用である。
TiCl等のチタン化合物(Titanium Compound)を、PVPの非存在下、水熱処理(Hydrothermal Treatment)して得られる結晶と、PVPの存在下(in the presence of a Hydrophiric polymer)、水熱処理(Hydrothermal Treatment)して得られる結晶とを模式的に表した図である。 Ptを光析出させたルチル型二酸化チタンナノ粒子のTEM写真(a)とSEM写真(b)、及び、PtとPbOを光析出させたルチル型二酸化チタンナノ粒子のTEM写真(c)とSEM写真(d)である。 実施例及び比較例においてPVP濃度を0~0.5mMに変化させて得られたルチル型二酸化チタンナノ粒子のX線回折パターンを示す図である。縦軸は回折強度(Diffraction Intensity)を示し、横軸は回折角(2θ)を示す。 実施例及び比較例において異なるPVP濃度で合成されたルチル型二酸化チタンナノ粒子[(a)SH5−0PVP、(b)SH5−0.10PVP、(c)SH5−0.25PVP、(d)SH5−0.5PVP]のTEM写真である。 実施例及び比較例において異なるPVP濃度で合成されたルチル型二酸化チタンナノ粒子[(a)SH5−0PVP、(b)SH5−0.10PVP、(c)SH5−0.25PVP、(d)SH5−0.5PVP]のSEM写真である。 二酸化チタン(MT−600B)及び実施例及び比較例において異なるPVP濃度で合成されたルチル型二酸化チタンを光触媒として使用してアセトアルデヒド(Acetaldehyde)を酸化した際に生成したCO濃度(CO consentration)と紫外線照射量(UV Irradiation Time)との関係を示す図である。 二酸化チタン(MT−600B)及び実施例及び比較例において異なるPVP濃度で合成されたルチル型二酸化チタンを光触媒として使用してトルエン(Toluene)を酸化した際に生成したCO濃度(CO consentration)と紫外線照射量(UV Irradiation Time)との関係を示す図である。
 以下に、本発明の実施の形態を、必要に応じて図面を参照しつつ詳細に説明する。
 本発明に係るルチル型二酸化チタンナノ粒子は、新規な露出結晶面(001)を有することを特徴とする。
 新規な露出結晶面(001)を有するルチル型二酸化チタンナノ粒子は、チタン化合物を親水性ポリマーの存在下、水性媒体中で水熱処理することにより製造することができる。チタン化合物を水性媒体中で水熱処理すると、通常、(110)と(111)面からなるルチル型二酸化チタンのロッド状結晶が得られるが、チタン化合物を親水性ポリマー条件下、水性媒体中で水熱処理することにより、新規な露出結晶面(001)を有するルチル型二酸化チタンのロッド状結晶が生成する(図1参照)。
 チタン化合物としては、例えば、三塩化チタン、四塩化チタン、四臭化チタン、硫酸チタン、硝酸チタン、チタンアルコキサイド、過酸化チタン等が挙げられる。本発明においては、空気中、開放形での反応システム条件下での反応性、クロライドイオンの存在量の点で、三塩化チタン、四塩化チタンが好ましく使用される。
 親水性ポリマーは、コロイド状のナノ粒子を合成する際に立体安定剤又はキャッピング剤として作用し、生成物が凝集することを防止することができる。親水性ポリマーとしては、例えば、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド等のポリアルキレンオキサイド;ポリビニルピロリドン(PVP)、ポリビニルアルコール、ポリビニルアセテート(PVA)、ポリハイドロキシアルキルアクリレート、ポリスチレンスルホネート、これらの混合物若しくは共重合体等を挙げることができる。
 本発明における親水性ポリマーとしては、なかでも、PVP、PVAが好ましく、特に、化学的に安定で、毒性が無く、多くの極性溶媒に対して優れた溶解性を示し、その上、ルチル型二酸化チタンナノ粒子の(111)面に選択的に吸着し、ルチル型二酸化チタンナノ粒子の形状を制御することができる点でPVPが好ましい。
 PVPの平均分子量としては、例えば、10000~100000程度、好ましくは30000~50000程度である。平均分子量が10000を下回ると、ルチル型二酸化チタンナノ粒子の特定の表面に吸着してその形状を制御する働き、及び生成物の凝集を防止する働きが低下する傾向があり、一方、平均分子量が100000を上回ると、粘度が高くなりすぎるため作業性が低下し、ポリマー自身の分散性が低下し、酸化チタン前駆体との良好な相互作用ができないためにルチル型二酸化チタンナノ粒子の形状制御能が低下する傾向がある。
 本発明においては、PVPとして、商品名「PVP−K30」(平均分子量:40000)、商品名「PVP−K25」(平均分子量:24000)等の市販品を使用することができる。
 ルチル型二酸化チタンナノ粒子の光触媒能は、該粒子の結晶構造により大きく影響される。それは、粒子の結晶構造により紫外線を照射した際に発生する励起電子とホールとが再結合し易いか否かが異なってくるからである。PVP等の親水性ポリマーはルチル型二酸化チタンナノ粒子の結晶面(111)及び結晶面(110)のうち、結晶面(111)により吸着し易く、該結晶面(111)に吸着し稜又は頂点の部位を浸食して新規露出結晶面(001)を露出させる作用を有し、親水性ポリマー濃度を調整することにより新規露出結晶面(001)の形状をコントロールすることができる。そして、親水性ポリマー濃度依存的に新規露出結晶面(001)を露出させることができ、新規露出面の面積を大きくすることができる。一方、結晶面(111)の面積は親水性ポリマー濃度の上昇に反比例して減少する。
 本発明において、PVP等の親水性ポリマーの濃度としては、例えば、0.05~1.0mM、好ましくは0.2~0.5mM程度、特に好ましくは0.2~0.4mMである。親水性ポリマー濃度が濃すぎると結晶面(111)が浸食され小さくなり過ぎる。その結果、電子とホールとの分離能が低下するため、再結合しやすくなり光触媒能が低下する傾向がある。一方、親水性ポリマー濃度が薄すぎると、電子とホールとを分離するのに十分な新規露出面(001)を形成することが困難となり、光触媒能を向上させることが困難となる傾向がある。
 本発明において、水熱処理の際に用いる水性媒体としては、水又は水と水溶性有機溶媒との混合液が用いられる。水溶性有機溶媒としては、例えば、メタノール、エタノール等のアルコール;エチレングリコールジメチルエーテル等のエーテル;アセトン等のケトン;アセトニトリル等のニトリル;酢酸等のカルボン酸などが挙げられる。水と水溶性有機溶媒との混合液を用いる場合の水と水溶性有機溶媒の比率は、前者/後者(重量比)=10/90~99.9/0.01、好ましくは50/50~99/1程度である。水性媒体の使用量としては、一般には、チタン化合物1重量部に対し、0.0001~0.1重量部程度、好ましくは0.001~0.01重量部程度である。
 また、本発明においては、水性媒体にハロゲン化物を添加することが好ましい。ハロゲン化物としては、例えば、塩化ナトリウム、塩化カリウム、塩化リチウム、臭化ナトリウム、臭化カリウム、臭化リチウム等のアルカリ金属ハロゲン化物などが挙げられる。これらの中でも、アルカリ金属ハロゲン化物が好ましく、特に塩化ナトリウムが好ましい。水性媒体中にハロゲン化物を添加することによりルチル型二酸化チタンナノ粒子の結晶性、粒子サイズ及び表面積を調整することができる。ハロゲン化物の添加量が増えるに従って、粒子サイズ及び結晶性が向上し、表面積が低下する傾向があり、本発明における添加量としては、例えば、0.5~10M程度、好ましくは1~6M程度である。
 水熱処理の処理温度は、反応速度及び反応選択性を考慮して適宜選択できるが、一般には100~200℃程度、処理時間としては3~24時間程度である。水熱処理の圧力は、例えば、常圧~0.3MPa(ゲージ圧)程度であるが、この範囲に限定されるものではない。
 本発明の新規露出結晶面(001)が発現(露出)したルチル型二酸化チタンナノ粒子は、種々の化学反応(例えば、酸化反応、有害物質の分解反応等)や殺菌などに光触媒として利用することができる。
 本発明の有機化合物の酸化方法は、上記の露出結晶面(001)を有するルチル型二酸化チタンナノ粒子からなる光触媒の存在下、被酸化部位を有する有機化合物を光照射下に分子状酸素又は過酸化物により酸化することを特徴とする。
 前記有機化合物としては、少なくとも1つの被酸化部位を有する有機化合物であれば特に限定されない。被酸化部位を有する有機化合物としては、(A1)ヘテロ原子の隣接位に炭素−水素結合を有するヘテロ原子含有化合物、(A2)炭素−ヘテロ原子二重結合を有する化合物、(A3)メチン炭素原子を有する化合物、(A4)不飽和結合の隣接位に炭素−水素結合を有する化合物、(A5)非芳香族性環状炭化水素、(A6)共役化合物、(A7)アミン類、(A8)芳香族化合物、(A9)直鎖状アルカン、及び(A10)オレフィン類等が挙げられる。
 ヘテロ原子の隣接位に炭素−水素結合を有するヘテロ原子含有化合物(A1)としては、(A1−1)第1級若しくは第2級アルコール又は第1級若しくは第2級チオール、(A1−2)酸素原子の隣接位に炭素−水素結合を有するエーテル又は硫黄原子の隣接位に炭素−水素結合を有するスルフィド、(A1−3)酸素原子の隣接位に炭素−水素結合を有するアセタール(ヘミアセタールも含む)又は硫黄原子の隣接位に炭素−水素結合を有するチオアセタール(チオヘミアセタールも含む)などが例示できる。
 前記炭素−ヘテロ原子二重結合を有する化合物(A2)としては、(A2−1)カルボニル基含有化合物、(A2−2)チオカルボニル基含有化合物、(A2−3)イミン類などが挙げられる。
 前記メチン炭素原子を有する化合物(A3)には、(A3−1)環の構成単位としてメチン基(すなわち、メチン炭素−水素結合)を含む環状化合物、(A3−2)メチン炭素原子を有する鎖状化合物が含まれる。
 前記不飽和結合の隣接位に炭素−水素結合を有する化合物(A4)としては、(A4−1)芳香族性環の隣接位(いわゆるベンジル位)にメチル基又はメチレン基を有する芳香族化合物、(A4−2)不飽和結合(例えば、炭素−炭素不飽和結合、炭素−酸素二重結合など)の隣接位にメチル基又はメチレン基を有する非芳香族性化合物などが挙げられる。
 前記非芳香族性環状炭化水素(A5)には、(A5−1)シクロアルカン類及び(A5−2)シクロアルケン類が含まれる。
 前記共役化合物(A6)には、共役ジエン類(A6−1)、α,β−不飽和ニトリル(A6−2)、α,β−不飽和カルボン酸又はその誘導体(例えば、エステル、アミド、酸無水物等)(A6−3)などが挙げられる。
 前記アミン類(A7)としては、第1級または第2級アミンなどが挙げられる。
 前記芳香族炭化水素(A8)としては、少なくともベンゼン環を1つ有する芳香族化合物、好ましくは少なくともベンゼン環が複数個(例えば、2~10個)縮合している縮合多環式芳香族化合物などが挙げられる。
 前記直鎖状アルカン(A9)としては、炭素数1~30程度(好ましくは炭素数1~20程度)の直鎖状アルカンが挙げられる。
 前記オレフィン類(A10)としては、置換基(例えば、ヒドロキシル基、アシルオキシ基等の前記例示の置換基など)を有していてもよいα−オレフィン及び内部オレフィンの何れであってもよく、ジエンなどの炭素−炭素二重結合を複数個有するオレフィン類も含まれる。
 上記の被酸化部位を有する有機化合物は単独で用いてもよく、同種又は異種のものを2種以上組み合わせて用いてもよい。
 本発明の酸化方法において、前記ルチル型二酸化チタンナノ粒子の使用量は、基質として用いる有機化合物100重量部に対して、例えば1~10000重量部、好ましくは10~5000重量部、さらに好ましくは50~2000重量部程度である。
 本発明の方法では、基質としての有機化合物を光照射下に分子状酸素及び/又は過酸化物で酸化する。照射する光としては、通常、380nm未満の紫外線が使用されるが、二酸化チタンの種類によっては、例えば380nm以上、650nm程度までの長波長の可視光線を使用することもできる。
 分子状酸素としては、純粋な酸素を用いてもよく、窒素、ヘリウム、アルゴン、二酸化炭素などの不活性ガスで希釈した酸素や空気を用いてもよい。分子状酸素の使用量は、基質として用いる有機化合物1モルに対して、例えば0.5モル以上、好ましくは1モル以上である。有機化合物に対して過剰モルの分子状酸素を用いることが多い。
 過酸化物としては、特に限定されず、ペルオキシド、ヒドロペルオキシド等の何れも使用できる。代表的な過酸化物として、過酸化水素、クメンヒドロペルオキシド、t−ブチルヒドロペルオキシド、トリフェニルメチルヒドロペルオキシド、t−ブチルペルオキシド、ベンゾイルペルオキシドなどが挙げられる。上記過酸化水素としては、純粋な過酸化水素を用いてもよいが、取扱性の点から、通常、適当な溶媒、例えば水に希釈した形態(例えば、30重量%過酸化水素水)で用いられる。過酸化物の使用量は、基質として用いる有機化合物1モルに対して、例えば0.1~5モル程度、好ましくは0.3~1.5モル程度である。
 本発明では、分子状酸素と過酸化物のうち一方のみを用いてもよいが、分子状酸素と過酸化物とを組み合わせることにより、反応速度が大幅に向上する場合がある。
 上記反応により、有機化合物から対応する酸化開裂生成物(例えば、アルデヒド化合物)、キノン類、ヒドロペルオキシド、ヒドロキシル基含有化合物、カルボニル化合物、カルボン酸などの酸素原子含有化合物などが生成する。例えば、アルコールからは対応するカルボニル化合物(ケトン、アルデヒド)やカルボン酸等が、アルデヒドからは対応するカルボン酸等が生成する。また、アダマンタンからは1−アダマンタノール、2−アダマンタノール、2−アダマンタノンなどが生成する。そして、さらに酸化反応が進行すると、最終的には有機化合物を二酸化炭素と水にまで分解することができる。
 反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により分離精製できる。また、二酸化チタンナノ粒子からなる光触媒は濾過により容易に分離でき、分離した触媒は、必要に応じて洗浄等の処理を施した後、リサイクル使用できる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 実施例1
 テフロン(登録商標)塗装されたオートクレーブに、TiCl(0.15M)、NaCl(5M)、及びPVP(商品名「PVP−K30」、分子量:40000、0.25mM)を含む50mL水溶液を仕込み、180℃のオーブンで10時間、水熱処理を行った。得られた反応物を遠心分離し、脱イオン水でリンスし、真空乾燥機(バキュームオーブン)で乾燥した。
 その後、表面に残存または吸着した有機化合物を500Wの超高圧水銀ランプ用光源装置(商品名「SX−UI501UO」、ウシオ電機(株)製)を使用して24時間、紫外線照射して取り除いた。続いて、減圧下、60℃で6時間乾燥させてTiO(SH5−0.25PVP)を得た。
 実施例2~4
 PVPの濃度を0.25mMから0.1mM(実施例2)、0.4mM(実施例3)、0.5mM(実施例4)に変更した以外は実施例1と同様にしてそれぞれTiO(SH5−0.1PVP、SH5−0.4PVP、SH5−0.5PVP)を得た。
 比較例1
 PVPを使用しなかった以外は実施例1と同様にしてTiO(SH5−0PVP)を得た。
 実施例及び比較例で得られたTiOについて、下記方法により評価した。なお、対照としてTiO(商品名「MT−600B」、Tayca製、比表面積25~35m/g)を使用した。
 <形態評価1>
 実施例1で得られたTiO(SH5−0.25PVP)水溶液(2g/L)に2−プロパノール(0.52M)とHPtCl・6HO(1mM)を加え懸濁液とした。得られた懸濁液から窒素ガスを完全に除去し、その後、500Wの超高圧水銀ランプ用光源装置(商品名「SX−UI501HQ」、ウシオ電機(株)製)を使用して紫外線を24時間照射した(1mW/cm)。紫外線照射によりTiO粉末の色は白から灰色に変化した。このことから、Ptが光析出したことがわかる。その後、懸濁液を遠心分離し、蒸留水で洗浄し、減圧下、70℃で3時間乾燥してPt担持TiO粉末を得た。
 得られたPt担持TiOを含む水溶液(2g/L)にPb(NO(0.1M)を加え、硝酸を加えてpHを1.0に調整し、500Wの水銀ランプを使用して紫外線を24時間照射(0.1W/cm)して、PtとPbOが表面に担持されたTiOを得た。尚、紫外線照射により粉末の色は灰色から茶色に変化した。このことから、Pb2+イオンがPt担持TiOにより酸化されてPbOとなり析出したことがわかる。
 PtとPbOが表面に担持されたTiOについて走査型電子顕微鏡(SEM)、エネルギー分散型蛍光X線分析装置(EDX)及び透過型電子顕微鏡(TEM)を使用して確認した。その結果、PtはTiOの(110)面に担持され、PbOは(001)面及び(111)面に担持されていることが確認できた。このことから、ルチル型TiOにおいて、酸化反応は新規の露出面(001)及び(111)面、還元反応は(110)面において行われ、酸化反応と還元反応とが完全に分離されていることがわかる(図2)。
 <形態評価2>
 実施例1~4及び比較例1で得られたTiOの相同定にはXRD(粉末X線回折装置、商品名「JDX3500」、JEOL製、Cu−Kα、λ=1.5405Å)を使用した。微細構造は透過型電子顕微鏡(TEM、商品名「H−9000NAR」、日立製)及び電界放射型走査電子顕微鏡(FE−SEM、商品名「JSM−6701FONO」、JEOL製)を使用して確認した。図3より、PVP濃度の上昇に従ってピークが強く表れていることから、PVP濃度依存的にルチル型二酸化チタンナノ粒子の結晶化度が上昇していることがわかる。図4及び図5より、PVP濃度の上昇に従って新規露出面(001)の露出面積が大きくなり、それに伴って(111)面が小さくなっていることがわかる。
 また、TiOの平均粒径(d)は下記に示すScherrer方程式により求めた。
 平均粒径(d)=0.9λ/βcosθ
(式中、λは使用したX線の波長を示し、βは回折プロファイルの半値幅、2θは回折角を示す)
 さらに、比表面積は窒素吸着測定装置(商品名「Autosorb−1」、Quantachrome社製)を使用し、Brunauer−Emmett−Teller法(BET法)により測定した。
 上記結果を下記表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 <光触媒活性評価>
 実施例1~4及び比較例1で得られたTiOの光触媒能は、気相にてアセトアルデヒドまたはトルエンを酸化し、生成するCO量を測定することにより評価した。
 テドラーバッグ(アズワン(株)社製)を反応容器として使用した。実施例1~4及び比較例1で得られたTiO100gをそれぞれガラス製皿に広げ、反応容器の中に入れ、500ppmのアセトアルデヒド飽和ガス(または、100ppmのトルエン飽和ガス)を反応容器に吹き込んだ。ガスとアセトアルデヒド(または、トルエン)が平衡に達した後、室温(25℃)で光照射を行った。光源には500Wのキセノンランプ用光源装置(商品名「SX−UI501XQ」、ウシオ電機(株)製)を使用し、UV−35フィルターを使用して350nmより短い波長の光線を遮断した。さらに、ファインステンレス製のメッシュを光量調節用フィルターとして使用して光量を30mW/cmに調整した。
 光照射開始後、COの生成量をメタナイザーが付属した水素炎イオン化検出器付きガスクロマトグラフ(商品名「GC−8A」、「GC−14A」、島津製作所製)を使用して測定した(図6、7)。
 以上より、TiO粒子の新規露出面(001)の露出面積はPVP濃度に依存することがわかる。そして、TiO光触媒能は比表面積及び結晶サイズ等の表面積の大きさに依らず、結晶の表面構造に依ることがわかる。それは、励起電子とホールとが分離されることにより再結合を遅らせることができ、強い触媒作用が発揮されるからである。本発明にかかる露出結晶面(001)を有するルチル型二酸化チタンナノ粒子は、(001)面にホール、(110)面に励起電子が位置し、ホールと励起電子とが完全に分離されるため、再結合を防止することができる。それにより、優れた光触媒能を発揮することができ、有機化合物の優れた酸化、分解作用を発揮することができる。
 本発明に係るルチル型酸化チタンナノ粒子は、強い酸化作用を発揮することができるため、光触媒として使用すると、有機物質を効率よく酸化することができ、大気の浄化、脱臭、浄水、抗菌、防汚などの目的に有用である。

Claims (5)

  1.  露出結晶面(001)を有するルチル型酸化チタンナノ粒子。
  2.  チタン化合物を親水性ポリマーの存在下、水性媒体中で水熱処理して、露出結晶面(001)を有するルチル型酸化チタンナノ粒子を得ることを特徴とするルチル型酸化チタンナノ粒子の製造法。
  3.  親水性ポリマーがポリビニルピロリドンである請求項2記載のルチル型酸化チタンナノ粒子の製造法。
  4.  露出結晶面(001)を有するルチル型酸化チタンナノ粒子からなる光触媒。
  5.  露出結晶面(001)を有するルチル型酸化チタンナノ粒子からなる光触媒の存在下、被酸化部位を有する有機化合物を光照射下に分子状酸素又は過酸化物により酸化することを特徴とする有機化合物の酸化方法。
PCT/JP2010/062131 2009-08-05 2010-07-13 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法 WO2011016329A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800339928A CN102448886A (zh) 2009-08-05 2010-07-13 具有新的露出结晶面的金红石型二氧化钛纳米粒子及其制造方法
US13/389,097 US8758574B2 (en) 2009-08-05 2010-07-13 Rutile titanium dioxide nanoparticles each having novel exposed crystal face and method for producing same
EP10806329.8A EP2463237A4 (en) 2009-08-05 2010-07-13 RUTILE TITANIUM DIOXIDE NANOPARTICLES HAVING EACH NEW EXPOSED CRYSTALLINE PLANE AND PROCESS FOR PREPARING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009182563A JP5461099B2 (ja) 2009-08-05 2009-08-05 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法
JP2009-182563 2009-08-05

Publications (1)

Publication Number Publication Date
WO2011016329A1 true WO2011016329A1 (ja) 2011-02-10

Family

ID=43544227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062131 WO2011016329A1 (ja) 2009-08-05 2010-07-13 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法

Country Status (5)

Country Link
US (1) US8758574B2 (ja)
EP (1) EP2463237A4 (ja)
JP (1) JP5461099B2 (ja)
CN (1) CN102448886A (ja)
WO (1) WO2011016329A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169660A1 (ja) * 2011-06-07 2012-12-13 株式会社ダイセル 光触媒塗膜、及びその製造方法
JP2012254922A (ja) * 2011-05-18 2012-12-27 Daicel Corp 遷移金属化合物担持酸化チタンの製造方法
CN103230787A (zh) * 2013-04-18 2013-08-07 中国科学院长春光学精密机械与物理研究所 一种{001}面暴露锐钛矿相二氧化钛微球光催化剂的制备方法
CN112844357A (zh) * 2020-12-08 2021-05-28 河北师范大学 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2483204B1 (en) 2009-10-08 2018-01-17 The Regents of The University of California Methods of making metal-oxides and uses thereof for water treatment and energy applications
JP5711582B2 (ja) * 2011-03-28 2015-05-07 株式会社ダイセル 光触媒、及びそれを用いた有機化合物の酸化方法
WO2013055792A1 (en) 2011-10-10 2013-04-18 The Regents Of The University Of California Size and morphologically controlled nanostructures for energy storage
CN102659178A (zh) * 2012-05-11 2012-09-12 上海师范大学 一种{001}面暴露的具有氧缺陷的可见光二氧化钛纳米片的合成工艺
TWI520766B (zh) * 2012-08-27 2016-02-11 國立清華大學 奈米粒子轉相方法
JP2014083504A (ja) * 2012-10-24 2014-05-12 Ohara Inc 光触媒部材及びその製造方法
CN103086424B (zh) * 2013-02-28 2015-12-09 天津工业大学 一步合成混相和暴露高活性面二氧化钛的方法
US9108862B2 (en) 2013-03-15 2015-08-18 Cristal Inorganic Chemicals Switzerland Ltd. Method of making rutile titanium dioxide microspheres containing elongated TiO2-nanocrystallites
US9567236B2 (en) * 2013-03-15 2017-02-14 Cristal Inorganic Chemicals Switzerland Ltd. Rutile titanium dioxide nanoparticles and ordered acicular aggregates of same
US9440221B2 (en) * 2013-03-15 2016-09-13 Daicel Corporation Titanium oxide dispersion liquid, titanium oxide coating liquid, and photocatalyst coating film
US8932556B2 (en) 2013-03-15 2015-01-13 Cristal Usa Inc. Rutile titanium dioxide nanoparticles and ordered acicular aggregates of same
EP3037162A4 (en) * 2013-08-23 2017-04-12 Tohoku University Method for treating organic matter in the presence of water, contact reaction device and system including same, and method for recovering waste heat from low-temperature heat source
CN103657625B (zh) * 2013-12-26 2015-09-02 湛江师范学院 一种暴露高能晶面{001}金红石型硼掺杂二氧化钛微球的制备方法
CN104192896B (zh) * 2014-08-20 2016-02-03 北京师范大学 一种TiO2纳米晶及其合成方法
US9505691B2 (en) 2014-10-02 2016-11-29 Celanese International Corporation Process for producing acetic acid
SG11201706008YA (en) 2015-01-30 2017-08-30 Celanese Int Corp Processes for producing acetic acid
US9487464B2 (en) 2015-01-30 2016-11-08 Celanese International Corporation Processes for producing acetic acid
US9561994B2 (en) 2015-01-30 2017-02-07 Celanese International Corporation Processes for producing acetic acid
US10413840B2 (en) 2015-02-04 2019-09-17 Celanese International Coporation Process to control HI concentration in residuum stream
US9505696B2 (en) 2015-02-04 2016-11-29 Celanese International Corporation Process to control HI concentration in residuum stream
US9512056B2 (en) 2015-02-04 2016-12-06 Celanese International Corporation Process to control HI concentration in residuum stream
JP6875009B2 (ja) 2016-03-08 2021-05-19 国立研究開発法人科学技術振興機構 触媒及びその使用
CN112062152B (zh) * 2020-08-17 2022-06-07 湖北工业大学 一种高能晶面暴露的二氧化钛介孔微球及其制备方法
CN113265198B (zh) * 2021-05-12 2022-10-28 华中师范大学 一种易固着的催化净化涂料及其制备方法和应用
CN115304098B (zh) * 2022-09-20 2024-06-21 山东国瓷功能材料股份有限公司 纳米二氧化钛
CN116081684A (zh) * 2022-12-21 2023-05-09 河北工业大学 一种富氧空位的主暴露{101}晶面二氧化钛材料、制备方法及其应用
CN116532107A (zh) * 2023-01-17 2023-08-04 济南大学 一种TiO2-Ag复合纳米材料抗菌溶液的制备方法及所得产品和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298296A (ja) 2004-04-14 2005-10-27 Daicel Chem Ind Ltd 酸化チタン結晶、光触媒、及び有機化合物の酸化方法
JP2006224084A (ja) * 2004-03-30 2006-08-31 Toto Ltd 光触媒性材料および光触媒性部材
JP2006225623A (ja) * 2004-03-30 2006-08-31 Toto Ltd 分散液およびコーティング剤
JP2008195551A (ja) * 2007-02-09 2008-08-28 Hiroshima Univ 二酸化チタン微粒子及びその製造方法
JP2009519889A (ja) * 2005-12-19 2009-05-21 ナショナル・センター・フォア・サイエンティフィック・リサーチ・デモクリトス 修飾されたナノ構造チタニア材料及び製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000734A2 (en) * 2002-10-04 2005-01-06 The Ohio State University Research Foundation Method of forming nanostructures on ceramics and the ceramics formed
JP4576619B2 (ja) * 2003-06-02 2010-11-10 独立行政法人 日本原子力研究開発機構 結晶配向した微結晶から成る二酸化チタン膜の作製方法
WO2008005055A2 (en) * 2005-12-29 2008-01-10 The Board Of Trustees Of The University Of Illinois Nanoparticles containing titanium oxide
US20080223713A1 (en) * 2007-03-14 2008-09-18 Huifang Xu Photocatalyst Having Improved Quantum Efficiency and Method for Use in Photocatalytic and Photosynthetic
US20100139747A1 (en) * 2008-08-28 2010-06-10 The Penn State Research Foundation Single-crystal nanowires and liquid junction solar cells
US20120028791A1 (en) * 2009-03-24 2012-02-02 Oesterlund Lars Highly Reactive Photocatalytic Material and Manufacturing Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224084A (ja) * 2004-03-30 2006-08-31 Toto Ltd 光触媒性材料および光触媒性部材
JP2006225623A (ja) * 2004-03-30 2006-08-31 Toto Ltd 分散液およびコーティング剤
JP2005298296A (ja) 2004-04-14 2005-10-27 Daicel Chem Ind Ltd 酸化チタン結晶、光触媒、及び有機化合物の酸化方法
JP2009519889A (ja) * 2005-12-19 2009-05-21 ナショナル・センター・フォア・サイエンティフィック・リサーチ・デモクリトス 修飾されたナノ構造チタニア材料及び製造方法
JP2008195551A (ja) * 2007-02-09 2008-08-28 Hiroshima Univ 二酸化チタン微粒子及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"79th Annual Meeting of Chemical Society of Japan in Spring (2001) Koen Yokoshu I, 15 March 2001 (15.03.2001)", article HENGBO YIN: "Morphology and Photocatalysis of Ti02 Prepared by Hydrothermal Synthesis - Rutile Type", pages: 370, XP008151676 *
"Abstracts, Annual Meeting of The Society of Polymer Science, Japan, 10 May 2007 (10.05.2007)", vol. 56, article LEI YANG ET AL.: "Suiyosei Polymer Kyozonka ni Okeru Rutile-gata Nisanka Titanium Biryushi no Sentakuteki Chosei", pages: 1137, XP008151675 *
HIRONORI SHIMOIDA ET AL.: "Suinetsuho ni yoru Rutile-gata Sanka Titanium Nano-ryushi no Gosei to Hikari Shokubai Kino Hyoka", THE CERAMIC SOCIETY OF JAPAN 2008 NEN NENKAI KOEN YOKOSHU, 20 March 2008 (2008-03-20), pages 217, XP008151677 *
See also references of EP2463237A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254922A (ja) * 2011-05-18 2012-12-27 Daicel Corp 遷移金属化合物担持酸化チタンの製造方法
WO2012169660A1 (ja) * 2011-06-07 2012-12-13 株式会社ダイセル 光触媒塗膜、及びその製造方法
US9517459B2 (en) 2011-06-07 2016-12-13 Daicel Corporation Photocatalytic coating film and method for producing same
CN103230787A (zh) * 2013-04-18 2013-08-07 中国科学院长春光学精密机械与物理研究所 一种{001}面暴露锐钛矿相二氧化钛微球光催化剂的制备方法
CN112844357A (zh) * 2020-12-08 2021-05-28 河北师范大学 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法
CN112844357B (zh) * 2020-12-08 2022-08-26 河北师范大学 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法

Also Published As

Publication number Publication date
CN102448886A (zh) 2012-05-09
US20120132515A1 (en) 2012-05-31
EP2463237A4 (en) 2016-06-01
EP2463237A1 (en) 2012-06-13
US8758574B2 (en) 2014-06-24
JP5461099B2 (ja) 2014-04-02
JP2011032146A (ja) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5461099B2 (ja) 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法
JP5711582B2 (ja) 光触媒、及びそれを用いた有機化合物の酸化方法
Toloman et al. Photocatalytic activity of SnO2-TiO2 composite nanoparticles modified with PVP
Korzhak et al. Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites
Zhang et al. Synthesis of sandwich-structured AgBr@ Ag@ TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes
Di Paola et al. Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders
Zhuang et al. Precursor morphology-controlled formation of perovskites CaTiO3 and their photo-activity for As (III) removal
Saharudin et al. Fabrication and photocatalysis of nanotubular C-doped TiO2 arrays: Impact of annealing atmosphere on the degradation efficiency of methyl orange
JP3949374B2 (ja) 酸化チタン、それを用いてなる光触媒体および光触媒体コーティング剤
US9452418B2 (en) Gold loaded TiO2 nanotube-multiwalled carbon nanotube composites as active photocatalysts for cyclohexane oxidation
JP5591683B2 (ja) 露出結晶面を有する金属イオン担持酸化チタン粒子及びその製造方法
Mohamed Gold loaded titanium dioxide–carbon nanotube composites as active photocatalysts for cyclohexane oxidation at ambient conditions
Li et al. Efficient photocatalytic degradation of acrylonitrile by Sulfur-Bismuth co-doped F-TiO2/SiO2 nanopowder
JP4997627B2 (ja) 可視光応答性光触媒
JP4150712B2 (ja) 可視光−活性化光触媒およびその製法
TWI428281B (zh) 氧化鈦及其製法
WO2011102353A1 (ja) 銅イオンで修飾された酸化タングステン光触媒及びその製造方法
JP2009249206A (ja) 金属元素先端担持カーボンナノチューブ表面修飾酸化チタン粒子
KR100913622B1 (ko) 수소 생성용 메조다공성 이산화티타늄 광촉매의 제조방법
JP4526273B2 (ja) 炭素ドープ酸化チタンとその製造法、光触媒、及び該触媒を用いた有機化合物の酸化方法
JP2011001238A (ja) ブルッカイト型二酸化チタンナノ粒子の製造方法
JP2003190811A (ja) 光触媒体、その製造方法およびそれを用いてなる光触媒体コーティング剤
JP4536470B2 (ja) 他元素ドープルチル型酸化チタンとその製造法、光触媒、及び該触媒を用いた有機化合物の酸化方法
JP3981757B2 (ja) 光触媒体およびそれを用いてなる光触媒体コーティング剤
JP2008062237A (ja) 光触媒体、その製造方法およびそれを用いてなる光触媒体コーティング剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033992.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010806329

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13389097

Country of ref document: US

Ref document number: 2010806329

Country of ref document: EP