CN112723893B - 一种氮化铝钪靶材及其制备方法 - Google Patents

一种氮化铝钪靶材及其制备方法 Download PDF

Info

Publication number
CN112723893B
CN112723893B CN202110142179.4A CN202110142179A CN112723893B CN 112723893 B CN112723893 B CN 112723893B CN 202110142179 A CN202110142179 A CN 202110142179A CN 112723893 B CN112723893 B CN 112723893B
Authority
CN
China
Prior art keywords
scandium
aluminum
nitride
target material
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110142179.4A
Other languages
English (en)
Other versions
CN112723893A (zh
Inventor
邱从章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha Huaishi New Material Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202110142179.4A priority Critical patent/CN112723893B/zh
Publication of CN112723893A publication Critical patent/CN112723893A/zh
Application granted granted Critical
Publication of CN112723893B publication Critical patent/CN112723893B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种氮化铝钪靶材及其制备方法,包括氮化铝、氮化钪、氮化铝钪和单质钪中至少两种组元,其中钪的原子百分比为5~40%,铝的原子百分比为20~50%,余量为氮;所述氮化铝钪靶材的平面尺寸不低于1×103mm2,杂质氧含量小于600ppm,其它杂质含量总和小于500ppm,相对密度大于98%,平均晶粒尺寸小于100μm。本发明通过配料、制坯、均温处理和后处理的工艺流程,并结合添加剂的作用,氮化铝和氮化钪可有效烧结,成为致密的氮化铝钪烧结体,最终得到氧含量低、成分均匀和致密性高的氮化铝钪靶材。

Description

一种氮化铝钪靶材及其制备方法
技术领域
本发明属于半导体用溅射靶材制备技术领域,具体涉及一种氮化铝钪靶材及其制备方法。
背景技术
氮化铝钪是一种良好的压电薄膜材料,是制备高频、高功率及高集成化声波器件的理想材料,其压电系数和机电耦合系数高,压电薄膜材料的性能。目前氮化铝钪功能薄膜及其制备方法是国内外争相研究的热点,通过研究取得了有益成果。这种氮化铝钪功能薄膜的制备基本都是采用反应溅射的方式,以铝钪金属靶材或铝金属靶材与钪金属靶材为溅射镀膜原料,在含氮气的反应气体中溅射沉积,在基材表面结晶形成一层氮化铝钪功能薄膜。这种方式制备条件较难控制,易出现靶材中毒现象、薄膜成分和形态不均匀、可能会出现部分非晶态、薄膜质量难以控制等问题,从而产生成本增加、生产效率降低、薄膜性能不高等诸多不利因素。有研究表明通过氮化铝钪靶材直接溅射成膜的可改善诸多不利因素,使得成膜质量提高。但是氮化铝和氮化钪均为高温陶瓷,采用常规的粉末冶金方法难以制备得到高致密性的氮化铝钪靶材。
发明内容
为了解决现有技术中存在的问题,本发明的目的是在于提供一种氮化铝钪靶材及其制备方法。
为了实现上述技术目的,本发明采用如下技术方案:
一种氮化铝钪靶材,包括氮化铝、氮化钪、氮化铝钪和单质钪中至少两种组元,其中钪的原子百分比为5~40%,铝的原子百分比为20~50%,余量为氮;所述氮化铝钪靶材的平面尺寸不低于1×103mm2,杂质氧含量小于600ppm,其它杂质含量总和小于500ppm,相对密度大于98%,平均晶粒尺寸小于100μm。
本发明还提供了上述氮化铝钪靶材的制备方法,包括以下步骤:
(1)配料
按设定原子比,将氮化铝粉末、氮化钪粉末和添加剂X进行配料得混合料,所述添加剂X为高纯金属钪和氢化钪中的至少一种;
(2)制坯
将混合料预压成型,升温至1000~1650℃保压,冷却得到坯料;
(3)均温处理
将坯料进行均温处理后冷却;
(4)后处理
均温处理后的坯料经退火并机械加工制成靶材。
优选的,步骤(1)中,所述氮化铝粉末、氮化钪粉末和添加剂X均先经过除氧除杂处理,采用弱酸或弱碱活化液进行活化并用酒精清洗后晾干,以便降低原材料的杂质含量,其中氮化铝粉末、氮化钪粉末、高纯金属钪粉和氢化钪粉的纯度均不低于99.95%。
优选的,步骤(1)中,所述添加剂X配重占混合料总重量的百分比为0.1~20%,进一步优选为0.5~10%。
优选的,步骤(1)中,所述添加剂X为高纯金属钪和氢化钪的混合物,高纯金属钪和氢化钪的质量比为0.2~5:1,进一步优选为0.5~2:1。
在烧结过程中,钪的熔点低于氮化物的熔点,钪在烧结时可改善各组分间相互接触关系,起到粘结作用,且在烧结时受力变形状态下,含钪组元为软相,可协调各相间的变形,起到润滑作用;进一步添加氢化钪,其在高温时易分解得到游离的活性氢和单质钪,其中活性氢易于粉体和环境中的氧结合形成气态的水蒸气并脱离粉体,起到除氧的作用,且单质钪也可起到粘结和润滑作用。优选采用两者的混合物作为添加剂,协同起到除氧除杂、粘结润滑和协调变形作用,但由于氢化钪较难获得,在氧含量满足使用要求时,尽量只添加单质钪。
优选的,步骤(2)中,混合料放入模具中预压成型,先以20~120℃/min升温至300~800℃,保温5~30min;再以10~60℃/min升温至900~1650℃保压30~120min,保压状态的压力为30~200MPa;冷却至300~800℃得到坯料。本发明中,制坯时用的模具优选采用无污染模具,表面进行高温涂层防护处理,不与原材料和坯料发生反应,以减少模具带来不必要的污染。
优选的,步骤(3)中,将坯料在300~800℃条件下均温不低于0.5小时后冷却至室温。
优选的,步骤(2)的制坯和步骤(3)的均温处理过程,原材料和坯料均处于厌氧环境,这种厌氧环境可为氮气或惰性气体的环境,其中氧的分压不高于0.1Pa,优选为不高于0.01Pa,进一步优选为不高于0.001Pa。
本发明制得的氮化铝钪靶材,致密性高,氧含量低,成分均匀,在可控的含氮气的气氛中进行溅射沉积,可形成一致性好的氮化铝钪功能薄膜,以满足高性能的压电特性需求,在半导体行业中广泛推广应用。
工作原理:
氮化铝和氮化钪均为高温陶瓷,采用常规的粉末冶金方法难以制备得到高致密性的氮化铝钪靶材。单质钪的熔点较高,但低于氮化物的熔点,在高温状态下为软相,在烧结时,可改善各氮化物组分间相互接触关系,起到粘结作用,在变形状态下,软相起润滑作用,起到协调变形的作用;氢化钪,其在高温时易分解得到游离的活性氢和单质钪,其中活性氢易于粉体和环境中的氧结合形成气态的水蒸气并脱离粉体,起到除氧的作用,且单质钪也可起到粘结和润滑作用。优选采用两者的混合物作为添加剂,协同起到除氧除杂、粘结润滑和协调变形作用。通过上述系列的工艺流程,并结合添加剂的作用,氮化铝和氮化钪可有效烧结,成为致密的氮化铝钪烧结体,最终得到氧含量低、成分均匀和致密性高的氮化铝钪靶材。
与现有技术相比,本发明的优点在于:
1.靶材杂质和氧含量低:原材料纯度高,再经过除氧除杂处理,大大减少了杂质含量;坯料采用无污染的模具制坯工艺,杜绝了合成过程中杂质的引入;大尺寸靶坯制备全程处于厌氧环境中处理,大大减少了杂质的引入,因此可以获得低杂质和氧含量的合金产品,使得靶材杂质氧含量小于600ppm,其它杂质含量总和小于500ppm。
2.靶材致密度好:制坯过程经阶梯式升温保压和后处理处理,且有钪金属在变形过程中作为粘结剂起到粘结氮化物的作用,靶材完整性好,可显著消除材料中的气孔和杂质,提升了材料致密度。
3.成分均匀性好:通过制坯过程中阶梯式升温保压,并在低温状态长时间的均温处理,保证了大尺寸靶材的成分均匀性。
4.晶粒晶向可控:坯料经长时间退火,材料的组分均匀,晶粒晶向可控,平均晶粒尺寸可控制在小于100μm。
5.成膜质量高:该氮化铝钪靶材氧含量低,成分均匀,致密性高,应于溅射成膜,可避免了因采用金属或合金靶材溅射引起的靶材中毒现象、薄膜成分和形态不均匀、可能会出现部分非晶态、薄膜质量难以控制等问题,成膜质量高,薄膜性能稳定,提高了成膜的生产效率并降低生产成本,可广泛用作半导体溅射靶材。
具体实施方式
实施例1
一种氮化铝钪靶材,其制备方法如下:
(1)配料原材料为高纯的氮化铝粉末、氮化钪粉末和添加剂X1粉末,其中钪的原子比为25at.%,铝的原子比为25at.%,原材料的纯度≥99.9996%,预先用3%草酸活化液进行表面活化处理并用酒精清洗晾干,进行除氧除杂处理;其中添加剂X1粉末为高纯钪和氢化钪粉的混合物,各占原材料总重量的质量百分比为3%。
(2)制坯将混料机中混好的料放入模具中预压成型,并以40℃/min升温至600℃,保温20分钟;再以20℃/min升温至1000℃保压60分钟,压力100MPa;然后冷却至600℃;其中模具内表面涂覆了一层氮化硼保护层,以避免模具与坯料发生反应。
(3)均温处理将坯料在600℃的环境中均温2小时后炉冷至室温。
(4)后处理均温后的坯料退火并经机械加工工序制成靶材。
整个备料和受热过程,原材料和坯料均处于富氮气的厌氧环境,并处于适时循环除氧的状态,这种厌氧环境中的氧的分压不高于0.001Pa。
最终制备得到大尺寸靶材,钪的原子百分比含量为25.07at.%,铝的原子百分比含量为24.94at.%,成分均匀度(不同部位取5个点得到的成分偏差范围占该元素平均成分的百分数的最大值,以下实施例同)为±2.74%,尺寸规格为直径350mm×高10mm,靶材杂质氧含量为22.8ppm,其它杂质含量总和小于20.5ppm,相对密度为99.1%,平均晶粒尺寸62.8μm。
对比例1
一种氮化铝钪靶材,其制备方法如下:
原材料为高纯的氮化铝粉末和氮化钪粉末,其中钪的原子比为25at.%,铝的原子比为25at.%,原材料的纯度≥99.9996%,未添加添加剂,预先用3%草酸活化液进行表面活化处理并用酒精清洗晾干,进行除氧除杂处理;其它步骤同实施例1。
最终制备得到大尺寸靶材,钪的原子百分比含量为24.98at.%,铝的原子百分比含量为25.06at.%,成分均匀度为±6.87%,尺寸规格为直径350mm×高10mm,靶材杂质氧含量为825.8ppm,其它杂质含量总和小于32.4ppm,相对密度为97.3%,平均晶粒尺寸185.7μm,成分均匀度较差,晶粒较大,氧含量偏高,致密度偏低。
实施例2
一种氮化铝钪靶材,其制备方法如下:
原材料为高纯的氮化铝粉末、氮化钪粉末和添加剂X2粉末,其中钪的原子比为25at.%,铝的原子比为25at.%,原材料的纯度≥99.9996%,预先用3%草酸活化液进行表面活化处理并用酒精清洗晾干,进行除氧除杂处理;其中添加剂X2粉末为高纯钪粉,占原材料总重量的质量百分比为6%;其它步骤同实施例1。
最终制备得到大尺寸靶材,钪的原子百分比含量为24.92at.%,铝的原子百分比含量为25.12at.%,成分均匀度为±2.54%,尺寸规格为直径350mm×高10mm,靶材杂质氧含量为249.5ppm,其它杂质含量总和小于19.5ppm,相对密度为99.6%,平均晶粒尺寸54.3μm,氧含量略高于实施例1。
实施例3
一种氮化铝钪靶材,其制备方法如下:
原材料为高纯的氮化铝粉末、氮化钪粉末和添加剂X3粉末,其中铝和钪的原子比为25at.%,原材料的纯度≥99.9996%,预先用3%草酸活化液进行表面活化处理并用酒精清洗晾干,进行除氧除杂处理;其中添加剂X3粉末为氢化钪粉,占原材料总重量的质量百分比为6%;其它步骤同实施例1。
最终制备得到大尺寸靶材,钪的原子百分比含量为24.98at.%,铝的原子百分比含量为25.06at.%,成分均匀度为±3.54%,尺寸规格为直径350mm×高10mm,靶材杂质氧含量为25.3ppm,其它杂质含量总和小于21.3ppm,相对密度为99.3%,平均晶粒尺寸95.6μm。
实施例4
一种氮化铝钪靶材,其制备方法如下:
(1)配料原材料为高纯的氮化铝粉末、氮化钪粉末和添加剂X1粉末,其中钪的原子比为25at.%,铝的原子比为25at.%,原材料的纯度≥99.96%,未进行除氧除杂处理;其中添加剂X4粉末为高纯钪粉和氢化钪粉的混合物,各占原材料总重量的质量百分比为6%。
(2)制坯将混料机中混好的料放入模具中预压成型,并以40℃/min升温至600℃,保温20分钟;再以20℃/min升温至1000℃保压60分钟,压力100MPa;然后冷却至600℃;其中模具内表面涂覆了一层氮化硼保护层,以避免模具与坯料发生反应。
(3)均温处理将坯料在600℃的环境中均温2小时后炉冷至室温。
(4)后处理均温后的坯料退火并经机械加工工序制成靶材。
整个备料和受热过程,原材料和坯料均处于富氩气的厌氧环境,并处于适时循环除氧的状态,这种厌氧环境中的氧的分压不高于0.01Pa。
最终制备得到大尺寸靶材,钪的原子百分比含量为25.03at.%,铝的原子百分比含量为24.91at.%,成分均匀度为±2.98%,尺寸规格为直径350mm×高10mm,靶材杂质氧含量为82.3ppm,其它杂质含量总和小于258.2ppm,相对密度为99.2%,平均晶粒尺寸32.8μm。虽采用较低纯度(99.96%)的原材料,且未进行除氧除杂处理,但由于添加剂的作用,最终得到的靶材的氧含量和其它杂质含量也均在可控的范围。

Claims (9)

1.一种氮化铝钪靶材,其特征在于:包括氮化铝、氮化钪、氮化铝钪和单质
钪中至少两种组元,其中钪的原子百分比为5~40%,铝的原子百分比为20~50%,余量为氮;所述氮化铝钪靶材的平面尺寸不低于1×103mm2,杂质氧含量小于600ppm,其它杂质含量总和小于500ppm,相对密度大于98%,平均晶粒尺寸小于100μm;
所述的氮化铝钪靶材的制备方法,包括以下步骤:
(1)配料
按设定原子比,将氮化铝粉末、氮化钪粉末和添加剂X进行配料得混合料,
所述添加剂X为高纯金属钪和氢化钪中的至少一种;
(2)制坯
将混合料预压成型,升温至1000~1650℃保压,冷却得到坯料;
(3)均温处理
将坯料进行均温处理后冷却;
(4)后处理
均温处理后的坯料经退火并机械加工制成靶材。
2.根据权利要求1 所述的氮化铝钪靶材,其特征在于:步骤(1)中,所述氮化铝粉末、氮化钪粉末和添加剂X 均先经过除氧除杂处理,其中氮化铝粉末、氮化钪粉末、高纯金属钪粉和氢化钪粉的纯度均不低于99.95%。
3.根据权利要求1 所述的氮化铝钪靶材,其特征在于:步骤(1)中,所述添加剂X配重占混合料总重量的百分比为0.1~20%。
4.根据权利要求3 所述的氮化铝钪靶材,其特征在于:所述添加剂X配重占混合料总重量的百分比为0.5~10%。
5.根据权利要求1所述的氮化铝钪靶材,其特征在于:步骤(1)中,所述添加剂X为高纯金属钪和氢化钪的混合物,高纯金属钪和氢化钪的质量比为0.2~5:1。
6.根据权利要求5所述的氮化铝钪靶材,其特征在于:高纯金属钪和氢化钪的质量比为0.5~2:1。
7.根据权利要求1所述的氮化铝钪靶材,其特征在于:步骤(2)中,混合料放入模具中预压成型,先以20~120℃/min升温至300~800℃,保温5~30min;再以10~60℃/min升温至900~1650℃保压30~120min,保压状态的压力为30~200MPa;冷却至300~800℃得到坯料。
8.根据权利要求1所述的氮化铝钪靶材,其特征在于:步骤(3)中,将坯料在300~800℃条件下均温不低于0.5小时后冷却至室温。
9.根据权利要求1所述的氮化铝钪靶材,其特征在于:步骤(2)的制坯和步骤(2)的均温处理过程,原材料和坯料均处于厌氧环境,这种厌氧环境为氮气或惰性气体的环境,其中氧的分压不高于0.1Pa。
CN202110142179.4A 2021-02-02 2021-02-02 一种氮化铝钪靶材及其制备方法 Active CN112723893B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110142179.4A CN112723893B (zh) 2021-02-02 2021-02-02 一种氮化铝钪靶材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110142179.4A CN112723893B (zh) 2021-02-02 2021-02-02 一种氮化铝钪靶材及其制备方法

Publications (2)

Publication Number Publication Date
CN112723893A CN112723893A (zh) 2021-04-30
CN112723893B true CN112723893B (zh) 2022-11-25

Family

ID=75595497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110142179.4A Active CN112723893B (zh) 2021-02-02 2021-02-02 一种氮化铝钪靶材及其制备方法

Country Status (1)

Country Link
CN (1) CN112723893B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015116068A1 (de) * 2015-09-23 2017-03-23 Forschungsverbund Berlin E.V. (Sc,Y):AIN Einkristalle für Gitter-angepasste AlGaN Systeme
CN109161858B (zh) * 2018-09-10 2020-08-07 有研新材料股份有限公司 一种掺氮的铝钪合金靶材及其制造方法
CN109267020B (zh) * 2018-09-29 2021-02-05 有研新材料股份有限公司 一种铝氮钪合金靶材的制备方法和应用
CN110562936A (zh) * 2019-10-13 2019-12-13 江西科泰新材料有限公司 氮化铝钪材料
CN110590375A (zh) * 2019-10-13 2019-12-20 江西科泰新材料有限公司 氮化铝掺氮化钪靶材的生产工艺
CN111962021A (zh) * 2020-08-28 2020-11-20 江西科泰新材料有限公司 氮化铝掺氮化钪镀膜材料

Also Published As

Publication number Publication date
CN112723893A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
US9028658B2 (en) Mn-containing copper alloy sputtering target generating few particles
CN111139390A (zh) 一种铬掺杂改性Mo2NiB2基金属陶瓷及其制备方法
CN111118325A (zh) 一种细晶铌钛合金的制备方法
CN110590375A (zh) 氮化铝掺氮化钪靶材的生产工艺
US6984272B2 (en) Process for producing titanium material for target, titanium material for target, and sputtering target using the same
CN112723893B (zh) 一种氮化铝钪靶材及其制备方法
CN113667860A (zh) 一种超高纯铜铝铸锭及其制备方法和用途
CN111185592B (zh) 一种固相除氧制备高性能粉末冶金钛及钛合金制品的方法
CN117069509A (zh) 覆铜陶瓷基板及其制备方法
CN112962071B (zh) 一种掺杂的氮化铝钪靶材及其制备方法和应用
JP2002294438A (ja) 銅合金スパッタリングターゲット
CN112962069B (zh) 一种含金属间化合物的铝合金靶材及其制备方法
CN113046704B (zh) 一种低氧大尺寸含铝基金属间化合物的合金靶材的制备方法
CN114086086A (zh) 纳米相碳氮复合颗粒增强型因瓦合金线材及其制备方法
CN111590071B (zh) 一种钼铌合金靶材及其制备方法
CN104928539A (zh) 一种钒铝硅三元合金靶材及其制备方法
CN112962072B (zh) 一种低氧大尺寸含铝基金属间化合物的合金靶材及其制备方法
CN113571325B (zh) 磁体脱模用组合物及其用途和磁体的制备方法
CN115612872B (zh) 一种超高纯铜锰合金的熔炼工艺
CN116254447B (zh) 一种兼具高强度高塑性的高熵合金及其激光增材制造方法
CN117265489A (zh) 一种钛铝合金靶材及其制备方法
CN114892134B (zh) 一种钼合金管靶材及其制备方法和用途
CN115612874B (zh) 一种大尺寸细晶TiAl合金靶材的制备方法
CN114990417B (zh) 一种实现超级铁素体不锈钢纯净化及晶粒细化的冶炼方法
CN116694963A (zh) 一种原位金属基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230406

Address after: Room 302-1, Building 15, Xinggong Industrial Park, No. 100 Lusong Road, Changsha High tech Development Zone, Changsha City, Hunan Province, 410005

Patentee after: CHANGSHA HUAISHI NEW MATERIAL TECHNOLOGY Co.,Ltd.

Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932

Patentee before: Qiu Congzhang

TR01 Transfer of patent right