CN109265155A - 一种锶铁氧体磁性材料及其制备方法 - Google Patents

一种锶铁氧体磁性材料及其制备方法 Download PDF

Info

Publication number
CN109265155A
CN109265155A CN201811127083.5A CN201811127083A CN109265155A CN 109265155 A CN109265155 A CN 109265155A CN 201811127083 A CN201811127083 A CN 201811127083A CN 109265155 A CN109265155 A CN 109265155A
Authority
CN
China
Prior art keywords
magnetic material
ferrite magnetic
strontium ferrite
ball
type strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811127083.5A
Other languages
English (en)
Inventor
吴泽
王中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201811127083.5A priority Critical patent/CN109265155A/zh
Publication of CN109265155A publication Critical patent/CN109265155A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明的目的是为了解决现有的M型锶铁氧体材料磁学性能差的问题。对锶铁氧体进行离子掺杂及工艺改进。本发明M型锶铁氧体磁性材料的分子式为:Sr1‑xGdxFe12‑xMnxO19。制备方法为按照分子式中元素质量比称取原料;混合均匀后压片;进行第一次烧结;对第一次烧结得到的样品研磨、压片;进行第二次烧结;本发明M型锶铁氧体磁性材料制备方法成本较低,制备工艺简单、耗能低,适合于工业化生产,且制备的M型锶铁氧体磁性材料磁学性能优越。

Description

一种锶铁氧体磁性材料及其制备方法
技术领域
本发明属于磁性材料技术领域,具体涉及一种锶铁氧体磁性材料及其制备方法。
背景技术
M型六角铁氧体作为一种高性能永磁材料,具有较宽的磁滞回线、较高的矫顽力、磁能积、单轴磁晶各向异性和高剩余磁化强度等特点,同时具有较高的性价比,因此成为应用最广泛的永磁材料、微波吸收材料和高密度垂直磁记录器件等领域中,是电子、军事工业一种重要的基础功能材料。近年来,随着人们对电子产品的性能方面要求日益严格,工业发展水平日益提高,M型铁氧体的性能也在不断的被探索。研究者主要从制备方法、工艺参数、配方改进方面进行研究。
M型锶铁氧体具有磁铅石结构,一个晶胞中含有两个分子,其中24个Fe3+分布在5种不同的氧离子空位当中,2a,12k,4f2为八面体间隙,2b为六面体间隙,4f1属于四面体间隙,且不同位置的Fe3+的磁矩排列方向也不同,2a,12k,2b空位上的磁矩排列向上与4f1和4f2空位上的磁矩反向平行排列,两个方向上的磁矩未能完全抵消,剩余的磁矩使整个分子具有亚磁性,也是铁氧体磁性的来源。为提高磁性能可以掺杂适量的例子取代Sr2+或Fe3+减小排列方向向下的离子磁矩,从而提高净磁矩。
发明内容
本发明目的是为了解决现有的M型锶铁氧体材料磁学性能差的问题,而提出了一种M型锶铁氧体磁性材料及其制备方法。
本发明所述M型锶铁氧体磁性材料的分子式为:Sr1-xGdxFe12-xMnxO19,分子式中:0<x<0.1。
本发明制备分子式为Sr1-xGdxFe12-xMnxO19的M型锶铁氧体磁性材料的方法按以下步骤进行:
步骤一:按照分子式Sr1-xGdxFe12-xMnxO19中的化学计量比称取Gd2O3、MnCO3、SrCO3和Fe2O3做为原料,分子式Sr1-xGdxFe12-xMnxO19中:0<x<0.1;
步骤二:将步骤一中称取的原料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为300r/min~500r/min下混料1h~2h得到混合粉体,将得到的混合粉体烘干后置于压片的模具中,在3MPa~5MPa的压力下压制得到片状样品;所述磨球为氧化镐磨球;所述磨球、原料和无水乙醇的质量比为10:1:0.5;所述烘干的温度为80~150℃,烘干时间为3h~6h;
步骤三:把步骤二得到的片状样品放入高温箱式电阻炉中,以5℃/min~10℃的升温速率升温至1200℃~1250℃,然后保温2h~8h后随炉冷却至室温,得到预烧料;
步骤四:将步骤三得到的预烧料用钢钵进行粗破碎并研磨,然后将研磨后的预烧料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为300r/min~500r/min下混料2h~3h,将混料烘干后置于压片的模具中,在3MPa~5MPa的压力下压制得到预烧料片状样品;所述磨球为氧化镐磨球;所述磨球、原料和无水乙醇的质量比为10:1:0.5;所述烘干的温度为80℃~150℃,烘干时间为3h~6h;
步骤五:将步骤四得到的预烧料片状样品置于高温箱式电阻炉中,以5℃/min ~10℃/min的升温速率升温至1150℃~1250℃,然后保温2h~4h后随炉冷却至室温,最终得到分子式为Sr1-xGdxFe12-xMnxO19的M型锶铁氧体磁性材料。
本发明具备如下有益效果:
1、本发明所用原料SrCO3、MnCO3和Fe2O3价格低廉,Gd2O3原料易得且用量较低,故综合成本较低,适合于工业化生产,并且本发明方法制备工艺简单、能耗较低;
2、本发明制备出的分子式为Sr1-xGdxFe12-xMnxO19的M型锶铁氧体磁性材料磁学性能优于相同工艺条件下制备的M型锶铁氧体磁性材料SrFe12O19,剩余磁化强度Br增加8.52%~41.33%,矫顽力Hc增加27.65%~65.49%,饱和磁化强度Ms增加6.98%~10.56%,即本发明配方体系和方法获得了性能优良的M型锶铁氧体磁性材料。
附图说明
图1为施实例一制备的M型锶铁氧体磁性材料的X射线衍射图谱;
图2为施实例一制备的M型锶铁氧体磁性材料的SEM图;
图3为施实例二制备的M型锶铁氧体磁性材料的X射线衍射图谱;
图4为施实例二制备的M型锶铁氧体磁性材料的SEM图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意合理组合。
具体实施方式一:本实施方式一种M型锶铁氧体磁性材料,该M型锶铁氧体磁性材料的分子式为:Sr1-xGdxFe12-xMnxO19,分子式中:0<x<0.1。
本实施方式的Sr1-xGdxFe12-xMnxO19的M型锶铁氧体磁性材料磁学性能优于相同工艺条件下制备的M型锶铁氧体磁性材料SrFe12O19,剩余磁化强度Br增加6.18%~36.11%,矫顽力Hc增加25.35%~42.70%,饱和磁化强度Ms增加8.03%~10.03%,即本实施方式配方体系获得了性能优良的M型锶铁氧体磁性材料。
具体实施方式二:制备分子式为Sr1-xLnxFe12-xMnxO19的M型锶铁氧体磁性材料的方法按以下步骤进行:
步骤一:按照分子式Sr1-xLnxFe12-xMnxO19中的化学计量比称取Gd2O3、MnCO3、SrCO3和Fe2O3做为原料,分子式Sr1-xGdxFe12-xMnxO19中:0<x<0.1;
步骤二:将步骤一中称取的原料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为300r/min~500r/min下混料1h~2h得到混合粉体,将得到的混合粉体烘干后置于压片的模具中,在3MPa~5MPa的压力下压制得到片状样品;
步骤三:把步骤二得到的片状样品放入高温箱式电阻炉中,以5℃/min~10℃的升温速率升温至1200℃~1250℃,然后保温2h~8h后随炉冷却至室温,得到预烧料;
步骤四:将步骤三得到的预烧料用钢钵进行粗破碎并研磨,然后将研磨后的预烧料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为300r/min~500r/min下混料2h~3h,烘干后将混料置于压片的模具中,在3MPa~5MPa的压力下压制得到预烧料片状样品;
步骤五:将步骤四得到的预烧料片状样品置于高温箱式电阻炉中,以5℃/min ~10℃/min的升温速率升温至1150℃~1250℃,然后保温2h~4h后随炉冷却至室温,最终得到分子式为Sr1-xGdxFe12-xMnxO19的M型锶铁氧体磁性材料。
1、本实施方式所用原料SrCO3、MnCO3和Fe2O3价格低廉,Gd2O3原料易得且用量较低,故综合成本较低,适合于工业化生产,并且本实施方式方法制备工艺简单、能耗较低;
2、本实施方式制备出的分子式为Sr1-xGdxFe12-xMnxO19的M型锶铁氧体磁性材料磁学性能优于相同工艺条件下制备的M型锶铁氧体磁性材料SrFe12O19,剩余磁化强度Br增加8.52%~41.33%,矫顽力Hc增加27.65%~65.49%,饱和磁化强度Ms增加6.98%~10.56%,即本实施方式配方体系和方法获得了性能优良的M型锶铁氧体磁性材料。
具体实施方式三:本实施方式与具体实施方式二不同的是:步骤二所述磨球为氧化镐磨球。其他步骤和参数与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式二或三不同的是:步骤二所述磨球、原料和无水乙醇的质量比为10:1:0.5。其他步骤和参数与具体实施方式二或三相同。
具体实施方式五:本实施方式与具体实施方式二至四之一不同的是:步骤二所述烘干的温度为80℃~150℃,烘干时间为3h~6h。其他步骤和参数与具体实施方式二至四之一相同。
具体实施方式六:本实施方式与具体实施方式二至五之一不同的是:步骤四所述磨球为氧化镐磨球。其他步骤和参数与具体实施方式二至五之一相同。
具体实施方式七:本实施方式与具体实施方式二至六之一不同的是:步骤四所述磨球、原料和无水乙醇的质量比为10:1:0.5。其他步骤和参数与具体实施方式二至六之一相同。
具体实施方式八:本实施方式与具体实施方式二至六之一不同的是:步骤四所述烘干的温度为80℃~150℃,烘干时间为3h~6h。其他步骤和参数与具体实施方式二至八之一相同。
用以下实施例验证本发明的有益效果:
实施例1:
本实施例所述M型锶铁氧体磁性材料的分子式为:Sr0.95 Gd0.05Fe11.95Mn0.05O19
本实施例所述M型锶铁氧体磁性材料的制备方法按以下步骤进行:
步骤一:按照分子式Sr0.95 Gd0.05Fe11.95Mn0.05O19中的化学计量比称取Gd2O3、MnCO3、SrCO3和Fe2O3做为原料;
步骤二:将步骤一中称取的原料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为400r/min下混料2h得到混合粉体,将得到的混合粉体烘干后置于压片的模具中,在3MPa的压力下压制得到片状样品;所述磨球为氧化镐磨球;所述磨球、原料和无水乙醇的质量比为10:1:0.5;所述烘干的温度为120℃,烘干时间为6h;
步骤三:把步骤二得到的片状样品放入高温箱式电阻炉中,以5℃/min的升温速率升温至1250℃,然后保温6h后随炉冷却至室温,得到预烧料;
步骤四:将步骤三得到的预烧料用钢钵进行粗破碎并研磨,然后将研磨后的预烧料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为400r/min下混料3h,将混料烘干后置于压片的模具中,在3MPa的压力下压制得到预烧料片状样品;所述磨球为氧化镐磨球;所述磨球、原料和无水乙醇的质量比为10:1:0.5;所述烘干的温度为120℃,烘干时间为6h;
步骤五:将步骤四得到的预烧料片状样品置于高温箱式电阻炉中,以5℃/min的升温速率升温至1250℃,然后保温4h后随炉冷却至室温,最终得到分子式为Sr0.95Gd0.05Fe11.95Mn0.05O19的M型锶铁氧体磁性材料。
对本实施例制备的M型锶铁氧体磁性材料进行XRD衍射测试,测试结果如图1所示,由图可见:当取代量x=0.05时,粉体在衍射角2θ=30.4°,31.0°,32.36°,34.2°等处出现强烈的衍射峰,对应六方晶相(110)晶面、(008)晶面、(107)晶面(114)晶面,跟纯M型锶铁氧体SrFe12O19标准卡片及按实施例一制备方法制得的纯M型锶铁氧体SrFe12O19 的XRD衍射图比对基本吻合,没有发现其他杂峰,表明此时的粉体为单一的M型锶铁氧体相。
对本实施例制备的M型锶铁氧体磁性材料进行SEM扫描,结果如图2所示,由图可见,样品中的晶粒尺寸在1μm~3μm之间,且晶粒尺寸大小较均匀,分布也较为均匀,且界面清晰,呈六角片状结构,样品中存在一定的孔洞,说明样品的密度仍有提升的空间。
对本实施例制备的分子式为Sr0.95 Gd0.05Fe11.95Mn0.05O19的M型锶铁氧体磁性材料进行VSM测试:剩余磁化强度Br=32.75emu/g,饱和磁化强度Ms=57.16emu/g,矫顽力Hc=43.27kA/m;按照本实施例的方法和工艺参数制备分子式为SrFe12O19 的M型锶铁氧体磁性材料并通过VSM测试得到剩余磁化强度Br=28.89emu/g,Ms=53.36emu/g,Hc=32.58kA/m,由此可知,本实施例制备的分子式为Sr0.95Gd0.05Fe11.95Mn0.05O19的M型锶铁氧体磁性材料与现有的分子式为SrFe12O19 的M型锶铁氧体磁性材料相比,剩余磁化强度Br增加13.36%,饱和磁化强度Ms增加7.12%,矫顽力Hc增加32.8%。
实施例2:
本实施例所述M型锶铁氧体磁性材料的分子式为:Sr0.9Gd 0.1Fe11.9Mn0.1O19
本实施例所述M型锶铁氧体磁性材料的制备方法按以下步骤进行:
步骤一:按照分子式Sr0.9Gd0.1Fe11.9Mn0.1O19中的化学计量比称取Gd2O3、MnCO3、SrCO3和Fe2O3做为原料;
步骤二:将步骤一中称取的原料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为400r/min下混料2h得到混合粉体,将得到的混合粉体烘干后置于压片的模具中,在3MPa的压力下压制得到片状样品;所述磨球为氧化镐磨球;所述磨球、原料和无水乙醇的质量比为10:1:0.5;所述烘干的温度为120℃,烘干时间为6h;
步骤三:把步骤二得到的片状样品放入高温箱式电阻炉中,以5℃/min的升温速率升温至1200℃,然后保温6h后随炉冷却至室温,得到预烧料;
步骤四:将步骤三得到的预烧料用钢钵进行粗破碎并研磨,然后将研磨后的预烧料、磨球和无水乙醇置于行星球磨机的陶瓷球磨罐中,在转速为400r/min下混料3h,将混料烘干后置于压片的模具中,在3MPa的压力下压制得到预烧料片状样品;所述磨球为氧化镐磨球;所述磨球、原料和无水乙醇的质量比为10:1:0.5;所述烘干的温度为120℃,烘干时间为6h;
步骤五:将步骤四得到的预烧料片状样品置于高温箱式电阻炉中,以10℃/min的升温速率升温至1250℃,然后保温4h后随炉冷却至室温,最终得到分子式为Sr0.9Gd 0.1Fe11.9Mn0.1O19的M型锶铁氧体磁性材料。
对本实施例制备的M型锶铁氧体磁性材料进行XRD衍射测试,测试结果如图3所示,由图可见:粉体在衍射角2θ=30.4°,31.0°,32.36°,34.2°等处出现强烈的衍射峰,对应六方晶相(110)晶面、(008)晶面、(107)晶面(114)晶面,跟纯M型锶铁氧体SrFe12O19标准卡片及按实施例一制备方法制得的纯M型锶铁氧体SrFe12O19 的XRD衍射图比对基本吻合,没有发现其他杂峰,表明此时的粉体为单一的M型锶铁氧体相。
对本实施例制备的M型锶铁氧体磁性材料进行SEM扫描,结果如图4所示,由图可见,样品中的晶粒尺寸在2μm~4μm之间,且晶粒尺寸大小均匀,分布也较均匀,晶粒界面清晰,呈六角片状结构,样品中存在一定的孔洞,说明样品的密度仍有提升的空间。
对本实施例制备的分子式为Sr0.9Gd 0.1Fe11.9Mn0.1O19的M型锶铁氧体磁性材料进行VSM测试:剩余磁化强度Br=39.43emu/g,饱和磁化强度Ms=57.87emu/g,矫顽力Hc=52.72kA/m;按照本实施例的方法和工艺参数制备分子式为SrFe12O19 的M型锶铁氧体磁性材料并通过VSM测试得到剩余磁化强度Br=28.89emu/g,饱和磁化强度Ms=53.36emu/g,矫顽力Hc=32.58kA/m,由此可知,本实施例制备的分子式为Sr0.9Gd 0.1Fe11.9Mn0.1O19的M型锶铁氧体磁性材料与现有的分子式为SrFe12O19 的M型锶铁氧体磁性材料相比,剩余磁化强度Br增加36.48%,饱和磁化强度Ms增加8.45%,矫顽力Hc增加61.82%。

Claims (8)

1.一种锶铁氧体磁性材料,其特征在于该锶铁氧体磁性材料的分子式为:Sr1-xGdxFe12- xMnxO19,分子式中:0<x<0.1。
2.一种制备如权利要求1所述的M型锶铁氧体磁性材料的方法,其特征在于该方法按照以下步骤进行:
步骤一:按照分子式Sr1-xGdxFe12-xMnxO19中的化学计量比称取Gd2O3、MnCO3、SrCO3和Fe2O3做为原料,分子式Sr1-xLnxFe12-xMnxO19中:0<x<0.1;
步骤二:将步骤一中称取的原料、磨球和乙醇置于行星球磨机的陶瓷球磨罐中,在转速为300r/min~500r/min下混料1h~2h得到混合粉体,将得到的混合粉体烘干后置于压片的模具中,在3MPa~5MPa的压力下压制得到片状样品;
步骤三:把步骤二得到的片状样品放入高温箱式电阻炉中,以5~10℃/min的升温速率升温至1200℃~1250℃,然后保温2h~8h后随炉冷却至室温,得到预烧料;
步骤四:将步骤三得到的预烧料用钢钵进行粗破碎并研磨,然后将研磨后的预烧料、磨球和乙醇置于行星球磨机的陶瓷球磨罐中,在转速为300r/min~500r/min下混料2h~3h,烘干后将混料置于压片的模具中,在3MPa~5MPa的压力下压制得到预烧料片状样品;
步骤五:将步骤四得到的预烧料片状样品置于高温箱式电阻炉中,以5℃/min ~10℃/min的升温速率升温至1150℃~1250℃,然后保温2h~4h后随炉冷却至室温,最终得到分子式为Sr1-xGdxFe12-xMnxO19的M型锶铁氧体磁性材料。
3.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤二所述磨球为氧化锆磨球。
4.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤二所述磨球、原料和乙醇的质量比为10:1:0.5。
5.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤二所述烘干的温度为80℃~150℃,烘干时间为3h~6h。
6.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤四所述磨球为氧化锆磨球。
7.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤四所述磨球、原料和无水乙醇的质量比为10:1:0.5。
8.根据权利要求2所述的M型锶铁氧体磁性材料的制备方法,其特征在于步骤四所述烘干的温度为80℃~150℃,烘干时间为3h~6h。
CN201811127083.5A 2018-09-27 2018-09-27 一种锶铁氧体磁性材料及其制备方法 Pending CN109265155A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811127083.5A CN109265155A (zh) 2018-09-27 2018-09-27 一种锶铁氧体磁性材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811127083.5A CN109265155A (zh) 2018-09-27 2018-09-27 一种锶铁氧体磁性材料及其制备方法

Publications (1)

Publication Number Publication Date
CN109265155A true CN109265155A (zh) 2019-01-25

Family

ID=65197787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811127083.5A Pending CN109265155A (zh) 2018-09-27 2018-09-27 一种锶铁氧体磁性材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109265155A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065365A1 (ja) * 2019-09-30 2021-04-08 富士フイルム株式会社 電波吸収体および電波吸収性組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065365A1 (ja) * 2019-09-30 2021-04-08 富士フイルム株式会社 電波吸収体および電波吸収性組成物
EP4040933A4 (en) * 2019-09-30 2022-11-23 FUJIFILM Corporation RADIO WAVE ABSORBER AND RADIO WAVE ABSORBENT COMPOSITION
JP7489396B2 (ja) 2019-09-30 2024-05-23 富士フイルム株式会社 電波吸収体および電波吸収性組成物

Similar Documents

Publication Publication Date Title
Borhan et al. Cr3+ and Al3+ co-substituted zinc ferrite: Structural analysis, magnetic and electrical properties
CN102875145B (zh) 一种层状钙钛矿结构陶瓷及其制备方法
Rehman et al. Magnetic properties of Ce doped M-type strontium hexaferrites synthesized by ceramic route
CN105601265A (zh) 一种m型锶铁氧体磁性材料及其制备方法
CN104230326B (zh) M型钙永磁铁氧体的制备方法
KR102588231B1 (ko) 페라이트 자성재료 및 페라이트 소결자석
Guo et al. Effects of In3+-substitution on the structure and magnetic properties of multi-doped YIG ferrites with low saturation magnetizations
Huang et al. Influence of CaCO3 and SiO2 additives on magnetic properties of M-type Sr ferrites
Huang et al. Magnetic property enhancement of cobalt-free M-type strontium hexagonal ferrites by CaCO3 and SiO2 addition
CN115312283B (zh) 一种高压实密度注射磁粉及其制备方法
CN103183505B (zh) 一种织构化钴铁氧体膜材料及制备方法
Eikeland et al. Enhancement of magnetic properties by spark plasma sintering of hydrothermally synthesised SrFe 12 O 19
Zhang et al. Platelet-like hexagonal SrFe12O19 particles: Hydrothermal synthesis and their orientation in a magnetic field
Yang et al. Effects of Pr-Al co-substitution on the magnetic and structural properties of M-type Ca-Sr hexaferrites
CN106630992B (zh) 一种高性能SrFe12O19/CoFe2O4复合铁氧体材料及制备方法
Sharma et al. Effect of processing parameters on the magnetic properties of strontium ferrite sintered magnets using Taguchi orthogonal array design
Suo et al. Effect of La3+ substitution on the structure and magnetic properties of M-type Sr Hexaferrites
Abhishek et al. Structural and magnetic properties of Eu3+ substituted Mg-Cd nanoferrites: a detailed study of influence of high energy γ-rays irradiation
CN109206131A (zh) 一种稀土掺杂的m型锶铁氧体磁性材料及其制备方法
CN109265155A (zh) 一种锶铁氧体磁性材料及其制备方法
Huang et al. Preparation and magnetic properties of high performance Ca–Sr based M-type hexagonal ferrites
CN105565793A (zh) 一种熔融盐辅助烧结锶铁氧体的方法
CN102129906B (zh) 永磁铁氧体材料添加剂、其制备方法及应用
Yao et al. Correlation of the chemical composition, phase content, structural characteristics and magnetic properties of the Bi-substituted M-type hexaferrites
CN101209921A (zh) 单相y掺杂铁酸铋磁电陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190125

WD01 Invention patent application deemed withdrawn after publication