CN112795832B - 一种稀土铁硼基磁制冷材料及其制备方法与应用 - Google Patents

一种稀土铁硼基磁制冷材料及其制备方法与应用 Download PDF

Info

Publication number
CN112795832B
CN112795832B CN202011551726.6A CN202011551726A CN112795832B CN 112795832 B CN112795832 B CN 112795832B CN 202011551726 A CN202011551726 A CN 202011551726A CN 112795832 B CN112795832 B CN 112795832B
Authority
CN
China
Prior art keywords
magnetic
under
rare earth
equal
kgk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011551726.6A
Other languages
English (en)
Other versions
CN112795832A (zh
Inventor
李领伟
董晓石
马志攀
张振乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202011551726.6A priority Critical patent/CN112795832B/zh
Publication of CN112795832A publication Critical patent/CN112795832A/zh
Application granted granted Critical
Publication of CN112795832B publication Critical patent/CN112795832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/066Cooling mixtures; De-icing compositions
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种稀土铁硼基磁制冷材料及其制备方法与应用,其特征在于化学通式为:La1‑xRExFe12‑yTyB6;为SrNi12B6型晶体结构,属于

Description

一种稀土铁硼基磁制冷材料及其制备方法与应用
技术领域
本发明属于磁学材料技术领域,特别涉及一种稀土铁硼基磁制冷材料及其制备方法与其在磁制冷机中的应用。
背景技术
磁制冷是一种利用磁性材料的磁热效应(即magnetocaloric effect,又称磁卡效应或磁熵效应)实现制冷的一种无污染的制冷方式。磁制冷的原理是利用外加磁场而使磁工质的磁矩发生有序、无序的变化(相变)引起磁体吸热和放热作用而进行制冷循环。通过磁制冷工质进入高磁场区域,放出热量到周围环境;进入零/低磁场区域,温度降低,吸收热量达到制冷的目的;如此反复循环可连续制冷。与传统的制冷技术相比具有效率高、单元体积小、运行平稳、无噪音等优点。特别是相比较于氟利昂压缩制冷带来的种种环境问题,磁制冷技术是完全绿色无环境污染的制冷方式。磁制冷技术被认为是未来可能取代传统的气体压缩制冷,成为最有发展前景的制冷技术之一。而取决于这一技术能否走出实验室,走向商用化的关键之一是寻找不同温区的磁制冷材料。目前一方面高性能磁制冷材料相对较少,另一方面目前报道的高性能磁制冷材料,特别是中低温区磁制冷材料,一般均含有重稀土元素,由于重稀土元素价格昂贵且含量稀少,而限制了该类材料的实际应用。开发高丰度稀土低成本基磁性材料是稀土材料可持续发展战略至关重要。
根据研究,轻稀土La1-xRExFe12-yTyB6材料在各自磁转变温度附近部级具有较大的磁熵变。是一种优异的磁制冷材料,在磁制冷中具有较好的应用前景。
发明内容
本发明的目的是针对现有技术的不足,提供一种稀土铁硼基磁制冷材料及其制备方法与应用。
本发明一种稀土铁硼基磁制冷材料化学通式为:La1-xRExFe12-yTyB6;其中RE为轻稀土Pr、Nd、Sm中的一者或两者之间的混合,T为过渡金属Co、Ni、Mn、Cu、Al、Cr、Zn中的一种或者多种的混合,0.03≤x≤0.5,0≤y≤3;
所述的La1-xRExFe12-yTyB6材料为SrNi12B6型晶体结构,属于
Figure BDA0002857891310000011
空间群,在0~5T的磁场变化下,等温磁熵变为10.2-16.8J/kgK;在0~7T的磁场变化下,等温磁熵变为12.5-20.3J/kgK。
所述的稀土铁硼基磁制冷材料的制备方法,其特征在于包括以下步骤:
步骤一:按照化学式La1-xRExFe12-yTyB6称量La、RE、Fe、T、B原料;
步骤二:在惰性气体保护或真空下,采用电弧放电、等离子放电、感应或电阻加热的方式将步骤一中的原料加热到熔化并保持1-3分钟;
步骤三:在惰性气体保护或真空下,将上一步骤所得产物翻转后,采用电弧、感应或电阻加热的方式再次加热至熔化并保持1-3分钟,此步骤可重复3-5次;
步骤四:将所得产物加热至800-1250摄氏度真空或惰性气体下保护下退火70-480小时,得到均匀的La1-xRExFe12-yTyB6磁制冷材料。
一种稀土铁硼基磁制冷材料在磁制冷机中的应用。
本发明相对现有技术具有的效果:本发明稀土铁硼材料采用常规技术手段制备,该方法工艺简单、原料价格低廉,适用于工业化生产与应用。
具体实施方式
下面对本发明做进一步的分析,但具体实施案例并不对本发明作任何限定。
实施例1:
本实施例制备化学式La0.9Pr0.1Fe12B6的磁制冷材料,其制备方法按以下具体步骤进行:
步骤一:按摩尔比La:Pr:Fe:B=0.9:0.1:12:6比例,分别称量纯度为99.9%的La、Pr、Fe、B原料;
步骤二:将称好的原料放入水冷坩埚中,在Ar气体保护下,采用电弧熔炼的原料加热到熔化并保持1分钟;
步骤三:在Ar气体保护下,将步骤二所得产物翻转后,再次利用电弧熔炼加热至熔化,并保持1分钟,重复此步骤5次;
步骤四:将所得得到La0.9Pr0.1Fe12B6锭子加热到1200摄氏度真空下退火80小时,获得多晶块体。
利用XRD和磁性测定表明La0.9Pr0.1Fe12B6材料为SrNi12B6型晶体结构,属于
Figure BDA0002857891310000021
空间群,在0~5T的磁场变化下,等温磁熵变为10.8J/kgK;在0~7T的磁场变化下,等温磁熵变为13.5J/kgK。
实施例2:
本实施例制备化学式La0.8Nd0.2Fe12B6的磁制冷材料,其制备方法按以下具体步骤进行:
步骤一:按摩尔比La:Nd:Fe:B=0.8:0.2:12:6比例,分别称量纯度为99.9%的La、Nd、Fe、B原料;
步骤二:将称好的原料放入水冷坩埚中,在Ar气体保护下,采用感应熔炼的原料加热到熔化并保持2分钟;
步骤三:在Ar气体保护下,将步骤二所得产物翻转后,再次利用感应熔炼加热至熔化,并保持1.5分钟,重复此步骤3次;
步骤四:将所得得到La0.8Nd0.2Fe12B6锭子加热到1100摄氏度真空下退火120小时,获得多晶块体。
利用XRD和磁性测定表明La0.8Nd0.2Fe12B6材料为SrNi12B6型晶体结构,属于
Figure BDA0002857891310000031
空间群,在0~5T的磁场变化下,等温磁熵变为11.2J/kgK;在0~7T的磁场变化下,等温磁熵变为14.3J/kgK。
实施例3:
本实施例制备化学式La0.6Pr0.3Nd0.1Fe12B6的磁制冷材料,其制备方法按以下具体步骤进行:
步骤一:按摩尔比La:Pr:Nd:Fe:B=0.6:0.3:0.1:12:6比例,分别称量纯度为99.9%的La、Pr、Nd、Fe、B原料;
步骤二:将称好的原料放入水冷坩埚中,在真空下,采用电阻丝熔炼的原料加热到熔化并保持3分钟;
步骤三:在Ar气体保护下,将步骤二所得产物翻转后,再次利用感应熔炼加热至熔化,并保持3分钟,重复此步骤3次;
步骤四:将所得得到La0.6Pr0.3Nd0.1Fe12B6锭子加热到800摄氏度真空下退火220小时,获得多晶块体。
利用XRD和磁性测定表明La0.6Pr0.3Nd0.1Fe12B6材料为SrNi12B6型晶体结构,属于
Figure BDA0002857891310000033
空间群,在0~5T的磁场变化下,等温磁熵变为11.2J/kgK;在0~7T的磁场变化下,等温磁熵变为13.3J/kgK。
实施例4:
本实施例制备化学式La0.85Pr0.15Fe11CoB6的磁制冷材料,其制备方法按以下具体步骤进行:
步骤一:按摩尔比La:Pr:Fe:Co:B=0.85:0.15:11:1:6比例,分别称量纯度为99.9%的La、Pr、Fe、Co、B原料;
步骤二:将称好的原料放入水冷坩埚中,在真空下,采用电弧熔炼的原料加热到熔化并保持2分钟;
步骤三:在Ar气体保护下,将步骤二所得产物翻转后,再次利用感应熔炼加热至熔化,并保持2分钟,重复此步骤4次;
步骤四:将所得得到La0.85Pr0.15Fe11CoB6锭子加热到900摄氏度真空下退火300小时,获得多晶块体。
利用XRD和磁性测定表明La0.85Pr0.15Fe11CoB6材料为SrNi12B6型晶体结构,属于
Figure BDA0002857891310000032
空间群,在0~5T的磁场变化下,等温磁熵变为15.4J/kgK;在0~7T的磁场变化下,等温磁熵变为19.2J/kgK。
实施例5:
本实施例制备化学式La0.6Pr0.2Sm0.2Fe10Ni2B6的磁制冷材料,其制备方法按以下具体步骤进行:
步骤一:按摩尔比La:Pr:Sm:Fe:Ni:B=0.6:0.2:0.2:10:2:6比例,分别称量纯度为99.9%的La、Pr、Nd、Fe、Ni、B原料;
步骤二:将称好的原料放入水冷坩埚中,在真空下,采用感应熔炼的原料加热到熔化并保持2.5分钟;
步骤三:在Ar气体保护下,将步骤二所得产物翻转后,再次利用感应熔炼加热至熔化,并保持2.5分钟,重复此步骤4次;
步骤四:将所得得到La0.6Pr0.2Sm0.2Fe10Ni2B6锭子加热到1100摄氏度真空下退火320小时,获得多晶块体。
利用XRD和磁性测定表明La0.6Pr0.2Sm0.2Fe10Ni2B6材料为SrNi12B6型晶体结构,属于
Figure BDA0002857891310000041
空间群,在0~5T的磁场变化下,等温磁熵变为13.3J/kgK;在0~7T的磁场变化下,等温磁熵变为16.2J/kgK。
实施例6:
本实施例制备化学式La0.6Nd0.2Sm0.2Fe10CuMnB6的磁制冷材料,其制备方法按以下具体步骤进行:
步骤一:按摩尔比La:Nd:Sm:Fe:Cu:Mn:B=0.6:0.2:0.2:10:1:1:6比例,分别称量纯度为99.9%的La、Pr、Nd、Fe、Ni、B原料;
步骤二:将称好的原料放入水冷坩埚中,在真空下,采用感应熔炼的原料加热到熔化并保持2.5分钟;
步骤三:在Ar气体保护下,将步骤二所得产物翻转后,再次利用感应熔炼加热至熔化,并保持2.5分钟,重复此步骤4次;
步骤四:将所得得到La0.6Nd0.2Sm0.2Fe10CuMnB6锭子加热到1150摄氏度真空下退火400小时,获得多晶块体。
利用XRD和磁性测定表明La0.6Nd0.2Sm0.2Fe10CuMnB6材料为SrNi12B6型晶体结构,属于
Figure BDA0002857891310000042
空间群,在0~5T的磁场变化下,等温磁熵变为12.1J/kgK;在0~7T的磁场变化下,等温磁熵变为14.2J/kgK。

Claims (4)

1.一种稀土铁硼基磁制冷材料,其特征在于:化学通式为:La1-xRExFe12-yTyB6;其中RE为轻稀土Pr、Nd、Sm中的一者或两者之间的混合,T为过渡金属Co、Ni、Mn、Cu、Al、Cr、Zn中的一种或者多种的混合,0.03≤x≤0.5,0≤y≤3。
2.根据权利要求1所述的一种稀土铁硼基磁制冷材料,其特征在于:所述的La1-xRExFe12-yTyB6材料为SrNi12B6型晶体结构,属于
Figure FDA0002857891300000011
空间群,在0~5T的磁场变化下,等温磁熵变为10.2-16.8J/kgK;在0~7T的磁场变化下,等温磁熵变为12.5-20.3J/kgK。
3.根据权利要求1所述的一种稀土铁硼基磁制冷材料的制备方法,其特征在于:包括以下步骤:
步骤一:按照化学式La1-xRExFe12-yTyB6称量La、RE、Fe、T、B原料;
步骤二:在惰性气体保护或真空下,采用电弧放电、等离子放电、感应或电阻加热的方式将步骤一中的原料加热到熔化并保持1-3分钟;
步骤三:在惰性气体保护或真空下,将上一步骤所得产物翻转后,采用电弧、感应或电阻加热的方式再次加热至熔化并保持1-3分钟,此步骤重复3-5次;
步骤四:将所得产物加热至800-1250摄氏度真空或惰性气体下保护下退火70-480小时,得到均匀的La1-xRExFe12-yTyB6磁制冷材料。
4.根据权利要求1所述的一种稀土铁硼基磁制冷材料在磁制冷机中的应用。
CN202011551726.6A 2020-12-24 2020-12-24 一种稀土铁硼基磁制冷材料及其制备方法与应用 Active CN112795832B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011551726.6A CN112795832B (zh) 2020-12-24 2020-12-24 一种稀土铁硼基磁制冷材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011551726.6A CN112795832B (zh) 2020-12-24 2020-12-24 一种稀土铁硼基磁制冷材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN112795832A CN112795832A (zh) 2021-05-14
CN112795832B true CN112795832B (zh) 2022-01-14

Family

ID=75805136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011551726.6A Active CN112795832B (zh) 2020-12-24 2020-12-24 一种稀土铁硼基磁制冷材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN112795832B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444966A (zh) * 2021-05-17 2021-09-28 上海大学 一种混合稀土铁硼磁制冷材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236096C (zh) * 2002-03-26 2006-01-11 中国科学院物理研究所 具有大磁熵变的稀土-铁基化合物磁致冷材料及其制备方法
CN103059815B (zh) * 2011-10-24 2014-12-10 中国科学院物理研究所 小滞后损耗的一级相变La(Fe,Si)13基磁热效应材料及其制备方法和用途
CN110551941A (zh) * 2019-08-30 2019-12-10 西安交通大学 一种混合稀土基制冷材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112795832A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
CN104694813A (zh) LaFeSi基磁制冷材料及其制备方法与应用
CN102453466B (zh) 用于磁制冷的稀土-铜-铝材料及其制备方法
CN100501882C (zh) 一种高温低磁场大磁熵材料化合物及其制备方法
CN102383018B (zh) 一种稀土-铬-硅基磁制冷材料的制备方法
CN112795832B (zh) 一种稀土铁硼基磁制冷材料及其制备方法与应用
CN108330372B (zh) 一种Ni-Co-Mn-Sn磁制冷材料及其制备方法
CN101768677B (zh) 高性能室温复相磁致冷材料的制备方法
CN110616386B (zh) 一种高磁热效应稀土基高熵非晶合金及其制备方法
CN105671396A (zh) 用于室温磁制冷的铽-锗-锑材料及其制备方法
CN106636843A (zh) 一种可用作磁制冷材料的MnNiSi基磁性合金
CN102703037A (zh) 用于磁制冷的稀土-铁-硅材料及其制备方法和用途
CN101996720A (zh) 用于磁制冷的稀土-镓材料及其制备方法
CN102465225A (zh) 一种磁制冷材料及其制备方法和用途
CN102383017B (zh) 一种铕基ThCr2Si2结构的低温磁制冷材料的制备方法
CN103334043A (zh) 一种可用作磁制冷材料的磁性合金
CN102513536A (zh) 一种磁制冷材料的制备工艺
CN109266951B (zh) 一种LaFeSiCu磁制冷合金及其制备方法
CN105861860A (zh) 一种铽-锗-铋材料、制备方法及其应用
CN115323248B (zh) 一种具有宽制冷温区的高熵掺杂镧铁硅基磁制冷材料及其制备方法
CN113444966A (zh) 一种混合稀土铁硼磁制冷材料及其制备方法
CN110172631B (zh) 钴锰锡基合金材料及其制备方法
CN103468224A (zh) 一种稀土RPdIn材料在低温磁制冷中的应用
CN103205590A (zh) 磁制冷材料的一种制备工艺
CN113257507B (zh) 一种低温磁制冷用稀土RECrWO6氧化物材料及制备方法
CN102978422A (zh) 具有大磁热效应的稀土-镍-硅材料的制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant