CN112642432A - 一种高效光催化性能的铜锌多氧化物纳米复合材料 - Google Patents

一种高效光催化性能的铜锌多氧化物纳米复合材料 Download PDF

Info

Publication number
CN112642432A
CN112642432A CN202011522605.9A CN202011522605A CN112642432A CN 112642432 A CN112642432 A CN 112642432A CN 202011522605 A CN202011522605 A CN 202011522605A CN 112642432 A CN112642432 A CN 112642432A
Authority
CN
China
Prior art keywords
cuo
zno
composite material
copper
mass ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011522605.9A
Other languages
English (en)
Inventor
张乐
甄方正
康健
张永丽
罗泽
申冰磊
陈东顺
周伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Original Assignee
Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd filed Critical Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Priority to CN202011522605.9A priority Critical patent/CN112642432A/zh
Publication of CN112642432A publication Critical patent/CN112642432A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

一种高效光催化性能的铜锌多氧化物纳米复合材料,属于发光材料制备应用技术领域。本发明提供了一种纳米复合材料,其组分为(CuO‑Cu2O)Cu/ZnO,采用低温燃烧法制备。本发明制备的纳米复合材料具有良好的光催化性能,对MB染料的光催化降解能力为84~98%/h。本发明提供的制备方法工艺简单,产品性能稳定,适合工业化生产。

