CN108997008A - 一种掺杂的锶铁氧体磁性材料及其制备方法 - Google Patents
一种掺杂的锶铁氧体磁性材料及其制备方法 Download PDFInfo
- Publication number
- CN108997008A CN108997008A CN201811186175.0A CN201811186175A CN108997008A CN 108997008 A CN108997008 A CN 108997008A CN 201811186175 A CN201811186175 A CN 201811186175A CN 108997008 A CN108997008 A CN 108997008A
- Authority
- CN
- China
- Prior art keywords
- ball
- ferrite magnetic
- magnetic material
- strontium ferrite
- type strontium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2675—Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Magnetic Ceramics (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明公开了一种掺杂的M型锶铁氧体的制备方法。本发明主要是解决现有铁氧体磁性能低的问题。通过掺杂Sm3+和Co2+联合取代锶铁氧体中的Sr2+和Fe3+。按照分子式称取一定量Sm2O3、Co(NO3)2·6H2O、SrCO3和Fe2O3做为原料,将称取的原料、磨球和无水乙醇质量按照10.5:1:0.5进行球磨,将混料压片后烘干并烧结得到预烧料。将预烧料破碎研磨后进行第二次球磨,球磨后再将混料压片烘干烧结,即可得到分子式为Sr1‑ xSmxFe12‑xCoxO19的锶铁氧体。本发明的制备方法属于固相法,制作工艺简单,成本低,所制备的一种M型锶铁氧体的磁性能有很大的提高。
Description
技术领域
本发明属于磁性材料技术领域,涉及一种锶铁氧体磁性材料及其制备方法。
背景技术
M型铁氧体是一种高性能永磁材料,永磁材料作为磁性功能材料中的一个重要组成部分,已在各个领域中有着举足轻重的地位。由于M型铁氧体具有较宽的磁滞回线、较高的矫顽力、单轴磁晶各向异性和优良的旋磁特性、高居里温度、高的化学稳定性和高剩余磁化强度等特点,同时具有较高的性价比,因此被广泛应用在航天航空,军事工业以及电子器件中等。随着工业及国防等领域的逐渐发展,M型锶钡永磁铁氧体的需求量也随之增加,而且对产品的性能要求也越来越高。因此人们不断在它的制备方法、工艺参数、新配方等方面提高它的磁性能。
近年来利用稀土离子掺杂取代方法改善锶铁氧体的性能已经成为该领域研究的热点,但大量研究主要集中在La – Zn、La – Co体系。M型铁氧体属于六角晶系空间群,铁离子位于五种不同的亚晶格位置,分别用符号2a、4f1、12k、4f2和2b,与此对应,M性铁氧体分为五个磁亚点阵, 由于相互间的超相互作用,使得2a、2b和12k三个亚点阵离子磁矩呈相互间反平行方向排列,而4f1和4f2两个亚点阵离子磁矩与上面三个亚点阵呈相互间平行方向排列。如果通过离子替代的方法减少4f1和4f2点阵反向排布的铁离子,可以达到削弱反向离子磁矩,增大净磁矩的作用,提高饱和磁化强度,进而提高永磁铁氧体的磁性能。
发明内容
本发明目的是为了解决现有的M型锶铁氧体材料磁学性能差的问题,而提出了一种M型锶铁氧体磁性材料及其制备方法。
本发明所述M型锶铁氧体磁性材料的分子式为:Sr1-xSmxFe12-xCoxO19,分子式中:0<x<0.1。
本发明制备分子式为Sr1-xSmxFe12-xCoxO19的M型锶铁氧体磁性材料的方法按以下步骤进行:
步骤一:按照分子式Sr1-xSmxFe12-xCoxO19中的化学计量比称取Sm2O3、Co(NO3)2·6H2O、SrCO3和Fe2O3做为原料,分子式Sr1-xSmxFe12-xCoxO19中:0<x<0.1;
步骤二:将步骤一中称取的原料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为400r/min~450r/min下混料2h~3h得到混合粉体,将得到的混合粉体烘干后置于压片的模具中,在3MPa~5MPa的压力下压制得到片状样品;所述磨球为硬质合金磨球;所述磨球、原料和无水乙醇的质量比为10.5:1:0.5;所述烘干的温度为80℃~140℃,烘干时间为4h~9h;
