CN108772092B - 一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法 - Google Patents

一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法 Download PDF

Info

Publication number
CN108772092B
CN108772092B CN201810576589.8A CN201810576589A CN108772092B CN 108772092 B CN108772092 B CN 108772092B CN 201810576589 A CN201810576589 A CN 201810576589A CN 108772092 B CN108772092 B CN 108772092B
Authority
CN
China
Prior art keywords
powder
nano powder
reaction
tubular nano
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810576589.8A
Other languages
English (en)
Other versions
CN108772092A (zh
Inventor
谢劲松
袁争
徐泽忠
李明华
杨伟
吴传洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN201810576589.8A priority Critical patent/CN108772092B/zh
Publication of CN108772092A publication Critical patent/CN108772092A/zh
Application granted granted Critical
Publication of CN108772092B publication Critical patent/CN108772092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种Ag3PO4/g‑C3N4复合管状纳米粉体及其制备方法,涉及适用于新能源和环境污水修复方面复合材料的制备技术领域。由g‑C3N4颗粒和磷酸银纳米粒子组成,磷酸银纳米粒子均匀附着在呈管状的g‑C3N4颗粒的管壁和管口上。首先将三聚氯氰、三聚氰胺和尿素溶解于乙腈溶剂中,搅拌混合均匀进行溶剂热法反应,经后处理得到g‑C3N4管状纳米粉体;其次将g‑C3N4粉体超声分散于无水乙醇中,再加入磷酸二氢钠和硝酸银进行超声原位沉淀反应,经后处理即得。通过系列实验结果表明其具有粒度分布较窄、形貌分布均一和粒径可控等特点。该复合粉体具有优异的可见光催化降解环境污水中有机污染物的能力。

Description

一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法
技术领域
本发明涉及适用于新能源和环境污水修复方面复合材料的制备技术领域,具体是涉及一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法。
背景技术
自1989年加州大学的Liu和Cohen从理论上提出β-C3N4共价晶体以来,碳氮化合物因在光学、力学等方面有着优异的性能而受到各国科学家的关注。C3N4可能具有5种结构,即α相、β相、立方相、准立方相和类石墨相。其中g-C3N4是室温下最稳定的相,具有无毒和可见光响应(半导体带隙2.7eV)等性质,使其在催化领域具有很广阔的应用前景。g-C3N4具有典型的类石墨层状结构。研究表明,单层g-C3N4纳米片理论比表面积可达2500m2/g。然而,传统热缩聚法制备的g-C3N4比表面积小(<10m2/g)、传质作用差、光生载流子复合严重,严重制约了其在光催化领域的应用。众所周知,增大比表面积可使催化剂活性位点增多,显著优化光催化反应过程,提高光催化效率。目前,人们采用(软、硬)模板法和非模板法制备了一系列具有特殊形貌的g-C3N4纳米光催化剂,如介孔g-C3N4(mpg-C3N4)、有序介孔g-C3N4、棒状g-C3N4、空心球状g-C3N4和片状g-C3N4等,丰富了g-C3N4的纳米化改性手段。
近年来,为了进一步提高Ag3PO4光催化剂的光催化活性和稳定性,通过将单体Ag3PO4与其它已知材料进行复合是一个行之有效的方法。Yao等通过在TiO2上沉积Ag3PO4纳米颗粒,制备了Ag3PO4/TiO2异质结结构的光催化材料;Li等通过Ag3PO4和Fe3O4之间的复合,制备了微米结构的复合型光催化材料,这种光催化剂表现出了比本体Ag3PO4更好的化学稳定性,其光催化性能在一定程度上也有所提高;Zhang以Ag3PO4和SnO2为原材料,通过一定方法复合,制备出了Ag3PO4/SnO2复合型光催化材料,这种复合结构的形成促进了光生电子和空穴对的有效分离,从而表现出了比本体Ag3PO4更好的光催化降解性能。
但是,通过溶剂热结合超声原位沉淀法制备Ag3PO4/g-C3N4复合管状纳米粉体的报道较少。
发明内容
本发明要解决的技术问题为提供一种工艺简单、成本低、适合工业化规模生产的Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法。
为了实现上述目的,本发明所采用的技术方案为:一种Ag3PO4/g-C3N4复合管状纳米粉体的制备方法,采用溶剂热结合超声原位沉淀法,首先将三聚氯氰、三聚氰胺和尿素溶解于溶剂中,搅拌混合均匀;然后将搅拌混合液转入反应釜中,将反应釜盖好并放到恒温鼓风烘箱中进行反应,经后处理得到黄褐色的g-C3N4管状纳米粉体;其次将g-C3N4粉体超声分散于无水乙醇中,再加入磷酸二氢钠和硝酸银超声反应,经后处理得到黄褐色的Ag3PO4/g-C3N4复合管状纳米粉体。
作为本发明的Ag3PO4/g-C3N4复合管状纳米粉体制备方法的优选技术方案,溶剂选自乙腈或丙酮。制备前驱体g-C3N4管状纳米粉体时,三聚氯氰、三聚氰胺和尿素之间的质量比为 3:1:1~2,溶剂热法反应温度为160~200℃,反应时间为32~48h。制备Ag3PO4/g-C3N4复合管状纳米粉体时,g-C3N4、磷酸二氢钠和硝酸银的质量比为1:0.1~0.3:0.1~0.3,超声反应时间为30~60min。后处理是将反应产物固液分离后分别使用无水乙醇及去离子水交替洗涤,然后置于恒温干燥箱中进行干燥,恒温干燥箱中干燥温度为20~60℃,干燥时间为4~12h。
本发明通过溶剂热结合超声原位沉淀法成功地获得了一种Ag3PO4/g-C3N4复合管状纳米粉体,其具有粒度分布较窄、形貌分布均一和粒径可控等特点。通过系列实验结果表明其由 g-C3N4颗粒和磷酸银纳米粒子组成,呈管状的g-C3N4颗粒的管长为500-1000nm,管径为 50-100nm;粒径为50-100nm的磷酸银纳米粒子均匀附着在管壁和管口上;Ag3PO4/g-C3N4复合管状纳米粉体的比表面积为22.081m2/g,孔容为0.149cc/g,平均孔径为3.059nm。
与现有技术相比,本发明还具有以下优点:
1)、本发明工艺简单,整个制备体系容易构建、操作简便、条件易控、成本低廉、产物组成易控、产物分布均匀、不易团聚、适合于大规模工业生产。
2)、本发明是采用常规溶剂热结合超声原位沉淀法,在制备过程中不添加其它的辅助物质,产生的副产物少,对环境污染较小,是一种环保型制备工艺。
3)、本发明制备的产物具有良好的催化活性,能用在环境污染修复和新能源材料等方面。
附图说明
以下结合实施例和附图对本发明的Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法作出进一步的详述。
图1a是实施例1制备的g-C3N4的XRD图;图1b是实施例1制备的Ag3PO4/g-C3N4的 XRD图。
图2a-b是实施例1制备g-C3N4的场发射扫描电镜(FE-SEM)图(图a、b分别对应低、高倍率图像);图2c-d是实施例1制备的Ag3PO4/g-C3N4复合管状纳米粉体的场发射扫描电镜(FE-SEM)图(图c、d分别对应低、高倍率图像)。
图3a是实施例1制备g-C3N4的TG-DSC图;图3b是实施例1制备的Ag3PO4/g-C3N4复合管状纳米粉体的TG-DSC图。
图4是实施例1制备的Ag3PO4/g-C3N4复合管状纳米粉体的BET图。
图5是实施例2制备的Ag3PO4/g-C3N4复合管状纳米粉体的场发射扫描电镜(FE-SEM) 图。
图6是实施例3制备的Ag3PO4/g-C3N4复合管状纳米粉体的场发射扫描电镜(FE-SEM) 图。
具体实施方式
实施例1
Ag3PO4(20wt%)/g-C3N4复合管状纳米粉体的制备
(1)称取0.554g三聚氯氰、0.189g三聚氰胺和0.2g尿素粉末放入烧杯内,加入15mL的乙腈溶液,搅拌5min后放入反应釜内;设置炉程序使反应釜温度以2℃/min的升温速率升至预定温度180℃并保温36h,然后自然冷却至室温;用去离子水和无水乙醇将固体产物交替洗涤三遍,以除去反应生成的副产物和其它杂质,再用去离子水反复洗涤;将残留的物质于60℃真空干燥12h,得到黄色g-C3N4粉体。
(2)称取0.160g g-C3N4、0.034gNaH2PO4·12H2O和0.049gAgNO3粉末于烧杯内,加入20mL无水乙醇,超声30min;将所得产物依次用去离子水和乙醇各洗涤三遍,再用去离子水反复洗涤,以除去反应生成的副产物和其它杂质;将残留的物质于60℃真空干燥12h,得到黄色Ag3PO4/g-C3N4粉体。
图1a是实施例1制备的g-C3N4管状纳米粉体的XRD图谱,由图可知,g-C3N4在27°左右有一个很强的衍射峰,其与标准卡片JCPDS(PDF#87-1526)进行对比分析可知,在26.504°时出现强度最大的衍射峰,对应的晶面指数为(002);此外,g-C3N4还分别在25.396°、 46.190°和54.576°出现强度较大的衍射峰,其对应的晶面指数分别为(101),(201)和(004)。图1b为实施例1制备Ag3PO4/g-C3N4复合管状纳米粉体XRD图谱,其与标准卡片JCPDS (PDF#84-0510)进行对比分析可知,Ag3PO4在33.302°,36.588°和55.037°时出现三强峰,所对应的晶面指数分别为(210)、(211)和(320)。其中图上在28°左右还出现了一个强度较大的衍射峰,该衍射峰为g-C3N4的衍射峰,因此可以判断出该样品为Ag3PO4负载在g-C3N4上的复合粉体。
图2a-b是实施例1制备的g-C3N4场发射扫描电镜(FE-SEM)图(图a、b分别对应低、高倍率图像)。在低倍镜下,由图2a可知,产物形貌均匀,是由管状颗粒组成,且分散性较好,管长为500-1000nm,管径约为50-100nm;由图2b可知,在高倍镜下,管壁和管口较光滑。
图2c-d是实施例1制备的Ag3PO4(20wt%)/g-C3N4复合管状纳米粉体场发射扫描电镜 (FE-SEM)图(图c、d分别对应低、高倍率图像)。由图可知通过原位超声沉淀,很多细小的颗粒状的磷酸银粘附在管状结构的g-C3N4上;当放大倍数增大到45k倍时,可以清晰地观察到粒径约为50-100nm的磷酸银颗粒均匀的附着在管壁和管口上。选择负载量20%的原因:如果负载量较少,加上实验中可能存在的样品损失,会导致无法负载到g-C3N4组织上;如果负载量较多,那么在反应中生成的Ag3PO4化合物颗粒会发生团聚,分散性较差,无法负载在g-C3N4组织上。
图3a是实施例1制备的g-C3N4的TG-DSC图,由图可知,当温度达到80℃左右,样品质量有较小的下降趋势,损失了1.97%,此过程中的质量损失主要是由于样品洗涤过程中残留的乙醇完全挥发;当温度达到330℃后,样品质量开始急剧减少,在330℃到400℃的温度范围内损失速率最大,这是因为当温度达到330℃后,g-C3N4开始受热分解,当温度达到 400℃时,质量损失达到60.94%;随着温度继续增加,当温度达到700℃时,g-C3N4基本上已完全受热分解,此时质量损失已达到99.11%。图3b是实施例1制备的 Ag3PO4(20wt%)/g-C3N4复合管状纳米粉体的TG-DSC图,从图可以看出,在温度达到80℃时,乙醇完全挥发,此时质量损失达到3.53%;当温度升至330℃到400℃范围时,g-C3N4开始受热分解,此过程中质量损失达到34.96%,随着温度继续升高,g-C3N4持续受热分解,在660℃到700℃的温度范围内,g-C3N4分解速率达到分解过程的峰值,700℃后,样品质量损失达到81.24%,说明此时g-C3N4基本完全受热分解,当温度达到800℃时,最终剩余质量18.21%,说明Ag3PO4/g-C3N4复合粉体中Ag3PO4的质量占比为18.21%,与实验过程中的计算量20%基本一致。
图4是实施例1制备的Ag3PO4(20wt%)/g-C3N4复合管状纳米粉体的BET图。通过N2吸附/脱附实验可以分析样品的比表面积与孔状结构结构。从图中可知,该吸附-脱附线为典型的II型等温线,当相对压力P/P0从0增大到0.8时,整个过程中吸附量缓慢增加,说明在此过程中样品进行的是单层吸附;在相对压力P/P0由0.8增大到1.0的过程中,吸附量急剧增大,呈指数形式增长,说明在相对压力较大时,样品在进行多层吸附的过程中发生了毛细管凝聚,导致吸附量突然增大,在孔被填满后,吸附等温线达到平衡。根据BET计算公式可知该样品的比表面积为22.081m2/g;根据等温线类型可知该样品具有介孔状的微观结构,其平均孔径约为3.059nm。
实施例2
Ag3PO4(10wt%)/g-C3N4复合管状纳米粉体的制备
(1)称取0.554g三聚氯氰、0.189g三聚氰胺和0.2g尿素粉末放入烧杯内,加入15mL的乙腈溶液,搅拌5min后放入反应釜内;设置炉程序使反应釜温度以2℃/min的升温速率升至预定温度180℃并保温36h,然后自然冷却至室温;用去离子水和无水乙醇将固体产物交替洗涤三遍,以除去反应生成的副产物和其它杂质,再用去离子水反复洗涤;将残留的物质于60℃真空干燥12h,得到黄色g-C3N4粉体。
(2)称取0.180g g-C3N4、0.017gNaH2PO4·12H2O和0.024gAgNO3粉末于烧杯内,加入20mL无水乙醇,超声30min;将所得产物依次用去离子水和乙醇各洗涤三遍,再用去离子水反复洗涤,以除去反应生成的副产物和其它杂质;将残留的物质于60℃真空干燥12h,得到黄色Ag3PO4(10wt%)/g-C3N4粉体。
图5是实施例2制备的Ag3PO4(10wt%)/g-C3N4复合管状纳米粉体的场发射扫描电镜 (FE-SEM)图。由图可知,产物形貌较好,是由类似于管状的颗粒组成,分散性较好,且磷酸银颗粒分散在管上。
实施例3
Ag3PO4(5wt%)/g-C3N4复合管状纳米粉体的制备
(1)称取0.554g三聚氯氰、0.189g三聚氰胺和0.2g尿素粉末放入烧杯内,加入15mL的乙腈溶液,搅拌5min后放入反应釜内;设置炉程序使反应釜温度以2℃/min的升温速率升至预定温度180℃并保温36h,然后自然冷却至室温;用去离子水和无水乙醇将固体产物交替洗涤三遍,以除去反应生成的副产物和其它杂质,再用去离子水反复洗涤;将残留的物质于60℃真空干燥12h,得到黄色g-C3N4粉体。
(2)称取0.190g g-C3N4、0.009gNaH2PO4·12H2O和0.012gAgNO3粉末于烧杯内,加入20mL无水乙醇,超声30min;将所得产物依次用去离子水和乙醇各洗涤三遍,再用去离子水反复洗涤,以除去反应生成的副产物和其它杂质;将残留的物质于60℃真空干燥12h,得到黄色Ag3PO4(5wt%)/g-C3N4粉体。
图6是实施例3制备的Ag3PO4(5wt%)/g-C3N4复合管状纳米粉体的场发射扫描电镜(FE-SEM)图。由图可知,产物形貌较好,是由类似于管状的颗粒组成,分散性较好,且磷酸银颗粒分散在管上。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (7)

1.一种Ag3PO4/g-C3N4复合管状纳米粉体的制备方法,其特征在于,采用溶剂热结合超声原位沉淀法,首先将三聚氯氰、三聚氰胺和尿素溶解于溶剂中,搅拌混合均匀;然后将搅拌混合液转入反应釜中,将反应釜盖好并放到恒温鼓风烘箱中进行反应,经后处理得到黄褐色的g-C3N4管状纳米粉体;其次将g-C3N4粉体超声分散于无水乙醇中,再加入磷酸二氢钠和硝酸银超声反应,经后处理得到黄褐色的Ag3PO4/g-C3N4复合管状纳米粉体;
所述Ag3PO4/g-C3N4复合管状纳米粉体由g-C3N4颗粒和磷酸银纳米粒子组成,呈管状的g-C3N4颗粒的管长为500-1000 nm,管径为50-100 nm;粒径为50-100 nm的磷酸银纳米粒子均匀附着在管壁和管口上;Ag3PO4/g-C3N4复合管状纳米粉体的比表面积为22.081 m2/g,孔容为0.149 cc/g,平均孔径为3.059 nm。
2.如权利要求1所述的制备方法,其特征在于,溶剂选自乙腈或丙酮。
3.如权利要求1所述的制备方法,其特征在于,制备前驱体g-C3N4管状纳米粉体时,三聚氯氰、三聚氰胺和尿素之间的质量比为3:1:1~2。
4.如权利要求1所述的制备方法,其特征在于,制备前驱体g-C3N4管状纳米粉体时,溶剂热法反应温度为160~200 ℃,反应时间为32~48 h。
5.如权利要求1所述的制备方法,其特征在于,制备Ag3PO4/g-C3N4复合管状纳米粉体时,g-C3N4、磷酸二氢钠和硝酸银的质量比为1:0.1~0.3:0.1~0.3。
6.如权利要求1所述的制备方法,其特征在于,制备Ag3PO4/g-C3N4复合管状纳米粉体时,超声反应时间为30~60 min。
7.如权利要求1~6任一项所述的制备方法,其特征在于,后处理是将反应产物固液分离后分别使用无水乙醇及去离子水交替洗涤,然后置于恒温干燥箱中进行干燥,恒温干燥箱中干燥温度为20~60 ℃,干燥时间为4~12 h。
CN201810576589.8A 2018-06-06 2018-06-06 一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法 Active CN108772092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810576589.8A CN108772092B (zh) 2018-06-06 2018-06-06 一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810576589.8A CN108772092B (zh) 2018-06-06 2018-06-06 一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN108772092A CN108772092A (zh) 2018-11-09
CN108772092B true CN108772092B (zh) 2020-08-25

Family

ID=64024581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810576589.8A Active CN108772092B (zh) 2018-06-06 2018-06-06 一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN108772092B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368890A (zh) * 2019-07-23 2019-10-25 合肥学院 一种可控制备MoS2/g-C3N4管状异质粉体的方法
CN110871099A (zh) * 2019-11-26 2020-03-10 天津工业大学 一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维的制备方法
CN111054420B (zh) * 2019-12-30 2022-10-28 浙江工商大学 利用介质阻挡放电等离子体一步合成复合光电催化剂的方法、产品及其应用
CN112371152B (zh) * 2019-12-31 2023-12-22 宜风(陕西)环境科技有限公司 具有高效光催化活性的复合光催化材料
CN112138687A (zh) * 2020-09-25 2020-12-29 合肥学院 一种多孔BiOCl/g-C3N4异质纳米粉体的制备方法
CN113117720B (zh) * 2021-04-15 2023-07-07 沈阳工业大学 基于g-C3N4的TiO2晶粒堆积三维贯通孔复合结构及其制备方法
CN115634704B (zh) * 2022-10-21 2024-04-26 江汉大学 一种超分子自组装磷酸铁六棱管状氮化碳的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028428A (zh) * 2013-01-16 2013-04-10 华东理工大学 一种制备Ag3PO4@g-C3N4复合可见光催化材料的方法
CN105883732A (zh) * 2016-04-08 2016-08-24 山东大学 一种氮化碳纳米管及其制备方法
CN107149938A (zh) * 2017-04-21 2017-09-12 华中科技大学 一种基于g‑碳化氮和Ag3PO4的复合光催化剂制备方法及其产品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028428A (zh) * 2013-01-16 2013-04-10 华东理工大学 一种制备Ag3PO4@g-C3N4复合可见光催化材料的方法
CN105883732A (zh) * 2016-04-08 2016-08-24 山东大学 一种氮化碳纳米管及其制备方法
CN107149938A (zh) * 2017-04-21 2017-09-12 华中科技大学 一种基于g‑碳化氮和Ag3PO4的复合光催化剂制备方法及其产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"g-C3N4光催化材料的第一性原理研究";阮林伟;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20151015;第4-5页 *

Also Published As

Publication number Publication date
CN108772092A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
CN108772092B (zh) 一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法
Zhou et al. Semiconductor/boron nitride composites: Synthesis, properties, and photocatalysis applications
Zhou et al. The preparation, and applications of gC 3 N 4/TiO 2 heterojunction catalysts—a review
Xu et al. 3D hierarchical carbon-rich micro-/nanomaterials for energy storage and catalysis
Zhou et al. Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution
Liu et al. Facile synthesis of C-doped hollow spherical g-C3N4 from supramolecular self-assembly for enhanced photoredox water splitting
Guo et al. Structure-controlled three-dimensional BiOI/MoS2 microspheres for boosting visible-light photocatalytic degradation of tetracycline
Kallawar et al. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges
Jiang et al. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production
Liu et al. Tailored fabrication of thoroughly mesoporous BiVO4 nanofibers and their visible-light photocatalytic activities
Boyjoo et al. Synthesis and applications of porous non-silica metal oxide submicrospheres
CN103787348B (zh) 一种高岭土/1-丁基-3-甲基溴化咪唑插层纳米复合材料的制备方法
CN103182315B (zh) BiOBr0.2I0.8/石墨烯复合可见光催化剂及其制备方法
CN105110315A (zh) 一种以金属有机骨架化合物为模板合成双壳层碳纳米中空多面体的方法
Li et al. MoS2 with structure tuned photocatalytic ability for degradation of methylene blue
Dai et al. A novel nano-fibriform C-modified niobium pentoxide by using cellulose templates with highly visible-light photocatalytic performance
CN101249959A (zh) 一种具有大比表面积的碳/碳复合纳米管材料及其制备方法
Rahman et al. Detailed photocatalytic study of alkaline titanates and its application for the degradation of methylene blue (MB) under solar irradiation
Ma et al. Bridging green light photocatalysis over hierarchical Nb 2 O 5 for the selective aerobic oxidation of sulfides
Venkataramanan et al. Green synthesis of titania nanowire composites on natural cellulose fibers
Pei et al. Enhancing visible-light degradation performance of g-C3N4 on organic pollutants by constructing heterojunctions via combining tubular g-C3N4 with Bi2O3 nanosheets
Zhou et al. Template-free synthesis and photocatalytic activity of hierarchical hollow ZnO microspheres composed of radially aligned nanorods
KR101100745B1 (ko) 마이크로웨이브-폴리올 합성법을 이용한 전이금속 산화물및 탄소나노튜브 복합체의 제조방법
Liu et al. Microwave-assisted hydrothermal synthesis of cellulose/ZnO composites and its thermal transformation to ZnO/carbon composites
Tian et al. Facile template-free fabrication of different micro/nanostructured In2O3 for photocatalytic H2 production from glucose solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant