WO2011016329A1 - 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法 - Google Patents
新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法 Download PDFInfo
- Publication number
- WO2011016329A1 WO2011016329A1 PCT/JP2010/062131 JP2010062131W WO2011016329A1 WO 2011016329 A1 WO2011016329 A1 WO 2011016329A1 JP 2010062131 W JP2010062131 W JP 2010062131W WO 2011016329 A1 WO2011016329 A1 WO 2011016329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium dioxide
- rutile
- type titanium
- crystal plane
- dioxide nanoparticles
- Prior art date
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 151
- 239000013078 crystal Substances 0.000 title claims abstract description 54
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000011941 photocatalyst Substances 0.000 claims abstract description 25
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 25
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 25
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 25
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 24
- 229920001477 hydrophilic polymer Polymers 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 13
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000012736 aqueous medium Substances 0.000 claims abstract description 10
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 10
- 230000001590 oxidative effect Effects 0.000 claims abstract description 10
- 150000002978 peroxides Chemical class 0.000 claims abstract description 10
- 150000003609 titanium compounds Chemical class 0.000 claims abstract description 10
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 15
- 230000003647 oxidation Effects 0.000 claims description 11
- 230000001699 photocatalysis Effects 0.000 abstract description 13
- 238000010335 hydrothermal treatment Methods 0.000 abstract description 8
- 235000010215 titanium dioxide Nutrition 0.000 description 55
- 239000004408 titanium dioxide Substances 0.000 description 54
- 229910010413 TiO 2 Inorganic materials 0.000 description 20
- 150000001875 compounds Chemical class 0.000 description 17
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- -1 titanium alkoxide Chemical class 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000004332 deodorization Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 229920003081 Povidone K 30 Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 238000004887 air purification Methods 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910001508 alkali metal halide Inorganic materials 0.000 description 2
- 150000008045 alkali metal halides Chemical class 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 150000001728 carbonyl compounds Chemical class 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 238000013032 photocatalytic reaction Methods 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- QDZRBIRIPNZRSG-UHFFFAOYSA-N titanium nitrate Chemical compound [O-][N+](=O)O[Ti](O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QDZRBIRIPNZRSG-UHFFFAOYSA-N 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 2
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical compound CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010011409 Cross infection Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920003080 Povidone K 25 Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- ILNQBWPWHQSSNX-UHFFFAOYSA-N [hydroperoxy(diphenyl)methyl]benzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(OO)C1=CC=CC=C1 ILNQBWPWHQSSNX-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- VLLNJDMHDJRNFK-UHFFFAOYSA-N adamantan-1-ol Chemical compound C1C(C2)CC3CC2CC1(O)C3 VLLNJDMHDJRNFK-UHFFFAOYSA-N 0.000 description 1
- FOWDOWQYRZXQDP-UHFFFAOYSA-N adamantan-2-ol Chemical compound C1C(C2)CC3CC1C(O)C2C3 FOWDOWQYRZXQDP-UHFFFAOYSA-N 0.000 description 1
- IYKFYARMMIESOX-UHFFFAOYSA-N adamantanone Chemical compound C1C(C2)CC3CC1C(=O)C2C3 IYKFYARMMIESOX-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010415 colloidal nanoparticle Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002373 hemiacetals Chemical class 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000007248 oxidative elimination reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 150000003555 thioacetals Chemical class 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 150000003573 thiols Chemical group 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 150000007934 α,β-unsaturated carboxylic acids Chemical class 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B33/00—Oxidation in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/651—50-500 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
- B01J37/035—Precipitation on carriers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
- C01G23/0536—Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/70—Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Definitions
- the present invention relates to a photocatalyst, rutile titanium dioxide nanoparticles useful as an oxidation catalyst, a production method thereof, a photocatalyst comprising the rutile titanium dioxide nanoparticles, and an organic compound oxidation method using the photocatalyst.
- Photocatalytic reaction means that when a solid compound having photocatalytic activity is irradiated with ultraviolet rays, excited electrons and holes after the electrons are emitted (holes: holes) are generated, the excited electrons perform a reducing action, and the holes have a strong oxidizing action. In this reaction, the reactant is oxidized or reduced. Titanium dioxide is known as a typical solid compound having photocatalytic activity. Titanium dioxide can exert a strong oxidizing action when it absorbs ultraviolet rays, and has been applied to a wide range of applications such as air purification, water purification, pollution prevention, deodorization, antibacterial infection, hospital infection prevention, and fog prevention.
- Rutile type and anatase type are known as main crystal forms of titanium dioxide. These crystalline titanium dioxides exhibit higher chemical stability and a higher refractive index than amorphous titanium dioxide (amorphous). Crystalline titanium dioxide can easily control the crystal shape, size, and crystallinity.
- titanium dioxide particles having a high degree of crystallinity can exhibit superior photocatalytic activity as compared with titanium dioxide powder having a low degree of crystallinity.
- the larger the crystal size, the better the photocatalytic ability can be exhibited. are known.
- Patent Document 1 describes a method for producing titanium dioxide crystals in which a newly exposed crystal plane is expressed by subjecting titanium dioxide to alkaline hydrogen peroxide treatment, sulfuric acid treatment, or hydrofluoric acid treatment. It is described that the photocatalyst made of titanium dioxide in which the newly exposed crystal face is developed has high oxidation catalyst performance.
- the titanium dioxide having the newly exposed crystal plane developed is (1) obtained from rutile type titanium dioxide, titanium dioxide crystal having newly developed (121) plane, and (2) new type obtained from rutile type titanium dioxide.