步骤三:把步骤二得到的片状样品放入高温箱式电阻炉中,以5℃/min~10℃的升温速率升温至1000℃~1200℃,然后保温2h~6h后随炉冷却至室温,得到预烧料;
步骤四:将步骤三得到的预烧料用钢钵进行粗破碎并研磨,然后将研磨后的预烧料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为400r/min~450r/min下混料3h~6h,将混料烘干后置于压片的模具中,在3MPa~5MPa的压力下压制得到预烧料片状样品;所述磨球为硬质合金磨球;所述磨球、原料和无水乙醇的质量比为10.5:1:0.5;所述烘干的温度为80℃~140℃,烘干时间为4h~9h;
步骤五:将步骤四得到的预烧料片状样品置于高温箱式电阻炉中,以5℃/min ~10℃/min的升温速率升温至1200℃~1300℃,然后保温4h~8h后随炉冷却至室温,最终得到分子式为Sr1-xSmxFe12-xCoxO19的M型锶铁氧体磁性材料。
本发明具备如下有益效果:
1、本发明所用原料SrCO3、Co(NO3)2·6H2O和Fe2O3价格低廉,Sm2O3原料易得且用量较低,故综合成本较低,适合于工业化生产,并且本发明方法制备工艺简单、能耗较低;
2、本发明制备出的分子式为Sr1-xSmxFe12-xCoxO19的M型锶铁氧体磁性材料磁学性能优于相同工艺条件下制备的M型锶铁氧体磁性材料SrFe12O19,剩余磁化强度Br增加7.62%~35.34%,矫顽力Hc增加16.88%~29.45%,饱和磁化强度Ms增加6.37%~28.26%,即本发明配方体系和方法获得了性能优良的M型锶铁氧体磁性材料。
附图说明
图1为施实例一制备的M型锶铁氧体磁性材料的X射线衍射图谱;
图2为施实例一制备的M型锶铁氧体磁性材料的SEM图;
图3为施实例二制备的M型锶铁氧体磁性材料的X射线衍射图谱;
图4为施实例二制备的M型锶铁氧体磁性材料的SEM图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意合理组合。
具体实施方式一:本实施方式一种M型锶铁氧体磁性材料,该M型锶铁氧体磁性材料的分子式为:Sr1-xSmxFe12-xCoxO19,分子式中:0<x<0.1。
本实施方式的Sr1-xSmxFe12-xMnxO19的M型锶铁氧体磁性材料磁学性能优于相同工艺条件下制备的M型锶铁氧体磁性材料SrFe12O19,剩余磁化强度Br增加7.62%~35.34%,矫顽力Hc增加6.37%~28.26%,饱和磁化强度Ms增加16.88%~29.45%,即本实施方式配方体系获得了性能优良的M型锶铁氧体磁性材料。
具体实施方式二:制备分子式为Sr1-xSmxFe12-xCoxO19的M型锶铁氧体磁性材料的方法按以下步骤进行:
步骤一:按照分子式Sr1-xSmxFe12-xCoxO19中的化学计量比称取Sm2O3、Co(NO3)2·6H2O、SrCO3和Fe2O3做为原料,分子式Sr1-xSmxFe12-xCoxO19中:0<x<0.1;
步骤二:将步骤一中称取的原料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为400r/min~450r/min下混料2h~3h得到混合粉体,将得到的混合粉体烘干后置于压片的模具中,在3MPa~5MPa的压力下压制得到片状样品;
步骤三:把步骤二得到的片状样品放入高温箱式电阻炉中,以5℃/min~10℃的升温速率升温至1000℃~1200℃,然后保温2h~6h后随炉冷却至室温,得到预烧料;
步骤四:将步骤三得到的预烧料用钢钵进行粗破碎并研磨,然后将研磨后的预烧料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为400r/min~450r/min下混料3h~6h,烘干后将混料置于压片的模具中,在3MPa~5MPa的压力下压制得到预烧料片状样品;
步骤五:将步骤四得到的预烧料片状样品置于高温箱式电阻炉中,以5℃/min ~10℃/min的升温速率升温至1200℃~1300℃,然后保温4h~8h后随炉冷却至室温,最终得到分子式为Sr1-xSmxFe12-xCoxO19的M型锶铁氧体磁性材料。
1、本实施方式所用原料SrCO3、Co(NO3)2·6H2O和Fe2O3价格低廉,Sm2O3原料易得且用量较低,故综合成本较低,适合于工业化生产,并且本实施方式方法制备工艺简单、能耗较低;
2、本实施方式制备出的分子式为Sr1-xSmxFe12-xCoxO19的M型锶铁氧体磁性材料磁学性能优于相同工艺条件下制备的M型锶铁氧体磁性材料SrFe12O19,剩余磁化强度Br增加7.62%~35.34%,矫顽力Hc增加6.37%~28.26%,饱和磁化强度Ms增加16.88%~29.45%,即本实施方式配方体系和方法获得了性能优良的M型锶铁氧体磁性材料。
具体实施方式三:本实施方式与具体实施方式二不同的是:步骤二所述磨球为硬质合金磨球。其他步骤和参数与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式二或三不同的是:步骤二所述磨球、原料和无水乙醇的质量比为10.5:1:0.5。其他步骤和参数与具体实施方式二或三相同。
具体实施方式五:本实施方式与具体实施方式二至四之一不同的是:步骤二所述烘干的温度为80℃~140℃,烘干时间为4h~9h。其他步骤和参数与具体实施方式二至四之一相同。
具体实施方式六:本实施方式与具体实施方式二至五之一不同的是:步骤四所述磨球为硬质合金磨球。其他步骤和参数与具体实施方式二至五之一相同。
具体实施方式七:本实施方式与具体实施方式二至六之一不同的是:步骤四所述磨球、原料和无水乙醇的质量比为10.5:1:0.5。其他步骤和参数与具体实施方式二至六之一相同。
具体实施方式八:本实施方式与具体实施方式二至六之一不同的是:步骤四所述烘干的温度为80℃~140℃,烘干时间为4h~8h。其他步骤和参数与具体实施方式二至八之一相同。
用以下实施例验证本发明的有益效果:
实施例1:
本实施例所述M型锶铁氧体磁性材料的分子式为:Sr0.95Sm0.05Fe11.95Co0.05O19;
本实施例所述M型锶铁氧体磁性材料的制备方法按以下步骤进行:
步骤一:按照分子式Sr0.95Sm0.05Fe11.95Co0.05O19中的化学计量比称取Sm2O3、Co(NO3)2·6H2O、SrCO3和Fe2O3做为原料;
步骤二:将步骤一中称取的原料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为450r/min下混料3h得到混合粉体,将得到的混合粉体烘干后置于压片的模具中,在5MPa的压力下压制得到片状样品;所述磨球为硬质合金磨球;所述磨球、原料和无水乙醇的质量比为10.5:1:0.5;所述烘干的温度为100℃,烘干时间为8h;
步骤三:把步骤二得到的片状样品放入高温箱式电阻炉中,以5℃/min的升温速率升温至1100℃,然后保温5h后随炉冷却至室温,得到预烧料;
步骤四:将步骤三得到的预烧料用钢钵进行粗破碎并研磨,然后将研磨后的预烧料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为450r/min下混料5h,将混料烘干后置于压片的模具中,在5MPa的压力下压制得到预烧料片状样品;所述磨球为硬质合金磨球;所述磨球、原料和无水乙醇的质量比为10.5:1:0.5;所述烘干的温度为100℃,烘干时间为8h;
步骤五:将步骤四得到的预烧料片状样品置于高温箱式电阻炉中,以5℃/min的升温速率升温至1200℃,然后保温6h后随炉冷却至室温,最终得到分子式为Sr0.95Sm0.05Fe11.95Co0.05O19的M型锶铁氧体磁性材料。
对本实施例制备的M型锶铁氧体磁性材料进行XRD衍射测试,测试结果如图1所示,由图可见:当取代量x=0.05时,粉体在衍射角2θ=30.4°,31.0°,32.36°,34.2°等处出现强烈的衍射峰,对应六方晶相(110)晶面、(008)晶面、(107)晶面(114)晶面,跟纯M型锶铁氧体SrFe12O19标准卡片及按实施例一制备方法制得的纯M型锶铁氧体SrFe12O19 的XRD衍射图比对基本吻合,没有发现其他杂峰,表明此时的粉体为单一的M型锶铁氧体相。
对本实施例制备的M型锶铁氧体磁性材料进行SEM扫描,结果如图2所示,由图可见,样品中的晶粒尺寸在1μm~3μm之间,且晶粒分布均匀,尺寸均匀,晶粒界面清晰,为六角片状结构。
对本实施例制备的分子式为Sr0.95 Sm0.05Fe11.95Co0.05O19的M型锶铁氧体磁性材料进行VSM测试:剩余磁化强度Br=35.07emu/g,饱和磁化强度Ms=67.82emu/g,矫顽力Hc=26.46kA/m;按照本实施例的方法和工艺参数制备分子式为SrFe12O19 的M型锶铁氧体磁性材料并通过VSM测试得到剩余磁化强度Br=32.22emu/g,Ms=55.05emu/g,Hc=24.26kA/m,由此可知,本实施例制备的分子式为Sr0.95Sm0.05Fe11.95Co0.05O19的M型锶铁氧体磁性材料与现有的分子式为SrFe12O19 的M型锶铁氧体磁性材料相比,剩余磁化强度Br增加8.85%,饱和磁化强度Ms增加23.18 %,矫顽力Hc增加9.07%。
实施例2:
本实施例所述M型锶铁氧体磁性材料的分子式为:Sr0.9Sm 0.1Fe11.9Co0.1O19;
本实施例所述M型锶铁氧体磁性材料的制备方法按以下步骤进行:
步骤一:按照分子式Sr0.9Sm0.1Fe11.9Co0.1O19中的化学计量比称取Sm2O3、Co(NO3)2·6H2O、SrCO3和Fe2O3做为原料;
步骤二:将步骤一中称取的原料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为450r/min下混料3h得到混合粉体,将得到的混合粉体烘干后置于压片的模具中,在5MPa的压力下压制得到片状样品;所述磨球为硬质合金磨球;所述磨球、原料和无水乙醇的质量比为10.5:1:0.5;所述烘干的温度为100℃,烘干时间为8h;
步骤三:把步骤二得到的片状样品放入高温箱式电阻炉中,以5℃/min的升温速率升温至1100℃,然后保温5h后随炉冷却至室温,得到预烧料;
步骤四:将步骤三得到的预烧料用钢钵进行粗破碎并研磨,然后将研磨后的预烧料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为450r/min下混料5h,将混料烘干后置于压片的模具中,在5 MPa的压力下压制得到预烧料片状样品;所述磨球为硬质合金磨球;所述磨球、原料和无水乙醇的质量比为10.5:1:0.5;所述烘干的温度为100℃,烘干时间为8h;
步骤五:将步骤四得到的预烧料片状样品置于高温箱式电阻炉中,以5℃/min的升温速率升温至1300℃,然后保温4h后随炉冷却至室温,最终得到分子式为Sr0.9Sm0.1Fe11.9Co0.1O19的M型锶铁氧体磁性材料。
对本实施例制备的M型锶铁氧体磁性材料进行XRD衍射测试,测试结果如图3所示,由图可见:粉体在衍射角2θ=30.4°,31.0°,32.36°,34.2°等处出现强烈的衍射峰,对应六方晶相(110)晶面、(008)晶面、(107)晶面(114)晶面,跟纯M型锶铁氧体SrFe12O19标准卡片及按实施例一制备方法制得的纯M型锶铁氧体SrFe12O19 的XRD衍射图比对基本吻合,没有发现其他杂峰,表明此时的粉体为单一的M型锶铁氧体相。
对本实施例制备的M型锶铁氧体磁性材料进行SEM扫描,结果如图4所示,由图可见,样品中的晶粒尺寸在1μm~2μm之间,且晶粒分布均匀,尺寸也较为均匀,晶粒界面清晰,为六角片状结构。
对本实施例制备的分子式为Sr0.9Sm0.1Fe11.9Co0.1O19的M型锶铁氧体磁性材料进行VSM测试:剩余磁化强度Br=37.41emu/g,饱和磁化强度Ms=69.93emu/g,矫顽力Hc=27.09kA/m;按照本实施例的方法和工艺参数制备分子式为SrFe12O19 的M型锶铁氧体磁性材料并通过VSM测试得到剩余磁化强度Br=32.22emu/g,饱和磁化强度Ms=55.05emu/g,矫顽力Hc=24.26kA/m,由此可知,本实施例制备的分子式为Sr0.9Sm 0.1Fe11.9Co0.1O19的M型锶铁氧体磁性材料与现有的分子式为SrFe12O19 的M型锶铁氧体磁性材料相比,剩余磁化强度Br增加16.11%,饱和磁化强度Ms增加27.03%,矫顽力Hc增加11.67%。
Claims (8)
1.一种M型锶铁氧体磁性材料,其特征在于该锶铁氧体磁性材料的分子式为:Sr1- xSmxFe12-xCoxO19,分子式中:0<x<0.1。
2.一种制备如权利要求1所述的M型锶铁氧体磁性材料的方法,其特征在于该方法按照以下步骤进行:
步骤一:按照分子式Sr1-xSmxFe12-xCoxO19中的化学计量比称取Sm2O3、Co(NO3)2·6H2O、SrCO3和Fe2O3做为原料,分子式Sr1-xSmxFe12-xCoxO19中:0<x<0.1;
步骤二:将步骤一中称取的原料、磨球和乙醇置于行星球磨机的陶瓷球磨罐中,在转速为400r/min~450r/min下混料2h~3h得到混合粉体,将得到的混合粉体烘干后置于压片的模具中,在3MPa~5MPa的压力下压制得到片状样品;
步骤三:把步骤二得到的片状样品放入高温箱式电阻炉中,以5℃/min~10℃/min的升温速率升温至1000℃~1200℃,然后保温2~6h随炉冷却至室温,得到预烧料;
步骤四:将步骤三得到的预烧料用钢钵进行粗破碎并研磨,然后将研磨后的预烧料、磨球和乙醇置于行星球磨机的陶瓷球磨罐中,在转速为400r/min~450r/min下混料3h~6h,烘干后将混料置于压片的模具中,在3MPa~5MPa的压力下压制得到预烧料片状样品;
步骤五:将步骤四得到的预烧料片状样品置于高温箱式电阻炉中,以5℃/min ~10℃/min的升温速率升温至1200℃~1300℃,然后保温4h~8h随炉冷却至室温,最终得到分子式为Sr1-xSmxFe12-xCoxO19的M型锶铁氧体磁性材料。
3.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤二所述磨球为硬质合金磨球。
4.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤二所述磨球、原料和乙醇的质量比为10.5:1:0.5。
5.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤二所述烘干的温度为80℃~140℃,烘干时间为4h~9h。
6.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤四所述磨球为硬质合金磨球。
7.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤四所述磨球、原料和无水乙醇的质量比为10.5:1:0.5。
8.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤四所述烘干的温度为80℃~140℃,烘干时间为4h~9h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811186175.0A CN108997008A (zh) | 2018-10-12 | 2018-10-12 | 一种掺杂的锶铁氧体磁性材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811186175.0A CN108997008A (zh) | 2018-10-12 | 2018-10-12 | 一种掺杂的锶铁氧体磁性材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108997008A true CN108997008A (zh) | 2018-12-14 |
Family
ID=64589451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811186175.0A Pending CN108997008A (zh) | 2018-10-12 | 2018-10-12 | 一种掺杂的锶铁氧体磁性材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108997008A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115215643A (zh) * | 2022-07-21 | 2022-10-21 | 成都信息工程大学 | 一种Nd-Co共取代M型锶铁氧体及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101022052A (zh) * | 2006-11-21 | 2007-08-22 | 陈赟 | 一种永磁铁氧体磁瓦及其制造方法 |
CN103319165A (zh) * | 2013-06-08 | 2013-09-25 | 广东江粉磁材股份有限公司 | 一种z型六角铁氧体材料及其制备方法 |
CN204918385U (zh) * | 2015-06-03 | 2015-12-30 | 西南应用磁学研究所 | 高温烧制铁氧体-陶瓷一体化基板 |
CN105439551A (zh) * | 2015-11-12 | 2016-03-30 | 海安南京大学高新技术研究院 | 一种高磁能积的La-Co共掺锶铁氧体磁性料粉及其制备方法 |
CN107651954A (zh) * | 2017-10-23 | 2018-02-02 | 安徽中磁高科有限公司 | 永磁铁氧体预烧料的加工方法 |
-
2018
- 2018-10-12 CN CN201811186175.0A patent/CN108997008A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101022052A (zh) * | 2006-11-21 | 2007-08-22 | 陈赟 | 一种永磁铁氧体磁瓦及其制造方法 |
CN103319165A (zh) * | 2013-06-08 | 2013-09-25 | 广东江粉磁材股份有限公司 | 一种z型六角铁氧体材料及其制备方法 |
CN204918385U (zh) * | 2015-06-03 | 2015-12-30 | 西南应用磁学研究所 | 高温烧制铁氧体-陶瓷一体化基板 |
CN105439551A (zh) * | 2015-11-12 | 2016-03-30 | 海安南京大学高新技术研究院 | 一种高磁能积的La-Co共掺锶铁氧体磁性料粉及其制备方法 |
CN107651954A (zh) * | 2017-10-23 | 2018-02-02 | 安徽中磁高科有限公司 | 永磁铁氧体预烧料的加工方法 |
Non-Patent Citations (1)
Title |
---|
王志伟 等: "Sm-Co离子取代M型锶铁氧体的制备及磁性能研究", 《信息记录材料》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115215643A (zh) * | 2022-07-21 | 2022-10-21 | 成都信息工程大学 | 一种Nd-Co共取代M型锶铁氧体及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101844914B (zh) | 一种磁铅石型永磁铁氧体及其制造方法 | |
CN102050619B (zh) | 一种永磁铁氧体材料的制备方法 | |
CN104230326B (zh) | M型钙永磁铁氧体的制备方法 | |
CN105601265A (zh) | 一种m型锶铁氧体磁性材料及其制备方法 | |
Huang et al. | Microstructure and magnetic properties of Ca-substituted M-type SrLaCo hexagonal ferrites | |
CN104230323A (zh) | M型钙镧钴永磁铁氧体及其制备方法 | |
CN106365626B (zh) | 一种干压异性铁氧体的制造方法 | |
CN115312283B (zh) | 一种高压实密度注射磁粉及其制备方法 | |
CN105601264A (zh) | 一种高致密化多铁性(1-y)BiFeO3-yBi1-xRxFeO3复合陶瓷的制备方法 | |
CN109400139A (zh) | 一种低成本永磁铁氧体材料的制备工艺 | |
CN104230325A (zh) | 制备永磁铁氧体预烧料的方法及永磁铁氧体的制备方法 | |
CN109206131A (zh) | 一种稀土掺杂的m型锶铁氧体磁性材料及其制备方法 | |
CN110156453A (zh) | 一种高功率稀土钇铁石榴石复合铁氧体材料的制备方法 | |
Eikeland et al. | Enhancement of magnetic properties by spark plasma sintering of hydrothermally synthesised SrFe 12 O 19 | |
CN106630992B (zh) | 一种高性能SrFe12O19/CoFe2O4复合铁氧体材料及制备方法 | |
CN102360909B (zh) | 一种钕铁硼磁体的制备方法 | |
CN104230322A (zh) | M型钙永磁铁氧体及其制备方法 | |
CN109836147A (zh) | 一种永磁铁氧体及其制备方法 | |
CN108997008A (zh) | 一种掺杂的锶铁氧体磁性材料及其制备方法 | |
Sharma et al. | Effect of processing parameters on the magnetic properties of strontium ferrite sintered magnets using Taguchi orthogonal array design | |
CN109102977A (zh) | 一种高密度干压异性铁氧体磁体及其制造方法 | |
Huang et al. | Preparation and magnetic properties of high performance Ca–Sr based M-type hexagonal ferrites | |
CN102129906B (zh) | 永磁铁氧体材料添加剂、其制备方法及应用 | |
CN110330326A (zh) | 一种多元素永磁铁氧体及其制备方法和应用 | |
CN109265155A (zh) | 一种锶铁氧体磁性材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20181214 |