Description

一种高效光催化性能的铜锌多氧化物纳米复合材料
技术领域
本发明提供一种高效光催化性能的铜锌多氧化物纳米复合材料,属发光材料制备应用技术领域。
背景技术
由于越来越多的工业排放污染物,水体质量下降,预计到2025年将有50%以上的国家面临缺水问题。目前面临的主要问题是合成染料、致病菌、重金属离子、农药、医药废弃物等污染物对水的污染,其中最常见的有害污染物是合成染料和细菌病原体。在自然条件下,很难降解这些染料,因为它们在自然界中是顽固的,而且这些细菌病原体也会导致一些健康问题。因此,开发合格的水净化技术是非常必要的。光催化技术是一种很有前途的绿色技术,它可以将工业有机化学物转化为无机物而不产生任何污染。光触媒产生的电子-空穴对在光的照射下,在电荷载体的帮助下发生氧化还原反应,产生活性自由基,从而作为一种有效的氧化剂去除污染物。从20世纪90年代初开始,人们就对光触媒作为一种可能的抗菌剂进行了研究, 由于高热稳定性和光敏性,与其他金属氧化物相比,ZnO和TiO2基材料被认为是流行的光催化剂。但TiO2的主要缺点与它的成本有关,同时由于带隙宽导致空穴-电子对的快速重组,导致它对可见光的吸收不足。因此,在TiO2和ZnO光催化剂的帮助下,水的净化在几年前就受到了很大的阻碍。
发明内容
1.为了解决上述问题,本发明提供了一种高效光催化性能的铜锌多氧化物纳米复合材料。本发明提供了一种纳米复合材料,其组分为(CuO-Cu2O)Cu/ZnO,采用低温燃烧法制备。本发明制备的纳米复合材料具有良好的光催化性能,对MB染料的光催化降解能力为84~98%/h。本发明提供的制备方法工艺简单,产品性能稳定,适合工业化生产。
2.本发明的技术方案如下:
首先,步骤一制备CuO纳米材料,将 Cu(NO3)2与PVP按照质量比为0.5~1:1混合。然后将混合物置于400~500℃中加热燃烧2~3h。最终得到(CuO-Cu2O)Cu异质结构的纳米材料。步骤二制备ZnO纳米材料,将Zn(NO3)2与PVP混合按照质量比为0.5~1:1混合。将混合物置于300~400℃中加热燃烧2~3h,得到ZnO纳米材料。步骤三制备(CuO-Cu2O)Cu/ZnO纳米复合材料,将硝酸锌和硝酸铜分别以按照质量比为0.5~2:1配制浓度为0.1~0.5mol/L的无水乙醇溶液,然后将步骤一和步骤二中的CuO纳米材料和ZnO纳米材料加入到溶液中,保证溶液中Cu与Zn的质量比为0.5~2:1。然后将混合溶液置于500~600℃下加热燃烧,最终得到(CuO-Cu2O)Cu/ZnO纳米复合材料。
有益效果
1.本发明提供的制备的纳米复合材料具有良好的光催化性能,对MB染料的光催化降解能力为84~98%/h。
2.本发明提供的方法在制备纳米复合材料的过程中,选用高纯的原料粉体,并严格控制杂质的引入,非常适合用于该纳米复合材料的制备。
3.本发明提供的纳米复合材料的制备方法,产量和产率高,制备过程简单,对制备时间安排要求不苛刻,可有效提高产量和降低生产成本,非常适合工业化生产。
附图说明
图1实施例制备纳米复合材料的XRD图谱;
图2实施例3制备的纳米复合材料的局部衍射图像;
图3实施例制备的纳米复合材料在1h内对MB染料的降解情况。
具体实施方式
下面结合具体实例对本发明做进一步的说明,但不应以此限制本发明的保护范围。
实施例1:纳米ZnO
将Zn(NO3)2与PVP混合按照质量比为1:1混合,将混合物置于400℃中加热燃烧2h,得到ZnO纳米材料。
实施例2:纳米(CuO-Cu2O)Cu
将 Cu(NO3)2与PVP按照质量比为0.8:1混合。然后将混合物置于500℃中加热燃烧2h,得到 (CuO-Cu2O)Cu异质结构的纳米材料。
实施例3:纳米(CuO-Cu2O)Cu/ZnO(CCCZ11)
首先,制备CuO纳米材料,将 Cu(NO3)2与PVP按照质量比为1:1混合。然后将混合物置于400℃中加热燃烧3h。最终得到(CuO-Cu2O)Cu异质结构的纳米材料。然后,制备ZnO纳米材料,将Zn(NO3)2与PVP混合按照质量比为0.5:1混合。将混合物置于300℃中加热燃烧3h,得到ZnO纳米材料。然后,制备(CuO-Cu2O)Cu/ZnO纳米复合材料,将硝酸锌和硝酸铜分别以按照质量比为0.5:1配制浓度为0.5mol/L的无水乙醇溶液,然后将上述制备的的CuO纳米材料和ZnO纳米材料加入到溶液中,保证溶液中Cu与Zn的质量比为1:1。然后将混合溶液置于500℃下加热燃烧,最终得到(CuO-Cu2O)Cu/ZnO纳米复合材料。
实施例4:纳米(CuO-Cu2O)Cu/2ZnO(CCCZ12)
首先,制备CuO纳米材料,将 Cu(NO3)2与PVP按照质量比为0.5:1混合。然后将混合物置于500℃中加热燃烧2h。最终得到(CuO-Cu2O)Cu异质结构的纳米材料。然后,制备ZnO纳米材料,将Zn(NO3)2与PVP混合按照质量比为1:1混合。将混合物置于400℃中加热燃烧2h,得到ZnO纳米材料。然后,制备(CuO-Cu2O)Cu/ZnO纳米复合材料,将硝酸锌和硝酸铜分别以按照质量比为2:1配制浓度为0.1mol/L的无水乙醇溶液,然后将上述制备的的CuO纳米材料和ZnO纳米材料加入到溶液中,保证溶液中Cu与Zn的质量比为0.5:1。然后将混合溶液置于600℃下加热燃烧,最终得到(CuO-Cu2O)Cu/ZnO纳米复合材料。
实施例5:纳米2(CuO-Cu2O)Cu/ZnO(CCCZ21)
首先,制备CuO纳米材料,将 Cu(NO3)2与PVP按照质量比为0.8:1混合。然后将混合物置于450℃中加热燃烧2.5h。最终得到(CuO-Cu2O)Cu异质结构的纳米材料。然后,制备ZnO纳米材料,将Zn(NO3)2与PVP混合按照质量比为0.8:1混合。将混合物置于350℃中加热燃烧2.5h,得到ZnO纳米材料。然后,制备(CuO-Cu2O)Cu/ZnO纳米复合材料,将硝酸锌和硝酸铜分别以按照质量比为1:1配制浓度为0.3mol/L的无水乙醇溶液,然后将上述制备的的CuO纳米材料和ZnO纳米材料加入到溶液中,保证溶液中Cu与Zn的质量比为2:1。然后将混合溶液置于550℃下加热燃烧,最终得到(CuO-Cu2O)Cu/ZnO纳米复合材料。
由图1中的XRD图谱可以看出,,其中CCC即(CuO-Cu2O)Cu包含了CuO的峰,CCCZ即2(CuO-Cu2O)Cu/ZnO包含了CCC与ZnO的峰,通过本发明提供的方法成功合成了各步骤的高纯纳米材料。以实施例3为例,根据图2所示,实施例3的局部衍射图像可以看出证明了纳米复合材料是由CuO、Cu2O、Cu和ZnO组成的,即出现了它们的结构,多纳米氧化物复合材料显示出多方向的晶格边缘。图3可以看出,纳米复合材料表现出了更好的光催化降解性能,其中Dark和Photolysis分别为黑暗和光照条件下的空白对照组,本发明制备的纳米复合材料的光催化降解能力最低为84%,最高为98%/h。
最后需要说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的范围,其均应涵盖在本发明的权利要求范围中。

Claims (2)

1.一种高效光催化性能的铜锌多氧化物纳米复合材料,其特征在于,所述氧化物纳米复合材料满足下式所示组分:
(CuO-Cu2O)Cu/ZnO;
采用低温燃烧法制备,具体步骤如下:
步骤一,制备CuO纳米材料:将 Cu(NO3)2与PVP按照质量比为0.5~1:1混合;然后将混合物置于400~500℃中加热燃烧2~3h;最终得到(CuO-Cu2O)Cu异质结构的纳米材料;
步骤二,制备ZnO纳米材料:将Zn(NO3)2与PVP混合按照质量比为0.5~1:1混合;将混合物置于300~400℃中加热燃烧2~3h,得到ZnO纳米材料;
步骤三,制备(CuO-Cu2O)Cu/ZnO纳米复合材料:将硝酸锌和硝酸铜分别以按照质量比为0.5~2:1配制浓度为0.1~0.5mol/L的无水乙醇溶液,然后将步骤一和步骤二中的CuO纳米材料和ZnO纳米材料加入到溶液中,保证溶液中Cu与Zn的质量比为0.5~2:1;然后将混合溶液置于500~600℃下加热燃烧,最终得到(CuO-Cu2O)Cu/ZnO纳米复合材料。
2.一种高效光催化性能的铜锌多氧化物纳米复合材料,其特征在于,所述纳米复合材料对MB染料的光催化降解能力为84~98%/h。
CN202011522605.9A 2020-12-21 2020-12-21 一种高效光催化性能的铜锌多氧化物纳米复合材料 Pending CN112642432A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011522605.9A CN112642432A (zh) 2020-12-21 2020-12-21 一种高效光催化性能的铜锌多氧化物纳米复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011522605.9A CN112642432A (zh) 2020-12-21 2020-12-21 一种高效光催化性能的铜锌多氧化物纳米复合材料

Publications (1)

Publication Number Publication Date
CN112642432A true CN112642432A (zh) 2021-04-13

Family

ID=75359016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011522605.9A Pending CN112642432A (zh) 2020-12-21 2020-12-21 一种高效光催化性能的铜锌多氧化物纳米复合材料

Country Status (1)

Country Link
CN (1) CN112642432A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708471A (zh) * 2009-11-09 2010-05-19 北京航空航天大学 氧化锌/氧化亚铜纳米异质结光催化材料及其制备方法
CN102513112A (zh) * 2011-11-30 2012-06-27 四川长虹电器股份有限公司 一种CuO/ZnO复合光催化剂的制备方法
CN104650857A (zh) * 2015-01-30 2015-05-27 长安大学 铜离子增强ZnO纳米材料可见光发射强度的应用
CN108423706A (zh) * 2018-03-09 2018-08-21 绍兴文理学院 一种CuO/ZnO微球的合成方法
CN111036189A (zh) * 2019-11-29 2020-04-21 昆明理工大学 活性炭负载ZnO/CuO或ZnO/CuO/Cu2O光催化复合粉体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708471A (zh) * 2009-11-09 2010-05-19 北京航空航天大学 氧化锌/氧化亚铜纳米异质结光催化材料及其制备方法
CN102513112A (zh) * 2011-11-30 2012-06-27 四川长虹电器股份有限公司 一种CuO/ZnO复合光催化剂的制备方法
CN104650857A (zh) * 2015-01-30 2015-05-27 长安大学 铜离子增强ZnO纳米材料可见光发射强度的应用
CN108423706A (zh) * 2018-03-09 2018-08-21 绍兴文理学院 一种CuO/ZnO微球的合成方法
CN111036189A (zh) * 2019-11-29 2020-04-21 昆明理工大学 活性炭负载ZnO/CuO或ZnO/CuO/Cu2O光催化复合粉体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. UMA ET AL.: ""Controlled synthesis of (CuO-Cu2O)Cu/ZnO multi oxide nanocomposites by facile combustion route: A potential photocatalytic, antimicrobial and anticancer activity"", 《CERAMICS INTERNATIONAL》 *
H. VAHDAT VASEI ET AL.: ""Different morphologies of ZnO via solution combustion synthesis: The role of fuel"", 《MATERIALS RESEARCH BULLETIN》 *

Similar Documents

Publication Publication Date Title
CN107138161B (zh) 一种掺杂黑色二氧化钛的制备方法
CN108686665B (zh) 一种纳米棒铁酸锌原位复合片层二氧化钛光催化材料的制备方法
CN112619659B (zh) 一种氧化镍纳米片和钼酸铋纳米纤维异质结光催化材料及其制备方法与应用
CN114700104B (zh) 一种以石墨相氮化碳为模板的掺碳多孔微球无铅双钙钛矿复合光催化剂的制备方法
CN108906089B (zh) 一种BiOI同质结复合光催化剂的制备方法
CN113318761A (zh) 一种Bi3O4Br/CsPbBr3复合材料的制备方法
Zhou et al. In situ fabrication of Bi 2 Ti 2 O 7/TiO 2 heterostructure submicron fibers for enhanced photocatalytic activity
Zhang et al. Fabrication, structure, and application of sulfur-and sulfide-modified bismuth based photocatalysts: A review
CN108525695B (zh) 一种二维层状结构的石墨烯/碳氮烯/溴氧铋复合纳米光催化材料及其制备方法和应用
CN114768881A (zh) 一种Z型Bi4O5Br2/MIL-88B(Fe)异质结光催化剂的制备方法
CN111558389B (zh) 一种BiVO4/质子化g-C3N4/AgI三元复合光催化剂及其制备方法
CN110064386B (zh) 一种锡纳米颗粒修饰的具氧空位四氧化三锡纳米片复合光催化材料及制备方法
CN112642432A (zh) 一种高效光催化性能的铜锌多氧化物纳米复合材料
CN111569934A (zh) 一种铁铌酸铋/石墨相氮化碳复合光催化剂的制备方法
CN110152684B (zh) Bi2S3@Cu2O@Cu微纳米异质结构的制备方法
CN110038641B (zh) 钒酸铋/铬卟啉/石墨烯量子点二维复合z型光催化材料、制备方法及应用
CN109289887B (zh) 一种氮、钒共掺杂二氧化钛/钽酸铋z型异质结光催化剂的制备方法及应用
CN107857333B (zh) 光催化降解污染物的方法
CN103877969B (zh) 一种In2O3·InVO4异质结构复合物及其制备和应用方法
CN112108161B (zh) 快速制备钒酸铋/溴氧化铋纳米片异质结光催化剂的方法及其产品和应用
CN110201674B (zh) 一种镍掺杂四氧化三锡纳米花光催化材料及制备方法
CN111921521B (zh) 一种钨/锌晶格互掺的高效纳米弱光光触媒的制备方法
CN114853066A (zh) 一种基于自掺杂调控晶面暴露的钛铌酸铋纳米片及制备方法
CN109317177B (zh) 一种合成氮掺杂钒酸铋光催化剂的方法及其应用
CN113856668A (zh) 一种Bi/BiVO4复合异质结光催化材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210413

RJ01 Rejection of invention patent application after publication