- a titanium dioxide crystal having a (001) (121) (021) (010) plane developed thereon (3) a titanium dioxide crystal having a new (021) plane obtained from a rutile-type titanium dioxide, (5) Titanium dioxide crystal newly developed with (120) plane obtained from anatase type titanium dioxide, (5) Titanium dioxide crystal with new (122) plane developed from anatase type titanium dioxide, (6)
- a novel (112) faced titanium dioxide crystal obtained from anatase type titanium dioxide is disclosed.
- the conventional titanium dioxide catalyst having a crystal form does not necessarily have sufficient catalytic action depending on the use, and a titanium dioxide photocatalyst having higher catalytic activity has been demanded.
- an object of the present invention is to provide a novel rutile type titanium dioxide nanoparticle having high photocatalytic activity, a photocatalyst comprising the rutile type titanium dioxide nanoparticle, and a method for oxidizing an organic compound using the photocatalyst.
- Another object of the present invention is to provide a novel photocatalyst comprising rutile titanium dioxide nanoparticles capable of efficiently oxidizing an organic substance, and an organic compound oxidation method using the photocatalyst.
- the present inventor is likely to recombine when electrons and holes that cause a photocatalytic reaction approach each other. Therefore, it is important to increase the photocatalytic activity, and titanium dioxide.
- the present invention was completed by finding that a photocatalyst comprising rutile-type titanium dioxide nanoparticles having an exposed crystal face (001) has high oxidation catalyst performance obtained by hydrothermal treatment in an aqueous medium in the presence of a polymer. .
- the present invention provides rutile-type titanium dioxide nanoparticles having an exposed crystal plane (001).
- the present invention also provides a rutile-type titanium dioxide nanoparticle having a rutile-type titanium dioxide nanoparticle having an exposed crystal plane (001) by hydrothermally treating a titanium compound in an aqueous medium in the presence of a hydrophilic polymer. Provides a manufacturing method.
- polyvinylpyrrolidone is preferable.
- the present invention further provides a photocatalyst comprising rutile-type titanium dioxide nanoparticles having an exposed crystal plane (001).
- the present invention further oxidizes an organic compound having an oxidizable site with molecular oxygen or peroxide under light irradiation in the presence of a photocatalyst composed of rutile-type titanium dioxide nanoparticles having an exposed crystal plane (001).
- a photocatalyst composed of rutile-type titanium dioxide nanoparticles having an exposed crystal plane (001).
- a method for oxidizing an organic compound is provided.
- the rod-like crystal of rutile-type titanium dioxide consists of (110) and (111) faces, and the (110) face acts as a reduction site and the (111) face acts as an oxidation site.
- the (110) face acts as a reduction site and the (111) face acts as an oxidation site.
- there is a new exposed crystal plane (001) with the (110) plane acting as a reduction site and the (001) plane and (111) plane acting as an oxidation site. Therefore, excited electrons generated by irradiating ultraviolet rays and activated holes can be completely separated, and recombination can be prevented. Therefore, a strong oxidizing action can be exhibited.
- rutile-type titanium dioxide nanoparticles according to the present invention are used as a photocatalyst, an organic substance can be efficiently oxidized, which is useful for purposes such as air purification, deodorization, water purification, antibacterial, and antifouling.
- Rutile-type titanium dioxide nanoparticles synthesized at different PVP concentrations in Examples and Comparative Examples [(a) SH5-0PVP, (b) SH5-0.10PVP, (c) SH5-0.25PVP, (d) SH5-0 .5 PVP].
- CO 2 concentration (CO 2 concentration) produced when acetaldehyde was oxidized using titanium dioxide (MT-600B) and rutile titanium dioxide synthesized at different PVP concentrations in Examples and Comparative Examples as a photocatalyst It is a figure which shows the relationship between UV irradiation amount (UV Irradiation Time).
- CO 2 concentration CO 2 concentration
- MT-600B titanium dioxide
- rutile titanium dioxide synthesized at different PVP concentrations in Examples and Comparative Examples were oxidized as a photocatalyst. It is a figure which shows the relationship between UV irradiation amount (UV Irradiation Time).
- the rutile-type titanium dioxide nanoparticles according to the present invention are characterized by having a novel exposed crystal plane (001).
- Rutile-type titanium dioxide nanoparticles having a novel exposed crystal face (001) can be produced by hydrothermally treating a titanium compound in an aqueous medium in the presence of a hydrophilic polymer.
- a titanium compound is hydrothermally treated in an aqueous medium, rod-like crystals of rutile titanium dioxide composed of (110) and (111) faces are usually obtained.
- a rod-like crystal of rutile type titanium dioxide having a new exposed crystal plane (001) is formed (see FIG. 1).
- titanium compound examples include titanium trichloride, titanium tetrachloride, titanium tetrabromide, titanium sulfate, titanium nitrate, titanium alkoxide, and titanium peroxide.
- titanium trichloride and titanium tetrachloride are preferably used in terms of reactivity under the reaction system conditions in the open form in air and the amount of chloride ions present.
- the hydrophilic polymer acts as a steric stabilizer or capping agent when synthesizing colloidal nanoparticles, and can prevent the product from aggregating.
- the hydrophilic polymer include polyalkylene oxides such as polyethylene oxide (PEO) and polypropylene oxide; polyvinyl pyrrolidone (PVP), polyvinyl alcohol, polyvinyl acetate (PVA), polyhydroxyalkyl acrylate, polystyrene sulfonate, a mixture or a co-polymer thereof.
- PEO polyethylene oxide
- PVP polyvinyl pyrrolidone
- PVA polyvinyl alcohol
- PVA polyvinyl acetate
- polyhydroxyalkyl acrylate polystyrene sulfonate
- a polymer etc. can be mentioned.
- PVP and PVA are preferable as the hydrophilic polymer in the present invention.
- the polymer is chemically stable, non-toxic, and exhibits excellent solubility in many polar solvents.
- PVP is preferred because it can be selectively adsorbed on the (111) surface of the titanium nanoparticles and the shape of the rutile titanium dioxide nanoparticles can be controlled.
- the average molecular weight of PVP is, for example, about 10,000 to 100,000, preferably about 30,000 to 50,000.
- the average molecular weight is less than 10,000, the function of adsorbing on the specific surface of the rutile-type titanium dioxide nanoparticles to control the shape thereof and the function of preventing the aggregation of the products tend to decrease, while the average molecular weight is 100,000.
- the viscosity becomes too high, the workability decreases, the dispersibility of the polymer itself decreases, and the ability to control the shape of rutile titanium dioxide nanoparticles decreases due to the inability to interact well with the titanium oxide precursor.
- PVP-K30 average molecular weight: 40000
- PVP-K25 average molecular weight: 24000
- the photocatalytic ability of rutile titanium dioxide nanoparticles is greatly influenced by the crystal structure of the particles. This is because it depends on the crystal structure of the particles whether or not the excited electrons and holes generated when irradiated with ultraviolet rays are easily recombined.
- the hydrophilic polymer such as PVP is easily adsorbed by the crystal plane (111) among the crystal plane (111) and the crystal plane (110) of the rutile-type titanium dioxide nanoparticles, and adsorbs to the crystal plane (111) and has a ridge or apex. It has the effect of exposing the newly exposed crystal face (001) by eroding the site, and the shape of the newly exposed crystal face (001) can be controlled by adjusting the hydrophilic polymer concentration.
- the newly exposed crystal face (001) can be exposed depending on the hydrophilic polymer concentration, and the area of the newly exposed face can be increased.
- the area of the crystal plane (111) decreases in inverse proportion to the increase in hydrophilic polymer concentration.
- the concentration of the hydrophilic polymer such as PVP is, for example, 0.05 to 1.0 mM, preferably about 0.2 to 0.5 mM, and particularly preferably 0.2 to 0.4 mM. If the hydrophilic polymer concentration is too high, the crystal plane (111) is eroded and becomes too small. As a result, the separation ability between electrons and holes decreases, so that recombination tends to occur and the photocatalytic ability tends to decrease. On the other hand, if the hydrophilic polymer concentration is too thin, it becomes difficult to form a new exposed surface (001) sufficient to separate electrons and holes, and it tends to be difficult to improve the photocatalytic performance.
- water or a mixed solution of water and a water-soluble organic solvent is used as the aqueous medium used in the hydrothermal treatment.
- the water-soluble organic solvent include alcohols such as methanol and ethanol; ethers such as ethylene glycol dimethyl ether; ketones such as acetone; nitriles such as acetonitrile; and carboxylic acids such as acetic acid.
- the amount of the aqueous medium used is generally about 0.0001 to 0.1 parts by weight, preferably about 0.001 to 0.01 parts by weight with respect to 1 part by weight of the titanium compound.
- a halide to the aqueous medium.
- the halide include alkali metal halides such as sodium chloride, potassium chloride, lithium chloride, sodium bromide, potassium bromide, and lithium bromide. Among these, alkali metal halides are preferable, and sodium chloride is particularly preferable.
- alkali metal halides are preferable, and sodium chloride is particularly preferable.
- the crystallinity, particle size and surface area of the rutile titanium dioxide nanoparticles can be adjusted. As the amount of halide added increases, the particle size and crystallinity tend to improve and the surface area tends to decrease.
- the amount added in the present invention is about 0.5 to 10M, preferably about 1 to 6M. is there.
- the treatment temperature of the hydrothermal treatment can be appropriately selected in consideration of the reaction rate and reaction selectivity, but is generally about 100 to 200 ° C. and the treatment time is about 3 to 24 hours.
- the pressure of the hydrothermal treatment is, for example, about normal pressure to 0.3 MPa (gauge pressure), but is not limited to this range.
- the rutile-type titanium dioxide nanoparticles in which the novel exposed crystal plane (001) of the present invention is expressed (exposed) can be used as a photocatalyst for various chemical reactions (for example, oxidation reaction, decomposition reaction of harmful substances, etc.) and sterilization. it can.
- the organic compound oxidation method of the present invention is a method in which an organic compound having an oxidizable site is exposed to molecular oxygen or peroxidation under light irradiation in the presence of a photocatalyst composed of rutile-type titanium dioxide nanoparticles having the exposed crystal plane (001). It is characterized by being oxidized by an object.
- the organic compound is not particularly limited as long as it is an organic compound having at least one site to be oxidized.
- Examples of the organic compound having an oxidizable site include (A1) a heteroatom-containing compound having a carbon-hydrogen bond adjacent to the heteroatom, (A2) a compound having a carbon-heteroatom double bond, and (A3) a methine carbon atom.
- the heteroatom-containing compound (A1) having a carbon-hydrogen bond adjacent to the heteroatom includes (A1-1) primary or secondary alcohol or primary or secondary thiol, (A1-2) An ether having a carbon-hydrogen bond adjacent to an oxygen atom or a sulfide having a carbon-hydrogen bond adjacent to a sulfur atom, (A1-3) an acetal having a carbon-hydrogen bond adjacent to an oxygen atom (also a hemiacetal) Thioacetal (including thiohemiacetal) having a carbon-hydrogen bond at a position adjacent to a sulfur atom.
- Examples of the compound (A2) having a carbon-heteroatom double bond include (A2-1) carbonyl group-containing compounds, (A2-2) thiocarbonyl group-containing compounds, (A2-3) imines, and the like.
- the compound (A3) having a methine carbon atom includes (A3-1) a cyclic compound containing a methine group (that is, a methine carbon-hydrogen bond) as a structural unit of the ring, and (A3-2) a chain having a methine carbon atom.
- A3-1 a cyclic compound containing a methine group (that is, a methine carbon-hydrogen bond) as a structural unit of the ring
- A3-2 a chain having a methine carbon atom.
- (A4) having a carbon-hydrogen bond at the adjacent position of the unsaturated bond (A4-1) an aromatic compound having a methyl group or a methylene group at the adjacent position (so-called benzyl position) of the aromatic ring, (A4-2)
- Non-aromatic compounds having a methyl group or a methylene group at an adjacent position of an unsaturated bond (for example, a carbon-carbon unsaturated bond, a carbon-oxygen double bond, etc.), etc. may be mentioned.
- the non-aromatic cyclic hydrocarbon (A5) includes (A5-1) cycloalkanes and (A5-2) cycloalkenes.
- the conjugated compound (A6) includes conjugated dienes (A6-1), ⁇ , ⁇ -unsaturated nitriles (A6-2), ⁇ , ⁇ -unsaturated carboxylic acids or derivatives thereof (for example, esters, amides, acids Anhydride, etc.) (A6-3).
- Examples of the amines (A7) include primary or secondary amines.
- aromatic hydrocarbon (A8) examples include an aromatic compound having at least one benzene ring, preferably a condensed polycyclic aromatic compound in which a plurality of (for example, 2 to 10) benzene rings are condensed. Is mentioned.
- linear alkane (A9) examples include linear alkanes having about 1 to 30 carbon atoms (preferably about 1 to 20 carbon atoms).
- the olefins (A10) may be any of ⁇ -olefins and internal olefins which may have a substituent (for example, the above-mentioned exemplified substituents such as a hydroxyl group and an acyloxy group), and a diene. Olefins having a plurality of carbon-carbon double bonds such as are also included.
- the above organic compounds having an oxidizable site may be used alone or in combination of two or more of the same or different types.
- the amount of the rutile-type titanium dioxide nanoparticles used is, for example, 1 to 10000 parts by weight, preferably 10 to 5000 parts by weight, more preferably 50 to 50 parts by weight with respect to 100 parts by weight of the organic compound used as the substrate. About 2000 parts by weight.
- an organic compound as a substrate is oxidized with molecular oxygen and / or peroxide under light irradiation.
- light to be irradiated ultraviolet rays having a wavelength of less than 380 nm are usually used, but depending on the type of titanium dioxide, visible light having a long wavelength of, for example, 380 nm to 650 nm can also be used.
- molecular oxygen pure oxygen may be used, or oxygen or air diluted with an inert gas such as nitrogen, helium, argon, or carbon dioxide may be used.
- the amount of molecular oxygen used is, for example, 0.5 mol or more, preferably 1 mol or more, with respect to 1 mol of the organic compound used as the substrate. Often an excess of molecular oxygen is used relative to the organic compound.
- the peroxide is not particularly limited, and any of peroxide, hydroperoxide, and the like can be used.
- Representative peroxides include hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, triphenylmethyl hydroperoxide, t-butyl peroxide, benzoyl peroxide, and the like.
- the hydrogen peroxide pure hydrogen peroxide may be used, but from the viewpoint of handleability, it is usually used in a form diluted with an appropriate solvent such as water (for example, 30% by weight hydrogen peroxide). It is done.
- the amount of the peroxide used is, for example, about 0.1 to 5 mol, preferably about 0.3 to 1.5 mol, per 1 mol of the organic compound used as the substrate.
- the above reaction produces a corresponding oxidative cleavage product (for example, aldehyde compound), quinones, hydroperoxide, hydroxyl group-containing compound, carbonyl compound, carboxylic acid and other oxygen atom-containing compounds from the organic compound.
- a corresponding carbonyl compound (ketone, aldehyde) or carboxylic acid is generated from alcohol, and a corresponding carboxylic acid is generated from aldehyde.
- 1-adamantanol, 2-adamantanol, 2-adamantanone and the like are produced from adamantane.
- the organic compound can be finally decomposed into carbon dioxide and water.
- the reaction product can be separated and purified by a separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination of these.
- a separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination of these.
- the photocatalyst composed of titanium dioxide nanoparticles can be easily separated by filtration, and the separated catalyst can be recycled after being subjected to treatment such as washing as necessary.
- Example 1 A Teflon (registered trademark) -coated autoclave was charged with a 50 mL aqueous solution containing TiCl 3 (0.15 M), NaCl (5 M), and PVP (trade name “PVP-K30”, molecular weight: 40000, 0.25 mM), Hydrothermal treatment was performed in an oven at 180 ° C. for 10 hours. The resulting reaction product was centrifuged, rinsed with deionized water, and dried in a vacuum dryer (vacuum oven).
- Examples 2-4 In the same manner as in Example 1 except that the concentration of PVP was changed from 0.25 mM to 0.1 mM (Example 2), 0.4 mM (Example 3), and 0.5 mM (Example 4), TiO 2 ( SH5-0.1PVP, SH5-0.4PVP, SH5-0.5PVP) were obtained.
- TiO 2 obtained in Examples and Comparative Examples were evaluated by the following methods.
- TiO 2 (trade name “MT-600B”, manufactured by Tayca, specific surface area of 25 to 35 m 2 / g) was used.
- Pb (NO 3 ) 2 (0.1 M) was added to the obtained aqueous solution (2 g / L) containing Pt-supported TiO 2 , pH was adjusted to 1.0 by adding nitric acid, and a 500 W mercury lamp was used. Then, ultraviolet rays were irradiated for 24 hours (0.1 W / cm 2 ) to obtain TiO 2 having Pt and PbO 2 supported on the surface. The powder color changed from gray to brown by ultraviolet irradiation. From this, it can be seen that Pb 2+ ions were oxidized by Pt-supported TiO 2 and precipitated as PbO 2 .
- the microstructure was confirmed using a transmission electron microscope (TEM, trade name “H-9000NAR”, manufactured by Hitachi) and a field emission scanning electron microscope (FE-SEM, trade name “JSM-6701FONO”, manufactured by JEOL).
- TEM transmission electron microscope
- FE-SEM field emission scanning electron microscope
- JSM-6701FONO field emission scanning electron microscope
- the average particle diameter (d) of TiO 2 was obtained by the Scherrer equation shown below.
- Average particle diameter (d) 0.9 ⁇ / ⁇ cos ⁇ (Where ⁇ is the wavelength of the X-ray used, ⁇ is the half width of the diffraction profile, 2 ⁇ is the diffraction angle)
- the specific surface area was measured by a Brunauer-Emmett-Teller method (BET method) using a nitrogen adsorption measuring device (trade name “Autosorb-1”, manufactured by Quantachrome).
- ⁇ Photocatalytic activity evaluation> The photocatalytic ability of TiO 2 obtained in Examples 1 to 4 and Comparative Example 1 was evaluated by oxidizing acetaldehyde or toluene in the gas phase and measuring the amount of CO 2 produced.
- a Tedlar bag (manufactured by As One Co., Ltd.) was used as a reaction vessel. 100 g of TiO 2 obtained in Examples 1 to 4 and Comparative Example 1 was spread on a glass dish, placed in a reaction vessel, and 500 ppm of acetaldehyde-saturated gas (or 100 ppm of toluene-saturated gas) was blown into the reaction vessel. It is.
- the amount of CO 2 produced was measured using a gas chromatograph with a flame ionization detector (trade names “GC-8A”, “GC-14A”, manufactured by Shimadzu Corporation) attached with a methanizer. 6, 7).
- the exposed area of the newly exposed surface (001) of the TiO 2 particles depends on the PVP concentration. Then, TiO 2 photocatalyst ability regardless of the size of the surface area, such as specific surface area and crystal size, it can be seen that due to the surface structure of the crystal. This is because the recombination can be delayed by separating the excited electrons and holes, and a strong catalytic action is exhibited.
- the rutile-type titanium dioxide nanoparticles having an exposed crystal face (001) according to the present invention holes are located on the (001) face and excited electrons are located on the (110) face, so that the holes and the excited electrons are completely separated. Recombination can be prevented. Thereby, an excellent photocatalytic ability can be exhibited, and an excellent oxidation and decomposition action of an organic compound can be exhibited.
- the rutile titanium oxide nanoparticles according to the present invention can exert a strong oxidizing action, when used as a photocatalyst, organic substances can be efficiently oxidized, and purification of the atmosphere, deodorization, water purification, antibacterial, antifouling It is useful for such purposes.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明の他の目的は、有機物質を効率よく酸化できる新規なルチル型二酸化チタンナノ粒子からなる光触媒、及び該光触媒を用いた有機化合物の酸化方法を提供することにある。
テフロン(登録商標)塗装されたオートクレーブに、TiCl3(0.15M)、NaCl(5M)、及びPVP(商品名「PVP−K30」、分子量:40000、0.25mM)を含む50mL水溶液を仕込み、180℃のオーブンで10時間、水熱処理を行った。得られた反応物を遠心分離し、脱イオン水でリンスし、真空乾燥機(バキュームオーブン)で乾燥した。
その後、表面に残存または吸着した有機化合物を500Wの超高圧水銀ランプ用光源装置(商品名「SX−UI501UO」、ウシオ電機(株)製)を使用して24時間、紫外線照射して取り除いた。続いて、減圧下、60℃で6時間乾燥させてTiO2(SH5−0.25PVP)を得た。
PVPの濃度を0.25mMから0.1mM(実施例2)、0.4mM(実施例3)、0.5mM(実施例4)に変更した以外は実施例1と同様にしてそれぞれTiO2(SH5−0.1PVP、SH5−0.4PVP、SH5−0.5PVP)を得た。
PVPを使用しなかった以外は実施例1と同様にしてTiO2(SH5−0PVP)を得た。
実施例1で得られたTiO2(SH5−0.25PVP)水溶液(2g/L)に2−プロパノール(0.52M)とH2PtCl6・6H2O(1mM)を加え懸濁液とした。得られた懸濁液から窒素ガスを完全に除去し、その後、500Wの超高圧水銀ランプ用光源装置(商品名「SX−UI501HQ」、ウシオ電機(株)製)を使用して紫外線を24時間照射した(1mW/cm2)。紫外線照射によりTiO2粉末の色は白から灰色に変化した。このことから、Ptが光析出したことがわかる。その後、懸濁液を遠心分離し、蒸留水で洗浄し、減圧下、70℃で3時間乾燥してPt担持TiO2粉末を得た。
実施例1~4及び比較例1で得られたTiO2の相同定にはXRD(粉末X線回折装置、商品名「JDX3500」、JEOL製、Cu−Kα、λ=1.5405Å)を使用した。微細構造は透過型電子顕微鏡(TEM、商品名「H−9000NAR」、日立製)及び電界放射型走査電子顕微鏡(FE−SEM、商品名「JSM−6701FONO」、JEOL製)を使用して確認した。図3より、PVP濃度の上昇に従ってピークが強く表れていることから、PVP濃度依存的にルチル型二酸化チタンナノ粒子の結晶化度が上昇していることがわかる。図4及び図5より、PVP濃度の上昇に従って新規露出面(001)の露出面積が大きくなり、それに伴って(111)面が小さくなっていることがわかる。
平均粒径(d)=0.9λ/βcosθ
(式中、λは使用したX線の波長を示し、βは回折プロファイルの半値幅、2θは回折角を示す)
さらに、比表面積は窒素吸着測定装置(商品名「Autosorb−1」、Quantachrome社製)を使用し、Brunauer−Emmett−Teller法(BET法)により測定した。
実施例1~4及び比較例1で得られたTiO2の光触媒能は、気相にてアセトアルデヒドまたはトルエンを酸化し、生成するCO2量を測定することにより評価した。
テドラーバッグ(アズワン(株)社製)を反応容器として使用した。実施例1~4及び比較例1で得られたTiO2100gをそれぞれガラス製皿に広げ、反応容器の中に入れ、500ppmのアセトアルデヒド飽和ガス(または、100ppmのトルエン飽和ガス)を反応容器に吹き込んだ。ガスとアセトアルデヒド(または、トルエン)が平衡に達した後、室温(25℃)で光照射を行った。光源には500Wのキセノンランプ用光源装置(商品名「SX−UI501XQ」、ウシオ電機(株)製)を使用し、UV−35フィルターを使用して350nmより短い波長の光線を遮断した。さらに、ファインステンレス製のメッシュを光量調節用フィルターとして使用して光量を30mW/cm2に調整した。
光照射開始後、CO2の生成量をメタナイザーが付属した水素炎イオン化検出器付きガスクロマトグラフ(商品名「GC−8A」、「GC−14A」、島津製作所製)を使用して測定した(図6、7)。
Claims (5)
- 露出結晶面(001)を有するルチル型酸化チタンナノ粒子。
- チタン化合物を親水性ポリマーの存在下、水性媒体中で水熱処理して、露出結晶面(001)を有するルチル型酸化チタンナノ粒子を得ることを特徴とするルチル型酸化チタンナノ粒子の製造法。
- 親水性ポリマーがポリビニルピロリドンである請求項2記載のルチル型酸化チタンナノ粒子の製造法。
- 露出結晶面(001)を有するルチル型酸化チタンナノ粒子からなる光触媒。
- 露出結晶面(001)を有するルチル型酸化チタンナノ粒子からなる光触媒の存在下、被酸化部位を有する有機化合物を光照射下に分子状酸素又は過酸化物により酸化することを特徴とする有機化合物の酸化方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800339928A CN102448886A (zh) | 2009-08-05 | 2010-07-13 | 具有新的露出结晶面的金红石型二氧化钛纳米粒子及其制造方法 |
US13/389,097 US8758574B2 (en) | 2009-08-05 | 2010-07-13 | Rutile titanium dioxide nanoparticles each having novel exposed crystal face and method for producing same |
EP10806329.8A EP2463237A4 (en) | 2009-08-05 | 2010-07-13 | RUTILE TITANIUM DIOXIDE NANOPARTICLES HAVING EACH NEW EXPOSED CRYSTALLINE PLANE AND PROCESS FOR PREPARING THE SAME |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009182563A JP5461099B2 (ja) | 2009-08-05 | 2009-08-05 | 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法 |
JP2009-182563 | 2009-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011016329A1 true WO2011016329A1 (ja) | 2011-02-10 |
Family
ID=43544227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/062131 WO2011016329A1 (ja) | 2009-08-05 | 2010-07-13 | 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8758574B2 (ja) |
EP (1) | EP2463237A4 (ja) |
JP (1) | JP5461099B2 (ja) |
CN (1) | CN102448886A (ja) |
WO (1) | WO2011016329A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012169660A1 (ja) * | 2011-06-07 | 2012-12-13 | 株式会社ダイセル | 光触媒塗膜、及びその製造方法 |
JP2012254922A (ja) * | 2011-05-18 | 2012-12-27 | Daicel Corp | 遷移金属化合物担持酸化チタンの製造方法 |
CN103230787A (zh) * | 2013-04-18 | 2013-08-07 | 中国科学院长春光学精密机械与物理研究所 | 一种{001}面暴露锐钛矿相二氧化钛微球光催化剂的制备方法 |
CN112844357A (zh) * | 2020-12-08 | 2021-05-28 | 河北师范大学 | 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2483204B1 (en) | 2009-10-08 | 2018-01-17 | The Regents of The University of California | Methods of making metal-oxides and uses thereof for water treatment and energy applications |
JP5711582B2 (ja) * | 2011-03-28 | 2015-05-07 | 株式会社ダイセル | 光触媒、及びそれを用いた有機化合物の酸化方法 |
WO2013055792A1 (en) | 2011-10-10 | 2013-04-18 | The Regents Of The University Of California | Size and morphologically controlled nanostructures for energy storage |
CN102659178A (zh) * | 2012-05-11 | 2012-09-12 | 上海师范大学 | 一种{001}面暴露的具有氧缺陷的可见光二氧化钛纳米片的合成工艺 |
TWI520766B (zh) * | 2012-08-27 | 2016-02-11 | 國立清華大學 | 奈米粒子轉相方法 |
JP2014083504A (ja) * | 2012-10-24 | 2014-05-12 | Ohara Inc | 光触媒部材及びその製造方法 |
CN103086424B (zh) * | 2013-02-28 | 2015-12-09 | 天津工业大学 | 一步合成混相和暴露高活性面二氧化钛的方法 |
US9108862B2 (en) | 2013-03-15 | 2015-08-18 | Cristal Inorganic Chemicals Switzerland Ltd. | Method of making rutile titanium dioxide microspheres containing elongated TiO2-nanocrystallites |
US9567236B2 (en) * | 2013-03-15 | 2017-02-14 | Cristal Inorganic Chemicals Switzerland Ltd. | Rutile titanium dioxide nanoparticles and ordered acicular aggregates of same |
US9440221B2 (en) * | 2013-03-15 | 2016-09-13 | Daicel Corporation | Titanium oxide dispersion liquid, titanium oxide coating liquid, and photocatalyst coating film |
US8932556B2 (en) | 2013-03-15 | 2015-01-13 | Cristal Usa Inc. | Rutile titanium dioxide nanoparticles and ordered acicular aggregates of same |
EP3037162A4 (en) * | 2013-08-23 | 2017-04-12 | Tohoku University | Method for treating organic matter in the presence of water, contact reaction device and system including same, and method for recovering waste heat from low-temperature heat source |
CN103657625B (zh) * | 2013-12-26 | 2015-09-02 | 湛江师范学院 | 一种暴露高能晶面{001}金红石型硼掺杂二氧化钛微球的制备方法 |
CN104192896B (zh) * | 2014-08-20 | 2016-02-03 | 北京师范大学 | 一种TiO2纳米晶及其合成方法 |
US9505691B2 (en) | 2014-10-02 | 2016-11-29 | Celanese International Corporation | Process for producing acetic acid |
SG11201706008YA (en) | 2015-01-30 | 2017-08-30 | Celanese Int Corp | Processes for producing acetic acid |
US9487464B2 (en) | 2015-01-30 | 2016-11-08 | Celanese International Corporation | Processes for producing acetic acid |
US9561994B2 (en) | 2015-01-30 | 2017-02-07 | Celanese International Corporation | Processes for producing acetic acid |
US10413840B2 (en) | 2015-02-04 | 2019-09-17 | Celanese International Coporation | Process to control HI concentration in residuum stream |
US9505696B2 (en) | 2015-02-04 | 2016-11-29 | Celanese International Corporation | Process to control HI concentration in residuum stream |
US9512056B2 (en) | 2015-02-04 | 2016-12-06 | Celanese International Corporation | Process to control HI concentration in residuum stream |
JP6875009B2 (ja) | 2016-03-08 | 2021-05-19 | 国立研究開発法人科学技術振興機構 | 触媒及びその使用 |
CN112062152B (zh) * | 2020-08-17 | 2022-06-07 | 湖北工业大学 | 一种高能晶面暴露的二氧化钛介孔微球及其制备方法 |
CN113265198B (zh) * | 2021-05-12 | 2022-10-28 | 华中师范大学 | 一种易固着的催化净化涂料及其制备方法和应用 |
CN115304098B (zh) * | 2022-09-20 | 2024-06-21 | 山东国瓷功能材料股份有限公司 | 纳米二氧化钛 |
CN116081684A (zh) * | 2022-12-21 | 2023-05-09 | 河北工业大学 | 一种富氧空位的主暴露{101}晶面二氧化钛材料、制备方法及其应用 |
CN116532107A (zh) * | 2023-01-17 | 2023-08-04 | 济南大学 | 一种TiO2-Ag复合纳米材料抗菌溶液的制备方法及所得产品和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005298296A (ja) | 2004-04-14 | 2005-10-27 | Daicel Chem Ind Ltd | 酸化チタン結晶、光触媒、及び有機化合物の酸化方法 |
JP2006224084A (ja) * | 2004-03-30 | 2006-08-31 | Toto Ltd | 光触媒性材料および光触媒性部材 |
JP2006225623A (ja) * | 2004-03-30 | 2006-08-31 | Toto Ltd | 分散液およびコーティング剤 |
JP2008195551A (ja) * | 2007-02-09 | 2008-08-28 | Hiroshima Univ | 二酸化チタン微粒子及びその製造方法 |
JP2009519889A (ja) * | 2005-12-19 | 2009-05-21 | ナショナル・センター・フォア・サイエンティフィック・リサーチ・デモクリトス | 修飾されたナノ構造チタニア材料及び製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005000734A2 (en) * | 2002-10-04 | 2005-01-06 | The Ohio State University Research Foundation | Method of forming nanostructures on ceramics and the ceramics formed |
JP4576619B2 (ja) * | 2003-06-02 | 2010-11-10 | 独立行政法人 日本原子力研究開発機構 | 結晶配向した微結晶から成る二酸化チタン膜の作製方法 |
WO2008005055A2 (en) * | 2005-12-29 | 2008-01-10 | The Board Of Trustees Of The University Of Illinois | Nanoparticles containing titanium oxide |
US20080223713A1 (en) * | 2007-03-14 | 2008-09-18 | Huifang Xu | Photocatalyst Having Improved Quantum Efficiency and Method for Use in Photocatalytic and Photosynthetic |
US20100139747A1 (en) * | 2008-08-28 | 2010-06-10 | The Penn State Research Foundation | Single-crystal nanowires and liquid junction solar cells |
US20120028791A1 (en) * | 2009-03-24 | 2012-02-02 | Oesterlund Lars | Highly Reactive Photocatalytic Material and Manufacturing Thereof |
-
2009
- 2009-08-05 JP JP2009182563A patent/JP5461099B2/ja not_active Expired - Fee Related
-
2010
- 2010-07-13 CN CN2010800339928A patent/CN102448886A/zh active Pending
- 2010-07-13 WO PCT/JP2010/062131 patent/WO2011016329A1/ja active Application Filing
- 2010-07-13 US US13/389,097 patent/US8758574B2/en not_active Expired - Fee Related
- 2010-07-13 EP EP10806329.8A patent/EP2463237A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006224084A (ja) * | 2004-03-30 | 2006-08-31 | Toto Ltd | 光触媒性材料および光触媒性部材 |
JP2006225623A (ja) * | 2004-03-30 | 2006-08-31 | Toto Ltd | 分散液およびコーティング剤 |
JP2005298296A (ja) | 2004-04-14 | 2005-10-27 | Daicel Chem Ind Ltd | 酸化チタン結晶、光触媒、及び有機化合物の酸化方法 |
JP2009519889A (ja) * | 2005-12-19 | 2009-05-21 | ナショナル・センター・フォア・サイエンティフィック・リサーチ・デモクリトス | 修飾されたナノ構造チタニア材料及び製造方法 |
JP2008195551A (ja) * | 2007-02-09 | 2008-08-28 | Hiroshima Univ | 二酸化チタン微粒子及びその製造方法 |
Non-Patent Citations (4)
Title |
---|
"79th Annual Meeting of Chemical Society of Japan in Spring (2001) Koen Yokoshu I, 15 March 2001 (15.03.2001)", article HENGBO YIN: "Morphology and Photocatalysis of Ti02 Prepared by Hydrothermal Synthesis - Rutile Type", pages: 370, XP008151676 * |
"Abstracts, Annual Meeting of The Society of Polymer Science, Japan, 10 May 2007 (10.05.2007)", vol. 56, article LEI YANG ET AL.: "Suiyosei Polymer Kyozonka ni Okeru Rutile-gata Nisanka Titanium Biryushi no Sentakuteki Chosei", pages: 1137, XP008151675 * |
HIRONORI SHIMOIDA ET AL.: "Suinetsuho ni yoru Rutile-gata Sanka Titanium Nano-ryushi no Gosei to Hikari Shokubai Kino Hyoka", THE CERAMIC SOCIETY OF JAPAN 2008 NEN NENKAI KOEN YOKOSHU, 20 March 2008 (2008-03-20), pages 217, XP008151677 * |
See also references of EP2463237A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012254922A (ja) * | 2011-05-18 | 2012-12-27 | Daicel Corp | 遷移金属化合物担持酸化チタンの製造方法 |
WO2012169660A1 (ja) * | 2011-06-07 | 2012-12-13 | 株式会社ダイセル | 光触媒塗膜、及びその製造方法 |
US9517459B2 (en) | 2011-06-07 | 2016-12-13 | Daicel Corporation | Photocatalytic coating film and method for producing same |
CN103230787A (zh) * | 2013-04-18 | 2013-08-07 | 中国科学院长春光学精密机械与物理研究所 | 一种{001}面暴露锐钛矿相二氧化钛微球光催化剂的制备方法 |
CN112844357A (zh) * | 2020-12-08 | 2021-05-28 | 河北师范大学 | 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法 |
CN112844357B (zh) * | 2020-12-08 | 2022-08-26 | 河北师范大学 | 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102448886A (zh) | 2012-05-09 |
US20120132515A1 (en) | 2012-05-31 |
EP2463237A4 (en) | 2016-06-01 |
EP2463237A1 (en) | 2012-06-13 |
US8758574B2 (en) | 2014-06-24 |
JP5461099B2 (ja) | 2014-04-02 |
JP2011032146A (ja) | 2011-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5461099B2 (ja) | 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法 | |
JP5711582B2 (ja) | 光触媒、及びそれを用いた有機化合物の酸化方法 | |
Toloman et al. | Photocatalytic activity of SnO2-TiO2 composite nanoparticles modified with PVP | |
Korzhak et al. | Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites | |
Zhang et al. | Synthesis of sandwich-structured AgBr@ Ag@ TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes | |
Di Paola et al. | Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders | |
Zhuang et al. | Precursor morphology-controlled formation of perovskites CaTiO3 and their photo-activity for As (III) removal | |
Saharudin et al. | Fabrication and photocatalysis of nanotubular C-doped TiO2 arrays: Impact of annealing atmosphere on the degradation efficiency of methyl orange | |
JP3949374B2 (ja) | 酸化チタン、それを用いてなる光触媒体および光触媒体コーティング剤 | |
US9452418B2 (en) | Gold loaded TiO2 nanotube-multiwalled carbon nanotube composites as active photocatalysts for cyclohexane oxidation | |
JP5591683B2 (ja) | 露出結晶面を有する金属イオン担持酸化チタン粒子及びその製造方法 | |
Mohamed | Gold loaded titanium dioxide–carbon nanotube composites as active photocatalysts for cyclohexane oxidation at ambient conditions | |
Li et al. | Efficient photocatalytic degradation of acrylonitrile by Sulfur-Bismuth co-doped F-TiO2/SiO2 nanopowder | |
JP4997627B2 (ja) | 可視光応答性光触媒 | |
JP4150712B2 (ja) | 可視光−活性化光触媒およびその製法 | |
TWI428281B (zh) | 氧化鈦及其製法 | |
WO2011102353A1 (ja) | 銅イオンで修飾された酸化タングステン光触媒及びその製造方法 | |
JP2009249206A (ja) | 金属元素先端担持カーボンナノチューブ表面修飾酸化チタン粒子 | |
KR100913622B1 (ko) | 수소 생성용 메조다공성 이산화티타늄 광촉매의 제조방법 | |
JP4526273B2 (ja) | 炭素ドープ酸化チタンとその製造法、光触媒、及び該触媒を用いた有機化合物の酸化方法 | |
JP2011001238A (ja) | ブルッカイト型二酸化チタンナノ粒子の製造方法 | |
JP2003190811A (ja) | 光触媒体、その製造方法およびそれを用いてなる光触媒体コーティング剤 | |
JP4536470B2 (ja) | 他元素ドープルチル型酸化チタンとその製造法、光触媒、及び該触媒を用いた有機化合物の酸化方法 | |
JP3981757B2 (ja) | 光触媒体およびそれを用いてなる光触媒体コーティング剤 | |
JP2008062237A (ja) | 光触媒体、その製造方法およびそれを用いてなる光触媒体コーティング剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080033992.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10806329 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010806329 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13389097 Country of ref document: US Ref document number: 2010806329 Country of ref document: EP |