CN112745115B - 低磁场域下高应变灵敏度的磁致伸缩材料及其制备方法 - Google Patents

低磁场域下高应变灵敏度的磁致伸缩材料及其制备方法 Download PDF

Info

Publication number
CN112745115B
CN112745115B CN202110031492.0A CN202110031492A CN112745115B CN 112745115 B CN112745115 B CN 112745115B CN 202110031492 A CN202110031492 A CN 202110031492A CN 112745115 B CN112745115 B CN 112745115B
Authority
CN
China
Prior art keywords
magnetic field
strain sensitivity
zro
low magnetic
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110031492.0A
Other languages
English (en)
Other versions
CN112745115A (zh
Inventor
李元勋
王桂娟
陆永成
彭睿
苏桦
张仕俊
徐雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mianyang Beidou Electronic Co ltd
University of Electronic Science and Technology of China
Original Assignee
Mianyang Beidou Electronic Co ltd
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mianyang Beidou Electronic Co ltd, University of Electronic Science and Technology of China filed Critical Mianyang Beidou Electronic Co ltd
Priority to CN202110031492.0A priority Critical patent/CN112745115B/zh
Publication of CN112745115A publication Critical patent/CN112745115A/zh
Application granted granted Critical
Publication of CN112745115B publication Critical patent/CN112745115B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明属于电子材料技术领域,具体涉及一种低磁场域下高应变灵敏度的磁致伸缩材料及其制备方法。本发明在具有高磁致伸缩系数的钴铁氧体的基础上,首次采用Mg2+和Zr4+复合取代CoFe2O4,通过取代元素的选取以及配方比例选择,实现不同占位,其中Mg2+倾向于同时占据四面体位点和八面体位点,Zr4+倾向于取代四面体位点,在两个位点的共同取代的作用下实现了钴铁氧体在低磁场域下的3.3×10‑9A‑1m~4.3×10‑9A‑1m的应变灵敏度,极大的提升了当前低磁场域下钴铁氧体的应变灵敏度,使其具有更好的应用前景,从而为磁传感器在更低磁场下工作的可能提供了基础。

Description

低磁场域下高应变灵敏度的磁致伸缩材料及其制备方法
技术领域
本发明属于电子材料技术领域,具体涉及一种低磁场域下高应变灵敏度的磁致伸缩材料及其制备方法。
背景技术
磁致伸缩材料广泛应用在磁致伸缩传感器和执行器,线性电机,振动和噪声控制,机械扭矩传感器,超声波发生器等。
应用较为广泛的为稀土基磁致伸缩材料(Terfenol-D),但由于其易腐蚀,价格昂贵等原因,渐渐被Ga-Fe合金(Galfenol)及其衍生物所代替。虽然Galfenol基的材料在低磁场下表现出较好的磁致伸缩性能,但其电阻率较低,应用在中等低频率下时产生的涡流损耗较高,从而大大限制了其应用范围。
CoFe2O4的单晶(λ~600ppm)和多晶(λ~150-400ppm)两种形式都具有显著的磁致伸缩性能且高电阻率的特性,从而被研究用作多铁磁电复合材料中的磁致伸缩组件,以实现更好的磁电系数(αME),进而应用于磁场传感器,无线供电系统,双电场和磁场可调装置等。但CoFe2O4在低磁场域下的应变灵敏度[dλ/dH]较低,为了进一步扩大其应用范围,仍需要对其应变灵敏度作进一步提高。
不少人针对钴铁氧体属于混合型尖晶石铁氧体这一特点对其应变灵敏度进行了改性研究,如Vinitha Reddy Monaji等人通过固相合成法制备了Co1+xZrxFe2-2xO4,发现Zr4+倾向于取代四面体Fe3+,其应变灵敏度提高到3.32×10-9A-1m。P.N.Anantharamaiah和P.A.Joy合成了CoMgxFe2-xO4(0-0.2),发现Mg2+对四面体位点和八面体位点的Fe3+都有取代倾向,其CoMgxFe2-xO4在低磁场下的应变灵敏度有一定的改善,其中x=0.05的样品具有最佳的应变灵敏度(2.05×10-9A-1m)。虽然Mg2+和Zr4+取代对CoFe2O4的应变灵敏度有一定程度上的改善,但其提升有限,仍没有很好地解决低磁场域下应变灵敏度不佳的问题。
发明内容
针对上述存在的问题或不足,为解决现有钴铁氧体作为磁致伸缩材料在低磁场域下应变灵敏度不佳的问题,本发明提供了一种低磁场域下高应变灵敏度的磁致伸缩材料及其制备方法,利用不同离子取代占位的不同,更好的提高材料在低磁场域下的应变灵敏度。
一种低磁场域下高应变灵敏度的磁致伸缩材料,在钴铁氧体的基础上,利用Mg2+和Zr4+取代不同位置的Fe3+,其化学通式为CoMgxZryFe2-x-yO4,其中x=0.025~0.05,y=0.02~0.06;应变灵敏度为3.3×10-9A-1m~4.3×10-9A-1m。采用MgO:ZrO2:Co2O3:Fe2O3为原料,按摩尔比MgO:ZrO2:Co2O3:Fe2O3为0.05:0.02~0.06:0.5:0.945~0.965,其中ZrO2与Fe2O3的摩尔比此消彼长,通过固相法制得;固相法中预烧温度为1000℃~1100℃,烧结温度为1250℃~1300℃。
上述低磁场域下高应变灵敏度的磁致伸缩材料,其制备方法包括以下步骤:
步骤1、按摩尔比将原料MgO:ZrO2:Co2O3:Fe2O3为0.05:0.02~0.06:0.5:0.945~0.965,其中ZrO2与Fe2O3的摩尔比此消彼长,进行配料备用。
步骤2、将步骤1所备原料按照物料:去离子水:球的质量比为1:1:1.2~1.5,球磨机转速250r/min~300r/min,球磨时间为6h~8h,进行第一次球磨,然后在80℃-120℃下烘干后过40-120目筛网。
步骤3、将步骤2所得球磨粉料在1000℃~1100℃进行预烧,保温时间2h~3h,升温速率为1℃/min~2℃/min。
步骤4、将步骤3所得产物按照物料:去离子水:球的质量比1:1:1.2~1.5,球磨机转速250r/min~300r/min,球磨时间8h~10h进行第二次球磨;然后在80℃-120℃下烘干,烘干后添加质量百分比为2~5%的PVA溶液作为粘结剂造粒,8MPa~10MPa压制成型,保压时间为30s~60s。
步骤5、将步骤4所得样品在1250℃~1300℃烧结,升温速率为1℃~2℃/min,保温时间为4h~6h,待其自然冷却即可得到低磁场域下具有高应变灵敏度的磁致伸缩材料CoMgxZryFe2-x-yO4
本发明在具有高磁致伸缩系数的钴铁氧体的基础上,首次采用Mg2+和Zr4+复合取代CoFe2O4,通过取代元素的选取以及配方比例选择,实现不同占位,其中Mg2+倾向于同时占据四面体位点和八面体位点,Zr4+倾向于取代四面体位点,在两个位点的共同取代的作用下实现了钴铁氧体在低磁场域下的3.3×10-9A-1m~4.3×10-9A-1m的应变灵敏度,极大的提升了当前低磁场域下钴铁氧体的应变灵敏度,使其具有更好的应用前景。
综上所述,本发明提高了磁致伸缩材料在低磁场域下的应变灵敏度,从而为磁传感器在更低磁场下工作的可能提供了基础。
附图说明
图1为固相反应法制备材料的工艺流程图;
图2为P.N.Anantharamaiah和P.A.Joy报道的钴铁氧体中Fe3+被Mg2+取代的样品的应变灵敏度;
图3为Vinitha Reddy Monaji等人报道的钴铁氧体中Fe3+被Zr4+取代的样品的应变灵敏度;
图4为实施例钴铁氧体中Fe3+被Mg2+和Zr4+同时取代的样品的应变灵敏度,其中y指代Zr4+的摩尔比。
具体实施方式
下面结合附图和实施例对本发明做进一步的详细说明。
实施例1:
(1)采用下述原料组成成分及其含量配置材料CoMg0.05Zr0.02Fe1.93O4
表1:实施例1配方表(单位:mol)
MgO ZrO<sub>2</sub> Co<sub>2</sub>O<sub>3</sub> Fe<sub>2</sub>O<sub>3</sub>
0.05 0.02 0.5 0.965
(2)按照表1配方比例计算称取原料,将原料经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到在低磁场域下具有高应变灵敏度的材料,其中预烧温度为1100℃,成型压力为10MPa,保压时间为30s,烧结温度为1300℃,升温速率和降温速率为2℃/min,保温时间4h,温度降为700℃后自然冷却。
实施例2:
(1)采用下述原料组成成分及其含量配置材料CoMg0.05Zr0.04Fe1.91O4
表2:实施例2配方表(单位:mol)
MgO ZrO<sub>2</sub> Co<sub>2</sub>O<sub>3</sub> Fe<sub>2</sub>O<sub>3</sub>
0.05 0.04 0.5 0.955
(2)按照表2配方比例计算称取原料,将原料经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到在低磁场域下具有高应变灵敏度的材料,其中预烧温度为1100℃,成型压力为10MPa,保压时间为30s,烧结温度为1300℃,升温速率和降温速率为2℃/min,保温时间4h,温度降为700℃后自然冷却。
实施例3:
(1)采用下述原料组成成分及其含量配置材料CoMg0.05Zr0.06Fe1.89O4
表3:实施例3配方表(单位:mol)
MgO ZrO<sub>2</sub> Co<sub>2</sub>O<sub>3</sub> Fe<sub>2</sub>O<sub>3</sub>
0.05 0.06 0.5 0.945
(2)按照表3配方比例计算称取原料,将原料经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到在低磁场域下具有高应变灵敏度的材料,其中预烧温度为1100℃,成型压力为10MPa,保压时间为30s,烧结温度为1300℃,升温速率和降温速率为2℃/min,保温时间4h,温度降为700℃后自然冷却。
对上述3个实施例制备的材料进行测试,得到的结果如图4所示。由图4可以看出,对于Mg2+和Zr4+复合取代CoFe2O4,不同配比可以极大的提高钴铁氧体在低磁场域下的应变灵敏度(3.3×10-9A-1m~4.3×10-9A-1m),为磁传感器在更低磁场下工作的可能提供了基础。
综上可见,本发明在具有高磁致伸缩系数的钴铁氧体的基础上,首次采用Mg2+和Zr4+复合取代CoFe2O4,通过取代元素的选取以及配方比例选择,实现不同占位,其中Mg2+倾向于同时占据四面体位点和八面体位点,Zr4+倾向于取代四面体位点,在两个位点的共同取代的作用下实现了钴铁氧体在低磁场域下的3.3×10-9A-1m~4.3×10-9A-1m的应变灵敏度,极大的提升了当前低磁场域下钴铁氧体的应变灵敏度,使其具有更好的应用前景。

Claims (3)

1.一种低磁场域下高应变灵敏度的磁致伸缩材料,其特征在于:
化学通式为CoMgxZryFe2-x-yO4,其中x=0.05,y=0.02~0.06;应变灵敏度为3.3×10-9A-1m~4.3×10-9A-1m;
采用MgO:ZrO2:Co2O3:Fe2O3为原料,按摩尔比MgO:ZrO2:Co2O3:Fe2O3为0.05:0.02~0.06:0.5:0.945~0.965,其中ZrO2 与Fe2O3的摩尔比此消彼长,通过固相法制得;固相法中预烧温度为1000℃~1100℃,烧结温度为1250℃~1300℃。
2.如权利要求1所述低磁场域下高应变灵敏度的磁致伸缩材料,其特征在于:
步骤1、按摩尔比将原料MgO:ZrO2:Co2O3:Fe2O3为0.05:0.02~0.06:0.5:0.945~0.965进行配料备用,其中ZrO2 与Fe2O3的摩尔比此消彼长;
步骤2、将步骤1所备原料按照物料:去离子水:球的质量比为1:1:1.2~1.5,球磨机转速250r/min~300r/min,球磨时间为6h~8h,进行第一次球磨,然后在80℃-120℃下烘干后过40-120目筛网;
步骤3、将步骤2所得球磨粉料在1000℃~1100℃进行预烧,保温时间2h~3h,升温速率为1℃/min~2℃/min;
步骤4、将步骤3所得产物按照物料:去离子水:球的质量比1:1:1.2~1.5,球磨机转速250r/min~300r/min,球磨时间8h~10h进行第二次球磨;然后在80℃-120℃下烘干,烘干后添加质量百分比为2~5%的PVA溶液作为粘结剂造粒,8MPa~10MPa压制成型,保压时间为30s~60s;
步骤5、将步骤4所得样品在1250℃~1300℃烧结,升温速率为1℃~2℃/min,保温时间为4h~6h,待其自然冷却即可得到低磁场域下具有高应变灵敏度的磁致伸缩材料CoMgxZryFe2-x-yO42。
3.如权利要求2所述低磁场域下高应变灵敏度的磁致伸缩材料,其特征在于:所述步骤5烧结后还有一个降温过程,以降温速率1℃~2℃/min降温至700℃后,才自然冷却。
CN202110031492.0A 2021-01-11 2021-01-11 低磁场域下高应变灵敏度的磁致伸缩材料及其制备方法 Active CN112745115B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110031492.0A CN112745115B (zh) 2021-01-11 2021-01-11 低磁场域下高应变灵敏度的磁致伸缩材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110031492.0A CN112745115B (zh) 2021-01-11 2021-01-11 低磁场域下高应变灵敏度的磁致伸缩材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112745115A CN112745115A (zh) 2021-05-04
CN112745115B true CN112745115B (zh) 2021-11-02

Family

ID=75650655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110031492.0A Active CN112745115B (zh) 2021-01-11 2021-01-11 低磁场域下高应变灵敏度的磁致伸缩材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112745115B (zh)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686347A (en) * 1970-04-16 1972-08-22 Petro Tex Corp Oxidative dehydrogenation of organic compounds
CN101764222B (zh) * 2009-12-22 2011-11-09 深圳市振华新材料股份有限公司 高锰多晶正极材料及其制备方法、动力锂离子电池
US8609062B2 (en) * 2010-12-07 2013-12-17 Skyworks Solutions, Inc. Specialty materials processing techniques for enhanced resonant frequency hexaferrite materials for antenna applications and other electronic devices
CN102826842A (zh) * 2012-09-18 2012-12-19 天津大学 具有磁介电效应的多铁性复合材料及其制备方法
CN103389477B (zh) * 2013-07-19 2015-09-09 北京信息科技大学 一种利用短腔光纤激光器测量磁场的磁感应强度的方法
JP2015205805A (ja) * 2014-04-11 2015-11-19 日本特殊陶業株式会社 無鉛圧電磁器組成物、それを用いた圧電素子、及び、無鉛圧電磁器組成物の製造方法
KR20160076700A (ko) * 2014-12-23 2016-07-01 한국기계연구원 전력선 구조진단 모니터링을 위한 자기전기 복합재료 적층체를 이용한 에너지 하베스팅 소자
CN105753467B (zh) * 2016-03-07 2018-11-06 中国科学院福建物质结构研究所 一种三元材料、其制备方法及应用
CN106747392B (zh) * 2017-03-03 2019-12-06 中国地质大学(北京) 一种Ho/Co复合掺杂Ni-Zn铁氧体陶瓷的制备方法
CN106938927A (zh) * 2017-04-05 2017-07-11 河南师范大学 利用废旧锂离子电池掺杂镍制备镍钴铁氧体磁致伸缩材料的方法
CN107331913A (zh) * 2017-07-17 2017-11-07 河南师范大学 利用废旧锂离子电池制备双稀土掺杂钴铁氧体磁致伸缩材料的方法
CN107331914A (zh) * 2017-07-17 2017-11-07 河南师范大学 利用废旧锂离子电池制备过渡态金属掺杂稀土钴铁氧体磁致伸缩材料的方法
CN107857581B (zh) * 2017-10-18 2021-02-05 电子科技大学 一种低温烧结NiCuZn铁氧体材料及其制备方法
CN109485400A (zh) * 2019-01-17 2019-03-19 绵阳北斗电子有限公司 一种铁氧体烧结用保护膜的制作工艺
CN109994315B (zh) * 2019-02-19 2021-02-19 湖北大学 由磁性纳米纤维铁电薄膜组合的磁电复合材料及其制备方法
CN110156449B (zh) * 2019-05-16 2021-09-21 东莞顺络电子有限公司 一种高可靠性铁氧体材料及其制作方法

Also Published As

Publication number Publication date
CN112745115A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
KR101228689B1 (ko) 산화물 자성 재료 및 그의 제조 방법, 및 페라이트 소결자석 및 그의 제조 방법
Huang et al. Microstructure and magnetic properties of Ca-substituted M-type SrLaCo hexagonal ferrites
Kim et al. Thermoelectric properties of La3+ and Ce3+ co-doped CaMnO3 prepared by tape casting
CN101640090B (zh) 一种高性能掺杂镍锌系铁氧体软磁材料及制备方法
US11945753B2 (en) Low loss power ferrites and method of manufacture
CN101704669B (zh) 具有多铁性能的层状结构钛铁钴酸镧铋陶瓷及其制备方法
CN105601264A (zh) 一种高致密化多铁性(1-y)BiFeO3-yBi1-xRxFeO3复合陶瓷的制备方法
CN101734724B (zh) 一种铁磁性铁酸铋及其合成方法
CN112745115B (zh) 低磁场域下高应变灵敏度的磁致伸缩材料及其制备方法
CN105523760B (zh) 一种稳定反铁电性的低介电损耗的铌酸钠陶瓷材料的制备方法
CN102127396B (zh) 高压制备磁致冷材料化合物及其制备方法
Botta et al. Two alternative synthesis routes for MnZn ferrites using mechanochemical treatments
KR20150048256A (ko) 자성 분말, 그 제조 방법, 및 이를 포함하는 자석
CN109206131A (zh) 一种稀土掺杂的m型锶铁氧体磁性材料及其制备方法
Ni et al. Enhanced magnetic and dielectric properties of NiFe2O4 ferrite ceramics co-substituted by (Li1+, Zn2+ and La3+)
CN101173167A (zh) 热致变色可变发射率锰酸镧材料的制备方法
JP2004363576A (ja) 熱電材料
CN107253859A (zh) 高发光热稳定性的Eu‑Bi共掺杂钨青铜结构发光铁电陶瓷材料及其制备方法
KR100859418B1 (ko) 초거대 자기 저항을 갖는 망간 산화물 제조방법
CN109678491A (zh) 一种Y元素掺杂的Aurivillius相结构的钛铁酸铋多铁性陶瓷材料及其制备方法
CN108129147A (zh) 具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法
CN109851350A (zh) 一种低介高q锂镁磷系介质材料及其制备方法
CN108794004A (zh) 一种镧钕掺杂镍酸盐陶瓷及其制备方法和应用
JP2004040053A (ja) 磁性体複合材料及び高周波フェライト材料の製造方法
CN108997008A (zh) 一种掺杂的锶铁氧体磁性材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant