CN112553135B - 一种腺苷工程菌及其构建方法与应用 - Google Patents

一种腺苷工程菌及其构建方法与应用 Download PDF

Info

Publication number
CN112553135B
CN112553135B CN202110188665.XA CN202110188665A CN112553135B CN 112553135 B CN112553135 B CN 112553135B CN 202110188665 A CN202110188665 A CN 202110188665A CN 112553135 B CN112553135 B CN 112553135B
Authority
CN
China
Prior art keywords
gene
adenosine
artificial sequence
sequence
ptrc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110188665.XA
Other languages
English (en)
Other versions
CN112553135A (zh
Inventor
徐庆阳
梅漫莉
李燕军
张成林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Ruinuo Biotechnology Co.,Ltd.
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202110188665.XA priority Critical patent/CN112553135B/zh
Publication of CN112553135A publication Critical patent/CN112553135A/zh
Application granted granted Critical
Publication of CN112553135B publication Critical patent/CN112553135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2497Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing N- glycosyl compounds (3.2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides
    • C12P19/40Nucleosides having a condensed ring system containing a six-membered ring having two nitrogen atoms in the same ring, e.g. purine nucleosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01205IMP dehydrogenase (1.1.1.205)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02001Purine-nucleoside phosphorylase (2.4.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/02Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2) hydrolysing N-glycosyl compounds (3.2.2)
    • C12Y302/02004AMP nucleosidase (3.2.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04004Adenosine deaminase (3.5.4.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/01Hydrolases acting on acid anhydrides (3.6) in phosphorus-containing anhydrides (3.6.1)
    • C12Y306/01024Nucleoside phosphoacylhydrolase (3.6.1.24)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/04Other carbon-nitrogen ligases (6.3.4)
    • C12Y603/04004Adenylosuccinate synthase (6.3.4.4)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了一种腺苷工程菌及其构建方法与应用,在E.coli w3110的基因组中整合嘌呤核苷操纵子purEKBCSQLFMNHD,并由强启动子Ptrc启动;另外在大肠杆菌基因组上整合了腺苷琥珀酸合酶基因purA,用Ptrc启动子启动;还在mbhA位点整合了核苷酸磷酸酯酶基因yfkN,并用启动子Ptrc启动;同时缺失IMP脱氢酶,AMP核苷酸酶,腺苷脱氨酶和嘌呤核苷磷酸化酶活性,从而重构了腺苷合成途径,为利用大肠杆菌生产嘌呤类物质奠定了基础;另外利用该基因工程菌进行摇瓶发酵生产腺苷,发酵24 h生产腺苷4.3 g/L,优化了大肠发酵生产腺苷的培养基成分,从而使腺苷发酵得到最优的效果。这为后续发酵生产腺苷奠定了基础。

Description

一种腺苷工程菌及其构建方法与应用
技术领域
本发明主要涉及基因工程技术领域,尤其是一种腺苷工程菌及其构建方法与应用。
背景技术
腺苷,化学名为9-β-D-呋喃核糖基腺嘌呤,是由腺嘌呤的N-9与D-核糖的C-1通过β糖苷键连接而成的化合物,其磷酸酯为腺苷酸。腺苷属于重要的核苷酸衍生物,是腺嘌呤核苷酸脱磷酸后的产物。腺苷可直接进入心肌经磷酸化生成腺苷酸,参与心肌能量代谢,同时还参与扩张冠状血管,增加冠脉血流量,是合成腺苷酸、环腺苷酸、 三磷酸腺苷的主要原料,ATP 已被广泛应用于治疗心不全、脑动脉硬化及肌肉萎缩等症。此外,腺苷还是一种抑制性神经传导物,在神经传递中起重要作用。除此之外腺苷能有效治疗室上性心动过速症,在美国 ,腺苷是经美国食品药品监督管理局批准的转复阵发性室上性心动过速的一线药物 , 也是经 FDA 批准的用于心脏药物负荷试验的两种药物之一,已经成为急诊处理快速性心律失常和药物负荷试验的常规用药。因此,腺苷在医学方面有着重要的作用。
腺苷的生产方法主要有化学合成法、RNA水解法和发酵法。化学合成法是以不同化学物质为底物进行化学合成腺苷,该方法合成腺苷存在着成本偏高,反应繁琐,产量低,收率低等一系列问题。RNA水解法是利用磷酸二酯酶水解酵母RNA,得到4种5’-核苷酸,然后进一步水解脱磷酸,该方法的缺陷是同时会得到四种核苷物质,这给后续的分离带来了困难。发酵法是通过选育解除了终产物反馈抑制的枯草芽孢杆菌或短小芽孢杆菌进行直接发酵。发酵过程中提供充足的营养使菌体大量繁殖并生产腺苷。发酵法生产腺苷成本较低,原料易得,且生产过程相对简单,产苷效率较高,因此在腺苷生产中占据绝对优势。但目前市场上用于腺苷发酵的菌种大多是枯草芽孢杆菌,其发酵过程中对培养基要求比较高,需要提供大量的氮源,有时需要加入大量的玉米浆,且发酵周期长达50-60多小时,从而大大提高了发酵成本且易造成染菌倒灌。而枯草芽孢杆菌的基因工程改造难度较大,不易进行系统定向分子改造。
发明内容
本发明所要解决的技术问题在于提供一种腺苷工程菌。
本发明所要解决的另一技术问题在于提供上述腺苷工程菌的构建方法,通过采用大肠杆菌进行腺苷摇瓶发酵生产的方法,为用大肠杆菌进行腺苷发酵奠定了基础,且可操作性强,基因工程菌可以重复获得。
为解决上述技术问题,本发明的技术方案是:
一种腺苷工程菌,是由下述方法制备得到的:在大肠杆菌E.coli W3110的基因组上构建嘌呤核苷操纵子purEKBCSQLFMNHD,将嘌呤核苷操纵子purEKBCSQLFMNHD整合在大肠杆菌假基因yjiV(原始基因序列为序列表SEQ ID NO:1所示序列)位点上,并由Ptrc启动子启动(假基因yjiV整合purEKBCSQLFMNHD操纵子后序列为序列表SEQ ID NO:2所示序列);还将腺苷琥珀酸合酶基因purA连接Ptrc启动子整合在大肠杆菌假基因位点yghE(核酸序列如SEQ ID NO:3所示)上(假基因yghE整合purA后序列如SEQ ID NO:4所示);在大肠杆菌mbhA(核酸序列如SEQ ID NO:5所示)基因位点整合了核苷酸磷酸酯酶基因yfkN,并用启动子Ptrc启动(假基因mbhA整合yfkN后基因序列如SEQ ID NO:6所示);另外缺失IMP脱氢酶(guaB,基因序列如SEQ ID NO:7所示,guaB敲除后序列如SEQ ID NO:8所示);腺苷脱氨酶(add,基因序列如SEQ ID NO:9所示,add敲除后序列如SEQ ID NO:10所示)和AMP核苷酸酶(amn,基因序列如SEQ ID NO:11所示,Amn敲除后序列如SEQ ID NO:12所示)活性。敲除ygdH基因(基因序列如SEQ ID NO:13所示,ygdH敲除后基因序列如SEQ ID NO:14所示)。除此之外还缺失嘌呤核苷磷酸化酶(deoD,基因序列如SEQ ID NO:15所示,deoD敲除后基因序列如SEQ ID NO:16所示)活性,切断IMP,AMP和腺苷的大部分降解途径。
优选的,上述腺苷工程菌,在大肠杆菌的基因组上整合了purEKBCSQLFMNHD操纵子、purA基因和yfkN基因,并用Ptrc启动子启动,敲除guaB、add、amn、ygdH和deoD基因。
优选的,上述腺苷工程菌,所述大肠杆菌为含pREDCas9质粒的E.coli W3110,该菌株购自天津科技大学。
优选的,上述腺苷工程菌,所述嘌呤核苷操纵子purEKBCSQLFMNHD以及腺苷琥珀酸合酶基因purA和核苷酸磷酸酯酶基因yfkN均来源于枯草芽孢杆菌Bacillus subtilis XGL,该菌种购自天津科技大学。
上述腺苷工程菌的构建方法,步骤如下:在大肠杆菌E.coli W3110的基因组上构建嘌呤核苷操纵子purEKBCSQLFMNHD,将嘌呤核苷操纵子purEKBCSQLFMNHD整合在大肠杆菌假基因yjiV位点上,并由Ptrc启动子启动(假基因yjiV原始基因序列如序列表SEQ ID NO:1所示,假基因yjiV整合purEKBCSQLFMNHD操纵子后序列为序列表SEQ ID NO:2所示序列);还在假基因位点yghE上整合了腺苷琥珀酸合酶基因purA,用Ptrc启动子启动(假基因yghE原始基因序列如序列表SEQ ID NO:3所示,整合后基因序列为序列表SEQ ID NO:4所示序列);在大肠杆菌mbhA基因位点整合了核苷酸磷酸酯酶基因yfkN,并用启动子Ptrc启动(假基因mbhA原始基因序列如序列表SEQ ID NO:5所示,整合后基因序列为序列表SEQ ID NO:6所示序列);另外缺失IMP脱氢酶(guaB,敲除前基因序列如序列表SEQ ID NO:7所示,敲除后基因序列为序列表SEQ ID NO:8所示);腺苷脱氨酶(add, 敲除前基因序列如序列表SEQ ID NO:9所示,敲除后基因序列为序列表SEQ ID NO:10所示)和AMP核苷酸酶(amn, 敲除前基因序列如序列表SEQ ID NO:11所示,敲除后基因序列为序列表SEQ ID NO:12所示)。敲除ygdH基因(敲除前基因序列如序列表SEQ ID NO:13所示,敲除后基因序列为序列表SEQ ID NO:14所示)。还缺失嘌呤核苷磷酸化酶(deoD, 敲除前基因序列如序列表SEQ ID NO:15所示,敲除后基因序列为序列表SEQ ID NO:16所示)活性,切断IMP,AMP和腺苷的大部分降解途径。
优选的,上述腺苷工程菌的构建方法,采用CRISPR/Cas9介导的基因编辑技术对大肠杆菌进行定向基因改造,包括如下步骤:
(1)将嘌呤核苷操纵子purEKBCSQLFMNHD整合在大肠杆菌假基因yjiV位点上,并用强启动子Ptrc启动;
(2)腺苷琥珀酸合酶基因purA整合在大肠杆菌假基因位点yghE上,并链接Ptrc启动子;
(3)在大肠杆菌mbhA基因位点整合了核苷酸磷酸酯酶基因yfkN,并用启动子Ptrc启动;
(4)敲除guaB基因,阻断腺苷的前体物IMP的支路代谢;
(5)敲除amn,ygdH基因,减弱腺苷的前体物AMP的降解;
(6)敲除add和deoD基因,减弱腺苷的降解。
优选的,上述腺苷工程菌的构建方法,将嘌呤核苷操纵子purEKBCSQLFMNHD整合在大肠杆菌假基因yjiV位点上,并用强启动子Ptrc启动,该操纵子共十二个基因,能催化5-磷酸核糖生成IMP;腺苷琥珀酸合酶基因purA整合在大肠杆菌假基因位点yghE上,并链接Ptrc启动子;在大肠杆菌mbhA基因位点整合了核苷酸磷酸酯酶基因yfkN,并用启动子Ptrc启动。除此之外,还缺失IMP脱氢酶(guaB),腺苷脱氨酶(add)和 AMP核苷酸酶(amn)活性,敲除ygdH基因,缺失嘌呤核苷磷酸化酶(deoD)活性,切断IMP,AMP和腺苷的大部分降解途径。
优选的,上述腺苷工程菌的构建方法,所述嘌呤核苷操纵子序列较大,大于12000bp,采用大片段整合法,总共分五次整合,包括以下步骤:
(1)将强启动子Ptrc与purE, purK和purB基因连接后,并在purB后面插入一个剪切识别序列(添加靶序列的目的是让质粒pGRB转录出的相应的gRNA与pREDCas9质粒表达出的Cas9蛋白形成复合体,识别靶序列,从而实现目的DNA双链断裂,有利于后续片段整合在该位点之后;包含该靶序列的DNA片段gRNA-pur1-S和gRNA-pur1-A见下表1, pGRB制作方法参考专利CN 108130306 A,下同),整合到E.coli W3110的假基因位点yjiV上(构建pGRB-yjiV过程中用到的靶序列的DNA片段gRNA-yjiV-S和gRNA-yjiV-A见下表1);
(2)将purCSQ基因依次整合在purB基因的后面,在该基因后面插入一个靶序列(包含靶序列的DNA片段为gRNA-pur2-S和gRNA-pur2-A,见下表1);
(3)用同一种方法把purL基因整合在purQ基因的后面(包含靶序列的DNA片段为gRNA-pur3-S和gRNA-pur3-A,见下表1);
(4)同样,把purFMN基因整合在purL基因的后面(包含该靶序列的DNA片段gRNA-pur1-S和gRNA-pur1-A);
(5)把purHD基因整合在purN基因的后面。
优选的,上述腺苷工程菌的构建方法,在上述步骤(5)的基础上,继续进行如下操作步骤:
(6)将purA基因与Ptrc启动子连接,整合到假基因yghE位点上(构建pGRB-yghE过程中用到的靶序列的DNA片段gRNA-yghE-S和gRNA-yghE-A见下表1);
(7)把yfkN基因的前1900bp左右的碱基与强启动子Ptrc连接,后加识别靶序列(包含靶序列的DNA片段为gRNA-pur3-S和gRNA-pur3-A,见下表1),整合到假基因mbhA上(构建pGRB-mbhA过程中用到的靶序列的DNA片段gRNA-mbhA-S和gRNA-mbhA-A见下表1),之后再把yfkN基因的后半部分碱基整合到前半部分碱基的后面;
(8)将guaB基因敲除,减弱前体物IMP的支路代谢,使其更多地流向腺苷的合成途径中;
(9)敲除add基因,阻断腺苷到肌苷的降解途径;
(10)敲除amn和ygdH基因,减少腺苷前体物AMP到腺嘌呤的转化;
(11)敲除deoD基因,减弱腺苷到腺嘌呤的降解途径。
上述腺苷工程菌在摇瓶发酵生产腺苷方面的应用。
上述腺苷工程菌的应用,具体摇瓶发酵方法是:将腺苷工程菌菌株接种于LB摇管中,37℃,200 r/min培养10-12h,然后按10%的接种量接种于30 mL的发酵种子瓶中(500 mL的挡板瓶加菌液后定容至30 mL),37℃,200 rpm培养7-10h,然后再按10%的接种量接种于发酵瓶中(同上),发酵24-30 h;发酵期间需用氨水维持发酵液pH在7 .0-7 .2;补加60%(m/v)葡萄糖溶液维持发酵进行。
优选的,上述腺苷工程菌的应用,用于摇瓶发酵的种子培养基成分为:葡萄糖30g/L,酵母粉2 g/L,蛋白胨2 g/L,柠檬酸1 g/L,硫酸铵3 g/L,硫酸镁 0.4 g/L,磷酸二氢钾1.5 g/L,硫酸亚铁10 mg/L,硫酸锰5 mg/L,谷氨酸0.4 g/L,VB1 0.5 mg/L,pH调至7.0-7.2,115℃灭菌15 min。
优选的,上述腺苷工程菌的应用,用于摇瓶发酵的发酵培养基成分为:葡萄糖30g/L,酵母粉4 g/L,蛋白胨1 g/L,柠檬酸1 g/L,硫酸铵3 g/L,硫酸镁 1 g/L,磷酸二氢钾3.5 g/L,硫酸亚铁20 mg/L,硫酸锰10 mg/L,谷氨酸1 g/L,VB1 0.5 mg/L,pH调至7.0-7.2,加入少量的苯酚红和消泡剂,121℃,灭菌20 min。
有益效果:
上述腺苷工程菌及其构建方法与应用,所述菌株遗传背景简单,方便后续基因工程改造,用该菌株发酵生产腺苷所需培养基成份简单,无需消耗大量氮源,因此不易染菌,减少了倒灌的风险,大大节省了发酵成本,而且有利于后续的分离提取;由于工程菌的构建使得发酵周期也可由原来的50多小时缩减为现在的24-30小时,大大缩短了发酵周期,提高了生产效率。所述构建菌株的方法简单便捷,可行性强,重构腺苷合成途径,为利用大肠杆菌生产嘌呤类物质奠定了基础,利用该基因工程菌进行摇瓶发酵生产腺苷并优化了发酵培养基成分,从而使发酵得到最优的效果,为后续发酵生产腺苷奠定了基础。
附图说明
图1为purEKB基因整合片段电泳图;
图2为purCSQ基因整合片段电泳图;
图3为purL基因整合片段电泳图;
图4为purFMN基因整合片段电泳图;
图5为purH-purD基因整合片段电泳图;
图6为 yfkN-UP基因整合片段电泳图;
图7为 yfkN-DN基因整合片段电泳图;
图8为purA基因整合片段电泳图;
图9为guaB基因敲除片段电泳图;
图10为add基因敲除片段电泳图;
图11为amn基因敲除片段电泳图;
图12为ygdH基因敲除片段电泳图;
图13为deoD基因敲除片段电泳图。
其中图1-8从左到右依次为: 1kb DNA marker;上游同源臂;下游同源臂;目的片段;重叠片段;原菌对照;阳性菌鉴定片段。
图9-13从左到右依次为: 1kb DNA marker;上游同源臂;下游同源臂;重叠片段;原菌对照;阳性菌鉴定片段。
具体实施方式
下面通过具体的实施方案叙述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。
本发明公开了一种腺苷工程菌的构造及其发酵方法,具体包括以下步骤:
步骤1:将强启动子Ptrc与purE, purK和purB基因连接后,在purB后面插入一个识别靶序列,整合到假基因位点yjiV上。
步骤2:将purCSQ基因依次整合在purB基因的后面,并在整合的最后一个基因上插入一个识别靶序列。
步骤3:把purL基因整合在purQ基因的后面,并在purL基因上插入一个识别靶序列。
步骤4:把purFMN基因整合在purL的后面,并在整合的最后一个基因上插入一个识别靶序列。
步骤5:把purHD基因整合在purN基因的后面。
步骤6:将purA基因与Ptrc启动子连接,整合到假基因yghE位点上。
步骤7:把yfkN基因的前1900bp左右的碱基与强启动子Ptrc连接,后加识别靶序列,整合到假基因mbhA上,之后再把yfkN基因的后半部分碱基整合到前半部分碱基的后面。
步骤8:将guaB基因敲除,减弱前体物IMP的支路代谢,使其更多地流向腺苷的合成途径中。
步骤9:敲除add基因,阻断腺苷到肌苷的降解途径。
步骤10:敲除amn和ygdH基因,减弱腺苷前体物AMP到腺嘌呤的降解途径。
步骤11:敲除deoD基因,减弱腺苷到腺嘌呤的降解途径。
下面结合具体实施例对本发明所述技术方案作进一步的说明,未明确序列的参加说明书技术方案部分。
实施例1
将嘌呤核苷操纵子purEKBCSQLFMNHD整合到大肠杆菌中
1.利用premier5软件,以上述大肠杆菌基因组为模板(大肠杆菌是含pREDCas9质粒的E.coli W3110,购自天津科技大学)根据假基因yjiV的上下游设计上游同源臂引物(UP-yjiV-S、UP-yjiV-A)和下游同源臂引物(DN-yjiV-S、DN-yjiV-A)并PCR扩增其上下游同源臂片段。再以B.subtilisXGL基因组为模板设计目的基因purEKB的上下游引物(purEKB-S、purEKB-A)并PCR扩增出其目的片段。启动子设计在上游同源臂的下游引物和目的片段的上游引物中,识别靶序列则设计在目的片段的下游引物和下游同源臂的上游引物中(上述所涉及的引物见表1)。上述涉及的上游同源臂长度为477bp,下游同源臂499bp,目的基因的长度为3002bp,具体见图1。
2.利用PCR重叠技术将上游同源臂、目的基因、下游同源臂进行重叠。获得一个整合片段(上游同源臂-Ptrc-purEKB-下游同源臂)该重叠片段长度为3978bp,具体见图1。
3.制作大肠杆菌感受态细胞:将带有pREDCas9的E.coli W3110接入LB摇管中,32℃培养至OD600=0 .1~0 .2时,添加0 .1M的IPTG(使其终浓度为0 .1mM),继续培养至OD600=0 .6~0 .7时进行感受态制备。添加IPTG的目的是使pREDCas9质粒上的重组酶诱导表达。感受态制备所需培养基及制备过程参照常规标准操作。
4.构建pGRB(构建质粒pGRB的目的是为了转录相应的gRNA,从而与pREDCas9质粒表达出的Cas9蛋白形成复合体,并识别识别靶序列,实现目的DNA双链断裂),其方法参考专利CN 108130306 A,构建pGRB-yjiV过程中用到的靶序列的DNA片段gRNA-yjiV-S和gRNA-yjiV-A见下表1。
5.将pGRB和供体DNA片段同时电转化至含有pREDCas9的E.coli W3110电转感受态细胞中。将电转化后复苏培养2 h后的菌体吸取100 uL涂布于含氨苄青霉素和奇霉素的LB平板上,32℃过夜培养。
6.用上游同源臂上游引物和下游同源臂的下游引物,或设计专门的鉴定引物,进行菌落PCR验证,筛选阳性重组子并保菌。(这里由于阳性重组子与原菌落条带大小相差不是很多,因此鉴定的时候用的鉴定引物为目的基因的上下游引物(purEKB-S、purEKB-A),所以进行菌落PCR后原菌落呈现无条带,阳性重组子的条带大小为3002bp)具体见图1。
7. 丢掉pGRB:将挑选出的阳性重组子接入含有奇霉素和阿拉伯糖的LB摇管中32℃培养过夜,在含有奇霉素的LB平板上进行平板划线32℃培养14-16 h后挑取单菌落分别在含有氨苄青霉素和奇霉素的LB平板上对点,再32℃培养12 h,挑选氨苄青霉素平板上没长,奇霉素平板上长的菌进行保菌(该菌株即为丢掉pGRB质粒的菌株),以便下个基因整合时待用。
8.利用上面1-7的方法整合purCQLFMNHD基因到purEKB的后面。具体的引物设计序列见下表1,上下游同源臂,目的片段,重叠片段,原菌条带,阳性重组子大小分别见图2、3、4、5。
9. 同样利用1-7的方法将腺苷琥珀酸合酶基因purA整合在假基因位点yghE上,并链接Ptrc启动子(purA基因后无需设计靶位点)。构建pGRB-yghE过程中用到的靶序列的DNA片段gRNA-yghE-S和gRNA-yghE-A见下表1。过程中涉及到的具体引物设计序列见表1,具体基因片段大小见图6。
实施例2
把yfkN基因与强启动子Ptrc连接并整合到假基因mbhA上。与上述基因不同的是yfkN基因序列比较大,如果一次性整合效率不高,因此需要进行分段整合。因此把yfkN基因分成yfkN-UP和yfkN-DN两段。具体步骤分为以下几步:
1.利用premier5软件,以上述大肠杆菌基因组为模板根据假基因mbhA的上下游设计上游同源臂引物(UP-mbhA-S、UP-mbhA-A)和下游同源臂引物(DN-mbhA-S1、DN-mbhA-A)并PCR扩增其上下游同源臂片段。再以Bacillus subtilis XGL基因组为模板设计目的基因yfkN-UP的上下游引物(yfkN-UP-S、yfkN-UP-A)并PCR扩增出其目的片段。启动子设计在上游同源臂的下游引物和目的片段的上游引物中,为了便于yfkN-DN基因的整合,同样需要设计剪切位点,识别靶序列(包含靶序列的DNA片段为gRNA-pur3-S和gRNA-pur3-A,见下表1)则设计在目的片段的下游引物和下游同源臂的上游引物中。上述涉及的上游同源臂长度为636bp,下游同源臂686bp,目的基因的长度为2004bp,具体见图7。
2.利用PCR重叠技术将上游同源臂、目的基因、下游同源臂进行重叠。获得一个整合片段(上游同源臂-Ptrc- yfkN-UP -下游同源臂)。具体引物设计序列见表1。该重叠片段长度为3326bp,具体见图7。
3.制作大肠杆菌感受态细胞:将带有pREDCas9的E.coli W3110接入LB摇管中,32℃培养至OD600=0 .1~0 .2时,添加0 .1M的IPTG(使其终浓度为0 .1mM),继续培养 至OD600=0 .6~0 .7时进行感受态制备。添加IPTG的目的是使pREDCas9质粒上的重组酶诱导表达。感受态制备所需培养基及制备过程参照常规标准操作。
4.构建pGRB,构建pGRB-mbhA过程中用到的靶序列的DNA片段gRNA-mbhA-S和gRNA-mbhA-A见下表1。
5.将pGRB和供体DNA片段同时电转化至含有pREDCas9的E.coli W3110电转感受态细胞中。将电转化后复苏培养2 h后的菌体吸取100 uL涂布于含氨苄青霉素和奇霉素的LB平板上,32℃过夜培养。
6.用上游同源臂上游引物和下游同源臂的下游引物,或设计专门的鉴定引物,进行菌落PCR验证,筛选阳性重组子并保菌。其中原菌大小为1837bp,阳性重组子大小为3326bp,具体基因片段大小见图7。
7. 丢掉pGRB:将挑选出的阳性重组子接入含有奇霉素和阿拉伯糖的LB摇管中32℃培养过夜,在含有奇霉素的LB平板上进行平板划线32℃培养14-16 h后挑取单菌落分别在含有氨苄青霉素和奇霉素的LB平板上对点,再32℃培养12 h,挑选氨苄青霉素平板上没长,奇霉素平板上长的菌进行保菌(该菌株即为丢掉pGRB质粒的菌株),以便下次待用。
8.利用上面1-7的方法整合yfkN-DN基因到yfkN-UP的后面。具体引物设计序列见表1,具体基因片段大小见图8。
实施例3
有关腺苷前体物和腺苷降解途径相关基因guaB,add,amn,ygdH和deoD的敲除
guaB基因的敲除
1.以大肠杆菌E.coli W3110为模板,根据guaB基因的上下游序列设计上游同源臂引物((UP-guaB-S、UP- guaB -A)和下游同源臂引物(DN- guaB -S、DN- guaB -A),通过PCR扩增出上,下游同源臂,并通过PCR重叠技术融合获得guaB基因的敲除片段(上游同源臂-下游同源臂)。具体引物序列见下表1。
2.构建pGRB-guaB,构建pGRB-guaB过程中用到的靶序列的DNA片段gRNA-guaB-S和gRNA-guaB-A见下表1。
3.用上一个丢掉pGRB的菌株制备感受态,感受态的制备方法参考上文。进行电转化,将上述获得的guaB基因的敲除片段(根据guaB基因的上、下游序列为模板扩增出的上下游同源臂,并通过PCR重叠技术获得的融合片断)和构建的pGRB同时电转化至上述感受态细胞中(该处为guaB基因敲除,因此只需电转进guaB基因的敲除片段,与整合不同)。将电转化后复苏培养2 h后的菌体吸取100 uL涂布于含氨苄青霉素和奇霉素的LB平板上,32℃过夜培养。用上游同源臂上游引物和下游同源臂的下游引物,或设计专门的鉴定引物,进行菌落PCR验证,筛选阳性重组子并保菌。上述涉及的上游同源臂长度为538bp,下游同源臂577bp,重叠片段的长度为1115bp,原菌片段长度为2101bp,阳性菌扩增片段长度为1115bp,具体见图9。
4.将挑选出的阳性重组子接入含有奇霉素和阿拉伯糖的LB摇管中32℃培养过夜,在含有奇霉素的LB平板上进行平板划线32℃培养14-16 h后挑取单菌落分别在含有氨苄青霉素和奇霉素的LB平板上对点,再32℃培养12 h,挑选氨苄青霉素平板上没长,奇霉素平板上长的菌进行保菌,以便下次待用。
Add,amn,ygdH和deoD敲除均与上述方法相同,具体方法详见上文,引物参考序列见下表1,条带大小见下图10,11,12,13。
实施例4
将上述基因工程菌株接种20 uL于LB摇管中,32℃,200 r/min过夜培养,然后按接种量10%接种于30 mL的发酵种子瓶中(500 mL的挡板瓶,加菌液后定容至30 mL),37℃,200rpm培养8h,然后再按10%的接种量接种于发酵瓶中(同上),发酵期间需用氨水维持发酵液pH在7 .0-7 .2;补加60%(m/v)葡萄糖溶液维持发酵进行。发酵24h后生产腺苷4.3 g/L。
用于摇瓶的种子培养基成分为:葡萄糖30 g/L,酵母粉2 g/L,蛋白胨2g/L,柠檬酸1 g/L,硫酸铵3 g/L,硫酸镁 0.4g/L,磷酸二氢钾1.5 g/L,硫酸亚铁10 mg/L,硫酸锰5 mg/L,谷氨酸0.4g/L,VB10.5 mg/L,pH调至7.0-7.2,115℃灭菌15 min。
用于摇瓶的发酵培养基成分为:葡萄糖30 g/L,酵母粉4 g/L,蛋白胨1 g/L,柠檬酸1 g/L,硫酸铵3 g/L,硫酸镁 1 g/L,磷酸二氢钾3.5 g/L,硫酸亚铁20 mg/L,硫酸锰10mg/L,谷氨酸1 g/L,VB10.5 mg/L,pH调至7.0-7.2,加入少量的苯酚红和消泡剂,121℃,灭菌20 min。
用该基因工程菌进行摇瓶发酵24h产腺苷4.3g,该基因工程菌进行腺苷发酵相比于用枯草芽孢杆菌进行腺苷发酵,发酵周期得到了大大缩短,发酵周期由原来的50多小时缩短为现在的 24-30 h,而且氮源的消耗变少,在很大程度上减少了发酵成本,且不易染菌,造成倒罐。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Figure 471173DEST_PATH_IMAGE002
Figure 981788DEST_PATH_IMAGE004
Figure 27105DEST_PATH_IMAGE006
Figure 891155DEST_PATH_IMAGE008
Figure 548271DEST_PATH_IMAGE010
Figure 573995DEST_PATH_IMAGE012
序列表
<110> 天津科技大学
<120> 一种腺苷工程菌及其构建方法与应用
<160> 101
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2924
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(2924)
<400> 1
caaaacagca ttacagccag caggaagtac tgcgttggat cgatgtctgt tcagggactc 60
aacctaatgc aaaggatccc gcatttctta aagtcagggc gcatatcttc cagcgtaata 120
cctagggaat atgggcttgt gttgataaag attgcagatt aaagcacggt acaccgctcg 180
acaaaggctg gccctttggc tatgtgtatg tgaaccagcg acaaaattgt gactgtggaa 240
gccctgtata cgaagttgca ttctgtaatg attgtaatga gcctcatctt ctggcacggg 300
acaaaaaggg caaactagtc cagtgggaaa ataaaggtgg cgatgaattc tctttgcagg 360
atgaagtacc tgttgaacat gacgctacag aagaaaaagt cgaaaaagag aacagttttc 420
agcctccgtt gattattgcc gcaggagaga ccagcgaggc aggttatacc ctacaacgcc 480
tcgaccgtca gacgcgccgt attggcgtta ttaacaatga cagcattccg ctgattatta 540
atgatattga acaggtttgt agtgccagtg gctgtggcta cagaggcatg agtgggaaac 600
agcccttccg gcgtgcacta ttaggtgggc cattttacgt tactaatatc gtgcccaccg 660
ttctagagta ttgtcaggac tttaccagtg atgaaggcaa agagggcgtc ggaccagatt 720
cgttgccagg acgaggtcgt cgactcatca cctttacaga cagtcgacaa gggacagccc 780
gaatggcggt gcgtatgcag caagaagcag aacgcagtcg cttacgcgga agcgtagtcg 840
aaattctcag ctggcatcaa aggacgcaaa cgtctacagc gccgaatgcc aatgccgatc 900
tggaaaaatt agcggccagg gcgaagcaag cccgtgagca ggcagaagaa tatcgaagct 960
ggggaatgcc agaccaggcg aaattgtcac aagcacaggc tgaacagctt gaacaggctt 1020
atcaggctgc aaccggtggg aaagccgcga ctatcctggt atcccgaacc tggacggaga 1080
tggttaacga gcttaaagag agagccgata tccgcgggcc ggttctgcaa tataaccatt 1140
atcttaagcc tgaagtgttt aatgaaaacg gcggccccct taagctttct gaaatgttgt 1200
tgttccggga attcatgcgt cgccctaaac ggactaacag cctggaaaca caggggctgg 1260
ttcaggttgg ttaccagggg ctggagaaaa tacataagag ccccttgcac tggcaggaaa 1320
aaggattaac gctggatgac tggcgcgatt ttctcaaggt tacgttggat cattacgttc 1380
gcgagagcaa cttcacacag ctggatgatg agctgaaaaa ctggattggt agccgttttt 1440
catcaaaatt cgtccgtaac ccggaatcaa aagatcctga agataatcag aacagacgct 1500
ggcctcaaat tcgtaatggc aacgtatccc atcgtttagc gaagttgctg atgctggggg 1560
ctggattcaa aaccgtcaat gcggcaacta ttgatattat caatacatgg ctgaaagaag 1620
catgggccca acttaccgga ccgcttgcag tactgaaacc cgatggcaac cgtttttatt 1680
taccgaaaga gcatatgact ttttctttaa tcacggatgc ctggatttgc ccggtaacca 1740
ataaaatcct ggatacggct tttaaaggct taacccctta tctgcctacc catatttcgt 1800
tcgagcatct taccctggcg caatatgaca cttttgtcgc gcagaaagtc acaatgccgg 1860
aaatctggaa gctggatcgt tcacaggaag actacgcaga gggtctggca aaagcacgcg 1920
actgggtcag ccatgatccg ctgatcgcac aattgcggtc ggaaaacgtc tggacagaca 1980
ttaacgatcg tgtcgtggaa ggcggcttct actatcgtac tgccgagcac tctgcccagc 2040
agtcgtcaga acgtctgcaa agctatgaaa agatgttcaa gaatgggcaa ctaaatgttc 2100
tcaactgttc caccaccatg gaaatggggg ttgataccga tcgcgtgatg acgctggcct 2160
ctcgcagcca gcaggcaacg attccggggc cggagtggca cctgaatgac gaactggtgg 2220
tgcgtagtct cggttataaa acggtagaac tgaacgagtt tattctgccg gctaaagcca 2280
ccaacgctgt cgagcgggtc aaagacattc agatccacaa acagttgaat ggaccactgt 2340
cgcagtttgg gcaacgcttc tgggacgtgc tgtttaacga ccatgaagaa gcgcagtcac 2400
tgatgaataa cacgcgaatt accggcgttc actataccga tcgctatctg caaaacccgg 2460
ttgcgctggc gttgttggga tcaattctga gaccgctaaa aacaaagctg accgatggcg 2520
ctgaagtgac gctggatacg ctatttaaag ataaagatcg ccccggtaac cggcctttcc 2580
atgactggat gagcatagcg gattttcagg atttcgctga tcagtggttt gctgctgcgc 2640
tgggcaggcc ggtagaactg acggtgttcg actcgccgcg cgatatccct caccatcgta 2700
aactgacggt gacttttgag gatggtcagg tattgaagat ccgcttcgat caggggatgg 2760
gctactggcg catcaacttt tcatcgcaat ggcattactt tgatttccgc gatgacgttt 2820
ctttccagtt agtcaaaatg gctcaggcct gcaaggaagg gaatgtcgcc aacagcgaag 2880
agagttgggc aacggatgtg ctggtggagg tgatcgcctc ctga 2924
<210> 2
<211> 13423
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(13423)
<400> 2
caaaacagca ttacagccag caggaagtac tgcgttgaca attaatcatc cggctcgtat 60
aatgtgtgga attgtgagcg gataacaatt tcacacagga aacagaccat gcagccgcta 120
gtaggaatca tcatgggaag cacttccgat tgggagacaa tgaaacacgc atgcgacata 180
cttgacgaac tcaatgttcc gtacgaaaaa aaggtcgttt ccgctcaccg gacgcctgat 240
ttcatgtttg aatatgctga aactgctaga gaaagaggca tcaaggtgat tattgccggt 300
gccggaggag cggcgcatct gccagggatg acggctgcga aaacaacact gccagtcatt 360
ggagttccgg ttcagtccaa ggcgctgaac ggaatggatt cacttctttc catcgtccaa 420
atgcctggag gcgtgcctgt tgcgacaaca tccatcggca aagcgggtgc tgtgaacgca 480
ggcctgttag cggcgcaaat tttgtcagca tttgacgaag accttgcccg taagctggat 540
gagagaagag aaaatacaaa acagacagtg ttagaaagca gtgatcagct tgtctaaaca 600
aatcatctat ccgggagctg taatcggcat tatcggcggc ggccagcttg ggaaaatgat 660
ggctgtgtcc gccaaacaaa tggggtataa agtcgcggtc gttgatccgg tgaaagattc 720
gccgtgcggg caggttgcgg atgtcgaaat taccgctcat tataatgacc gtgaagcgat 780
tcgaaaattg gctgaaatca gcgatatcat cacatatgag tttgaaaaca tcgactatga 840
tgcgctgcat tggctaaaag atcatgcgta tctcccgcaa ggaagtgagc tgctgcttat 900
tacccaaaac cgtgaaacag agaaaaaagc aattcaatcc gcgggctgtg aagtcgcacc 960
gtacagcatc gtcaaaacaa agaatgaatt gaaacaggca gtacaggagc tcaggcttcc 1020
ggcagtgctg aaaacatgcc gcggcgggta cgacggcaaa ggccaatttg tgataaaaga 1080
agaggcgcaa atggagcagg cagccgctct gttagaacac ggaacttgca ttcttgaaag 1140
ctgggtttct tttaaaatgg aactgtcggt gatcgtcgtt agatcggtaa acggtgaaat 1200
ttcaacattt ccgacagctg aaaacattca ccacaacaat attcttttcc aaagcatcgt 1260
gcccgcacgg gtagagaaag ggattcagca gaaggctgct gatctcgcag ttaagcttgc 1320
agatgagctt aaccttgtcg gaccgcttgc tgttgagatg ttcctgacag aggacggaga 1380
gcttttggtc aatgaactgg cgccaagacc gcacaattca gggcattata cgctggacct 1440
ttgcgagacg agccagtttg agcagcatat cagagcggta tgcgggcttc cgcttgggaa 1500
gacagatttg ctgaagccgg gcatgatggt gaatcttctc ggcgatgaag tgaagcttgt 1560
tgaggaagac ccggagcttt taaaagaggc aaagctatat atatacggaa aacatgaaat 1620
caaaaaaggc cgcaaaatgg ggcatattac atttatgaag cagcctgaag acgaatggat 1680
tcaggagatc acaaataaat ggatgaatag agacggagga caagcagaat gatcgaacgt 1740
tattcaagac ctgaaatgtc cgcgatttgg acggatgaaa acagatttca agcatggtta 1800
gaggttgaaa ttcttgcctg tgaagcgtgg gcggagcttg gcgtcattcc gaaagaagat 1860
gtaaaggtta tgcgcgaaaa cgcgtcattt gacatcaacc gcattttaga aatcgaaaag 1920
gacacgcgcc atgacgttgt cgcttttacg cgcgctgtat ccgaatcact gggcgaagaa 1980
agaaaatggg tgcattacgg cttaacgtca actgacgttg ttgatacggc tctttcctac 2040
ttattaaaac aggcaaacga tattttgctc aaggatcttg agagatttgt tgacattata 2100
aaagaaaaag cgaaagaaca taaatacaca gtcatgatgg ggcgcacaca cggcgtacac 2160
gctgagccta caacattcgg cttaaaactt gcgctttggc atgaagaaat gaaacgtaat 2220
cttgagcgct tcaaacaagc gaaagcaggc atcgaggttg gaaagatttc cggtgctgtc 2280
ggcacatatg cgaacattga tccatttgtt gaacaatatg tctgtgagaa gctcggattg 2340
aaagcagcac cgatttccac tcaaaccctt cagcgtgacc gccatgctga ctatatggca 2400
acacttgctt tgatcgcgac aagcatcgag aaattcgctg tggaaatccg cggactgcaa 2460
aagagtgaaa cacgtgaagt agaggaattt ttcgcgaaag ggcaaaaggg ttcatctgca 2520
atgccgcata aacgaaatcc gattggctct gaaaacatga caggcatggc gcgcgtgatc 2580
cgcggctaca tgatgacagc ttacgaaaat gttccattat ggcatgagcg cgatatttct 2640
cattcttcag cagaacgaat tattcttccg gatgcgacaa ttgcgctgaa ctacatgctg 2700
aaccgcttct ccaacatcgt gaagaactta acggtcttcc cggaaaacat gaagcgcaac 2760
atggaccgca ctctcggcct tatctattct cagcgtgtgc tccttgcttt gattgacaca 2820
ggcctgactc gtgaagaagc ctatgataca gttcagccga aagcaatgga agcgtgggaa 2880
aaacaagtgc cgttccgcga gcttgtggaa gcggaagaga aaatcacgtc acgtctttct 2940
ccagaaaaaa ttgctgactg ctttgattac aattaccatc tgaaaaatgt tgatctgatc 3000
tttgaacgtt taggtttagc atagaagaag cttttagcgg cttcttctaa gccgccgcag 3060
tttgaaaatt cccaacattc gggttaggag gccttccgtg aatattgtga agaatgaact 3120
tttatacgaa ggaaaagcaa aaaagatcta caaaaccgat gacgaaaaca cgctgtatgt 3180
cgtgtataaa gactccgcca ctgcctttaa cggcgagaaa aaagcagaaa tcagcggaaa 3240
agggcgctta aataatgaaa tttcaagcct cattttcaaa caccttcatg ctaagggcat 3300
taacaatcat tttatcgagc gcatttcgga aacggagcag ctcattaaaa aggtaacgat 3360
tgtgccgctt gaagtcgtgg taagaaatgt tgtggcagga agcatgtcca aacgtctcgg 3420
cattccagaa ggcacggagc ttgagcagcc gattatcgag ttttactaca aggatgacgc 3480
gctgggtgat ccgctcatca cagaagatca tatttggctt ttgaaggcgg cgactcctga 3540
gcaggtagaa accattaagt ccattacaac aatagtaaat gaagagcttc aaagcatctt 3600
cgacgattgt catgtcagat taatagattt caagcttgaa ttcggtttag atgcagaagg 3660
gcaagtgctt ttggcggatg aaatatctcc tgacacatgc cgcttgtggg ataaagaaac 3720
gaacgaaaag ctggacaaag atttattcag acgcaatctg ggaagcttaa ccgacgcata 3780
cgaagagatt ttcaatagac tgggaggcat tcatcatgta taaagtaaaa gtttatgtca 3840
gcttaaaaga aagtgtacta gatccacaag ggagcgctgt ccagcatgcc ttgcacagta 3900
tgacttacaa cgaagttcaa gatgtgcgca tcgggaaata catggagctt accattgaaa 3960
aatctgaccg tgatcttgac gtgctagtga aagaaatgtg cgaaaaactt cttgcgaaca 4020
cagtgattga agattataga tatgaggttg aggaggtagt cgcacagtga aatttgcggt 4080
gattgtgtta cccggctcca actgtgatat cgatatgtat catgctgtaa aggatgagct 4140
cggccatgaa gtggaatacg tctggcatga ggaaacaagc cttgacggct tcgacggcgt 4200
gttaattccg ggaggatttt cttacggcga ttacttaaga tgcggcgcca tcgcccgatt 4260
tgcgaatatt atgccagctg tcaaacaagc agcggctgaa ggaaaacctg ttcttggcgt 4320
ctgtaacgga ttccagattt tacaggagct tgggctgctg ccaggcgcaa tgagacgcaa 4380
caaagatctg aagttcattt gccgtccggt tgaattgatt gttcagaacg acgaaacctt 4440
attcacagct tcctacgaaa agggagaatc gattacaatc ccggttgccc atggtgaagg 4500
gaatttctac tgtgatgacg agacgcttgc tacattaaag gaaaacaatc aaattgcttt 4560
cacatacggc tctaatatta atggaagtgt cagcgacatt gccggtgtcg tgaatgagaa 4620
aggcaatgta ttaggcatga tgcctcaccc tgagcgcgcg gtcgatgaac tgcttggaag 4680
cgccgacggt cttaaattgt tccagtctat cgtgaaaaat tggagggaaa ctcatgtcac 4740
tactgcttga accaagtaaa gaacaaataa aagaagagaa actgtatcag caaatgggtg 4800
tcagtgatga tgagtttgca ttgatagaat ccattcttgg aagattgccg aactacacag 4860
aaatcggaat tttttctgtc atgtggtctg agcattgcag ctataaaaac tcaaagccga 4920
ttctgcgtaa attcccgaca agcggcgagc gtgtgctgca ggggccgggg gaaggcgccg 4980
gaatcgttga tatcggtgat aaccaagcgg ttgtgttcaa aattgaatca cataaccacc 5040
catcagctct cgagccttac caaggcgctg cgactggcgt aggcggaatt atccgtgatg 5100
tattctcaat gggtgcacgc ccaatcgctg tattgaactc tcttcgattt ggtgaactga 5160
cttcaccccg cgtgaagtac ttgtttgaag aagtagtagc gggtatcgcc ggatacggca 5220
actgtatcgg catcccgaca gtcggcggag aagtgcagtt tgacagcagc tatgaaggaa 5280
atccgctcgt caacgcaatg tgcgtcggtt taatcaacca tgaagacatc aaaaaaggcc 5340
aggcaaaggg tgtcggcaac acagtaatgt acgtaggagc gaaaacaggg cgtgacggca 5400
tccacggcgc tacgtttgct tctgaagaaa tgtcagactc gtctgaagaa aagcgttctg 5460
ctgtccaagt cggcgatccg tttatggaga agcttttgct tgaagcatgt ctggaagtca 5520
tccaatgcga cgccttagtc ggcattcagg atatgggagc tgccggttta acaagctcaa 5580
gtgcagaaat ggcaagtaaa gccggttctg gcattgaaat gaatcttgac ctgattcctc 5640
agcgcgaaac aggcatgacc gcgtatgaaa tgatgctttc tgaatcacaa gaacggatgc 5700
ttttggttat tgagcgcgga cgtgagcagg aaatcatcga tatttttgac aagtatgatc 5760
ttgaagcggt ttctgtcgga catgtgacag atgataaaat gcttcgcctg acacataaag 5820
gagaggttgt gtgcgagctg cctgttgatg ccttggcaga agaagcaccg gtttaccata 5880
agccttctca agagcctgct tactatcgcg agtttttgga aacagacgtt ccggctccgc 5940
aaattgaaga tgcgaatgaa atgctgaagg cccttcttca gcagccgacg attgcgagta 6000
aagagtgggt ttatgatcag tatgactaca tggtgcgcac gaatacagtt gtcgctcctg 6060
ggtctgatgc tggtgttctc agaatccgcg gaacgaaaaa ggcgctggcg atgacgacag 6120
actgtaacgc gcgttatctc tatcttgatc ctgaagtcgg agggaaaatt gctgtcgctg 6180
aagcagcgcg caacatcatt tgctcaggcg cagaaccgct tgcggtgaca gataacctta 6240
acttcggaaa ccctgagaag ccggaaatct tctggcagat cgaaaaagcg gcagacggca 6300
taagcgaagc gtgcaatgtt ctcagcactc cggttatcgg cggtaacgta tcgctttata 6360
acgaatcaaa cggcacggcg atctatccga caccagttat cggcatggtc ggcctaattg 6420
aagatacagc gcacattaca acacagcatt tcaaacaagc aggagatctc gtatacgtga 6480
tcggcgaaac aaaaccagag tttgccggaa gcgagctgca aaaaatgaca gaaggccgta 6540
tttacggcaa agcgccgcaa atcgatcttg atgtagagct gtctcgtcaa aaagcactgc 6600
ttgacgcgat taaaaaaggc ttcgttcaat ctgcgcatga tgtgtctgaa ggcggcttag 6660
gcgtagcgat tgcggaaagt gtcatgacga cggaaaacct tggcgctaat gtgactgtag 6720
aaggggaagc ggcgttatta ttctctgaat ctcaatctcg cttcgtcgtt tcagtgaaaa 6780
aagaacatca agctgcgttt gaagcaactg tcaaagatgc agttcatatt ggtgaggtaa 6840
cagctgacgg aattctggcg attcaaaacc aagacggaca acaaatgatt catgcgcaaa 6900
cgaaagagct tgaacgcgta tggaaaggag ctatcccatg cttgctgaaa tcaaaggctt 6960
aaatgaagaa tgcggcgttt ttgggatttg gggacatgaa gaagccccgc aaatcacgta 7020
ttacggtctc cacagccttc agcaccgagg acaggagggt gctggcatcg tagcgactga 7080
cggtgaaaag ctgacggctc acaaaggcca aggtctgatc actgaagtat ttcaaaacgg 7140
cgaactcagc aaagtaaagg gaaaaggcgc tatcgggcac gttcggtacg caacggctgg 7200
aggcggcgga tacgaaaatg ttcagccgct cctcttccgt tcccaaaaca acggcagcct 7260
ggcgcttgct cataacggaa atcttgtcaa cgccactcag ctgaagcagc agctcgaaaa 7320
tcaagggagc atctttcaaa cctcttcgga tacagaggtt ttggctcacc tgatcaaaag 7380
aagcggacac ttcacgctga aggatcaaat taaaaactcg ctttctatgc tgaaaggcgc 7440
ctacgcgttc ctgatcatga ccgaaacaga aatgattgtc gcacttgatc caaacgggct 7500
gagaccgcta tccatcggca tgatgggcga cgcttatgtg gtcgcatcag aaacatgcgc 7560
atttgacgtc gtcggcgcaa cgtaccttcg cgaggtagag ccgggagaaa tgctgatcat 7620
taatgatgaa ggcatgaaat cagagcgttt ttccatgaat atcaatcgtt ccatttgcag 7680
catggagtac atttatttct ccagaccaga cagcaatatt gacggtatta atgtgcacag 7740
tgcccgtaaa aaccttggga aaatgctggc tcaggaatcc gcagttgaag ctgacgtcgt 7800
aaccggggtt ccggattcca gtatttcagc ggcgatcggc tatgcagagg caacaggcat 7860
tccgtatgag cttggcttaa tcaaaaaccg ttatgttggc agaacgttta ttcagccgtc 7920
ccaggctctg cgtgagcaag gcgtcagaat gaagctgtct gcggtgcgcg gggttgtaga 7980
aggcaaacgc gtcgtgatgg tggatgactc tatcgtgcga ggaacaacta gccgccggat 8040
tgtcacgatg ctaagagaag cgggtgcgac agaggtgcat gtgaaaatca gttcaccgcc 8100
gatcgctcat ccgtgctttt acggcattga cacttccaca catgaagaac tgatcgcgtc 8160
ttcgcattct gttgaagaaa tccgtcagga aatcggagcc gataccctct catttttgag 8220
tgtggaaggg ctgctgaaag gcatcggcag aaaatacgat gactcgaatt gcggacagtg 8280
tctcgcttgc tttacaggaa aatatccgac tgaaatttac caggatacag tgcttcctca 8340
cgtaaaagaa gcagtattaa ccaaataaaa cttgaaaaat gacataaagg cagcgcagtt 8400
cggctgcctt tctctttctg ccctcgttcg gggagatatt ttgaaaagcg ccttaaagga 8460
gtgaatagga tgtctgaagc atataaaaac gcaggagttg acatcgaagc cggatatgaa 8520
gctgtaaaac gaatgaaaaa acacgtggag cgcacgaaac ggcttggcgt tatgggcagc 8580
cttggcggtt ttggcggcat gtttgacctg tctgagcttt cttatcaaaa accagttctc 8640
atttcgggaa cggacggtgt cggcacaaaa ttaaagctcg ctttttccat ggataagcat 8700
gacacgattg gcgtggatgc tgttgcaatg tgtgtcaatg acgtgctggc acaaggtgca 8760
gagccgctgt ttttcctcga ttatttagcg gttggcaaag cggacccagt gaaaattgaa 8820
cagattgtac aaggtgttgc ggaaggctgt gagcagtcag gttcagcctt agtcggcggt 8880
gaaacggctg aaatgccggg gctctataca gctgatgaat acgatattgc cggtttctca 8940
gtcggagtgg cagaaaagga cgaaatcgtg actggagaaa aaattgaaga gggccatctg 9000
ttgatcggcc tcagctccag cggccttcac agcaacggct tttcccttgt cagaaaagtg 9060
cttctggatg atgcggagct ggacctcgat acaacatatg agccgtttga acgcccgctt 9120
ggcgaggaat tgcttgaacc gacaaggatt tacgtgaagc ctgtgcttgc cgcggtcaaa 9180
agcggaaaaa tcgacggcat ggcgcacgtg acaggcggag gatttattga aaatattccg 9240
cgtatgcttc cggaaggctt aagtgcggaa attgatcatg gctcatggcc gatcccgccg 9300
attttttctt tcttgcaaga gtacggcaag ctaaaggaag aagacatgtt caacgtcttt 9360
aatatgggta tcggttttgt tttggcagtc aaagaagagc atctgacaga tgtgatcgga 9420
acgcttgaaa gccatggcga aaaagcctat ttaatcgggc gtgtgaaaaa aggtgaaggc 9480
gtcacattcg gcggtgcggc actttcatga aaaagtttgc ggtatttgca tcaggaaacg 9540
gttcaaactt cgaagccatc gtcacgcgtt tgaaggagga gaactgggat gcgtcagcag 9600
cgctcctcgt ttgcgacaaa ccgcaggcga aagtcatcga acgggcggaa gcattccaca 9660
ttccatcctt cgcatttgag ccgaagtctt atgaaaacaa ggctgcattt gaacaagcca 9720
tcattgaaca gcttcgtctt cacgaggttg aattgattgc tcttgccggc tatatgaggc 9780
tgatcggtga tacgctcctt caagcatatg ggggaaaaat cattaacatt cacccatcgc 9840
ttcttccggc gtttcctgga atcgacgcag tcggacaggc gttccgggcg ggtgtgaagg 9900
tggccggaat caccgtgcat tatgtcgatg aaggaatgga tacaggtccg atcatcgctc 9960
aaaaggcaat cgaaattgat gaacatgata cattggaaac aatcgaacag cgaattcaca 10020
agcttgagca taaatggtat ccgagtgtga ttaaacagct attaggatta aataacagag 10080
gtgaaaaggc atgaccatta aacgtgcatt aatcagtgtt tcagataaaa caaatctcgt 10140
tcctttcgta aaagaactga cagagcttgg cgttgaagtc atctccacag gcggaacgaa 10200
aaagcttctt caagaaaacg gtgtggatgt gatcggaatt tctgaagtga caggctttcc 10260
tgaaattatg gacggccggt taaaaaccct acacccgaat attcacggcg gccttctggc 10320
ggttcgcggc aatgaagagc atatggcgca gatcaatgaa cacgggattc agccgattga 10380
cctcgttgtc gtcaacctct atccatttaa agaaacgatt tctaaagaag acgtcacgta 10440
tgaagaagcg atcgaaaata tcgacatcgg cggacctggc atgctgcgcg cggcatcaaa 10500
gaaccatcag gatgtcacgg ttatcgtcga tccggccgat tacagcccag tgctaaatca 10560
aatcaaagaa gaaggcagcg tatctcttca gaaaaaacgc gagctcgcgg caaaagtatt 10620
ccgtcatact gcggcatatg atgcactgat cgctgactat ctgacaaatg ttgtcggtga 10680
aaaagaacca gagcaattca ctgtgacatt tgagaaaaaa caatcgcttc gctatggaga 10740
aaacccgcat caggaagcaa ctttctatca aacagctctt cctgtcaaag gctccattgc 10800
gcaagcagaa cagcttcacg gaaaagagct ttcttacaac aacattaaag acgcggatgc 10860
tgcagttcaa atcgttcgtg aattcactga accggctgct gttgctgtga agcatatgaa 10920
cccgtgcggc gtgggaacag gaaaaacgat cgcagaagcg tttgacagag cgtttgaagc 10980
ggataaaaca tctatcttcg gcggcattat cgcgctgaac cgtgaagtgg acaaggcaac 11040
tgccgaagcg cttcacaaca ttttcttaga aatcatcatt gcgccttcat tcagccaaga 11100
agcgctcgac gtcctgactg cgaagaaaaa tctccgtctg ctgacgcttg acgtatccgc 11160
cgctgttcaa aaggaaaaac agctgacatc cgttcaaggc gggctgctga ttcaagattt 11220
agatatgcac ggcttcgatg atgctgagat tagcattccg acaaaaagag agccgaacga 11280
gcaagagtgg gaagacttga agcttgcttg gaaagtcgtg aagcatgtga aatcaaatgc 11340
gattgttctc gcgaaggaca acatgacagt cggcgtggga gcaggccaaa tgaaccgcgt 11400
cggatcggca aaaatcgcaa tcgagcaagc aggggaaaaa gcgaagggca gcgcgctcgg 11460
ttcggatgca tatttcccaa tgccagatac tgtcgaagaa gcggcaaaag cgggcgttac 11520
agccatcatt cagccaggcg gatcgatccg agatgaggat tccatcaaaa aagcggatga 11580
atacggcatt gccatggtat tcaccggcat cagacacttc aaacattaag gggatgaaaa 11640
cgacgtgaat gtattaatta tcggtaaagg cggaagagaa catacgctgg cgtggaaggc 11700
agcgcaaagc agcctcgtcg agaatgtatt tgccgctccc ggaaatgacg gcatggcagc 11760
ttccgctcag cttgtaaaca ttgaggaaag cgaccacgca gggcttgtct catttgcaaa 11820
acaaaatcag gtcggcctga ccattgtcgg ccctgaggtt cctttaattg aaggtctggt 11880
ggatgaattc gaaaaagcgg gcttacatgt gttcggtccg tcaaaagctg cggcgatcat 11940
cgaaggaagc aaacagttcg ctaaggattt aatgaagaaa tacgacattt cgaccgcaga 12000
atacgagacg tttacatcct ttgatgaggc gaaggcatat gtgcaggaaa aaggtgctcc 12060
gattgtgata aaagcagatg gacttgcagc tggaaaaggc gttactgtgg ctatgacaga 12120
ggaagaagca attgcgtgct tgcatgactt tcttgaagat gaaaagttcg gtgatgcgag 12180
cgcgtccgtt gtcattgaag aatatctttc tggtgaagaa ttttctctaa tggcctttgt 12240
caaaggggaa aaggtgtatc cgatggtgat tgcccaggat cacaagcggg cgtttgacgg 12300
agacaaaggc ccgaatacag gcggcatggg cgcctactcg ccagttccgc aaatttcgga 12360
agaaacggtc cgccatgctg tagaaacgat cgttaagccg gctgcaaaag caatggtaca 12420
agaaggccgt tccttcactg gcgttttgta cgctggattg atgcttactg aaaacggctc 12480
gaaggtcatt gaatttaatg cccgtttcgg cgatccggaa acacaggtcg tgcttccgcg 12540
catggaatct gatctggtac aggtgcttct tgatctttta gatgataagg aagttgactt 12600
aagatggaag gataccgcgg cagtgagtgt tgtgcttgca tcagaagggt atccggaaag 12660
ctatgcaaaa ggcacgccga tcggcagcct tgcagcagaa actgagcagg tcgtggtctt 12720
ccatgccgga acgaaagcag aaggtggaga gttcgttaca aacggggggc gcgtcgccaa 12780
tgtgacggct tttgatgaaa cgtttgaagc ggctagagac cgagtgtaca aagcggttga 12840
tgaaattttc aaaccgggac tctttttcag aaaagacatt ggggcacgcg ctttaaaggc 12900
tgcccaaaaa taacgaatta ccggcgttca ctataccgat cgctatctgc aaaacccggt 12960
tgcgctggcg ttgttgggat caattctgag accgctaaaa acaaagctga ccgatggcgc 13020
tgaagtgacg ctggatacgc tatttaaaga taaagatcgc cccggtaacc ggcctttcca 13080
tgactggatg agcatagcgg attttcagga tttcgctgat cagtggtttg ctgctgcgct 13140
gggcaggccg gtagaactga cggtgttcga ctcgccgcgc gatatccctc accatcgtaa 13200
actgacggtg acttttgagg atggtcaggt attgaagatc cgcttcgatc aggggatggg 13260
ctactggcgc atcaactttt catcgcaatg gcattacttt gatttccgcg atgacgtttc 13320
tttccagtta gtcaaaatgg ctcaggcctg caaggaaggg aatgtcgcca acagcgaaga 13380
gagttgggca acggatgtgc tggtggaggt gatcgcctcc tga 13423
<210> 3
<211> 926
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(926)
<400> 3
accaggatat cgatgaactg catttcgccc cgttgaatat cgaccagcaa ctggcaaccg 60
tagcagtgat tcaccaacag catatgcgca acattgcgca gtggttgcag gaaaacggca 120
tcacccgcgc taccgtcgcg ccggactgga tgtccattcc ttgtgggttt atggcttgcg 180
atgcgcaacg ggttatctgc cgcatcgatg aatgccgggg atggagcgcc gggctggcgc 240
tggctccggt catgttccgc gcccagctca atgagcagga tttaccgctt tcgctaaccg 300
tagtcggcat tgcaccggaa aagctatcag catgggctgg cgcagacgct gaacgcctga 360
ccgttacagc tctgcccgcc attaccactt atggcgaacc ggaagggaac ctgctgacag 420
ggccgtggca gcctcgcgtc agctaccgaa aacagtgggc gcgctggcgg gtgatgattc 480
tgccgatatt gctgattctg gttgcgctgg cagtggagcg gggcgtgacg ttatggagcg 540
tcagcgaaca ggtggcgcaa agccgcaccc aggcggagga acagttctta acgttgttcc 600
cggagcagaa gcggattgtg aatttacgct ctcaggtgac gatggcgctg aaaaaatatc 660
gcccacaggc cgacgatacc cggctgctcg ccgagttgtc agcgatagcc agcaccctga 720
aatcagcgtc actttccgac atcgaaatgc gtggttttac ctttgatcaa aaacgccaga 780
tacttcacct ccagctacgg gccgcgaact ttgccagttt cgacaaactg cgtagtgtac 840
tggcaaccga ttatgttgtg caacaggacg cgttacagaa agagggtgat gcggtttccg 900
gcggcgtaac gttgcggagg aaataa 926
<210> 4
<211> 1827
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(1827)
<400> 4
accaggatat cgatgaactg catttcgccc cgttgaatat cgaccagcaa ctggcaaccg 60
tagcagtgat tcaccaacag catatgcgca acattgcgca gtggttgcag gaaaacggca 120
tcacccgcgc taccgtcgcg ccggactgga tgtccattcc ttgtgggttt atggcttgcg 180
ttgacaatta atcatccggc tcgtataatg tgtggaattg tgagcggata acaatttcac 240
acaggaaaca gaccatgtct tcagtagttg tagtaggtac gcaatggggc gatgaaggaa 300
aaggtaaaat tacagatttc ctatcagaaa atgcagaagt gatcgcccgt tatcaaggcg 360
gaaataacgc agggcataca atcaagtttg acggaatcac atataagctt cacttaatcc 420
cgtctggaat tttctataag gataaaacgt gtgtaatcgg aaacggaatg gttgtagatc 480
cgaaagcatt agtcacagag cttgcgtatc ttcatgagcg caacgtgagt acagataacc 540
tgagaatcag caacagagct cacgtcattc tgccgtatca tttgaaattg gatgaagtgg 600
aagaagagcg taaaggggct aacaagatcg gcacaacgaa aaaaggaatc ggccctgctt 660
acatggataa agcagcccgc atcggaattc gcatcgcgga tctgttagac cgtgacgcgt 720
ttgcggaaaa gcttgagcgc aatcttgaag aaaaaaaccg tcttctcgag aaaatgtacg 780
agacagaagg gtttaaactt gaggatatct tagacgaata ttatgagtac ggacagcaga 840
ttaaaaagta tgtttgcgat acatctgttg tcttaaacga tgctcttgat gaagggcgcc 900
gtgtattatt tgaaggcgca caaggggtta tgctcgatat cgaccaagga acatacccgt 960
ttgttacgtc atctaacccg gttgccggcg gtgtcacgat cggttctggt gtcggcccga 1020
ccaaaatcaa gcacgttgtc ggtgtatcaa aagcatatac gactcgtgtc ggcgacggtc 1080
cttttccgac tgagctgaaa gatgaaatcg gcgatcaaat ccgtgaagtc ggacgcgaat 1140
atggaacaac aacaggccgc ccgcgccgtg tcggctggtt tgacagcgtt gttgtccgcc 1200
acgcccgccg tgtgagcgga attacagatc tttctctgaa ctcaattgac gtcctagcag 1260
gaattgaaac gttgaaaatc tgtgtggcgt accgctacaa aggcgaaatc attgaagaat 1320
tcccagcaag tcttaaggca cttgctgaat gtgagccggt atatgaagaa atgccgggct 1380
ggactgagga tattacaggt gcgaagagct tgagcgagct tccggaaaat gcgcgccatt 1440
atcttgagcg tgtgtctcag ctgacaggca ttccgctttc tattttctct gtcggtccag 1500
accgctcaca aacaaatgtc cttcgcagtg tgtaccgtgc gaactaacaa ataaaacgaa 1560
aggctcagtc gaaagactgg gcctttcgtt ttatctgttg tttgtcggtg aacgctctcc 1620
tgagtaggac aaatttccga catcgaaatg cgtggtttta cctttgatca aaaacgccag 1680
atacttcacc tccagctacg ggccgcgaac tttgccagtt tcgacaaact gcgtagtgta 1740
ctggcaaccg attatgttgt gcaacaggac gcgttacaga aagagggtga tgcggtttcc 1800
ggcggcgtaa cgttgcggag gaaataa 1827
<210> 5
<211> 756
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(756)
<400> 5
gtcagtaaat ccgagcgtga aagcattatc gccgcgctgc acgggcagtc gatttttaac 60
ggtggtgggc tgtcgccgtt aaataaaatc agcccgtctc atccgccaaa acctgccacc 120
gtggcggtgc cggaagagac ggagaaaaaa gcgcgtgatg tgaatgagaa aacggcgctg 180
ctgaagaaga aatccgccac cgagcttggt gagctggcaa ccagtatcaa caccattgcc 240
cgtgatgcgc atatggaagc gaatctggag atggagattg ttccccaggg attacgcgtg 300
ctgattaaag acgaccagaa ccgcaatatg tttgaacgcg gcagcgcgaa gattatgccg 360
ttctttaaaa cgctgctggt ggagctcgcg ccagtgttcg actcgctcga taataaaatt 420
attattaccg ggcataccga tgcgatggcc tacaaaaaca atatctacaa caactggaac 480
ctttcgggtg accgcgcgct ttcggctcgt cgggtgctgg aagaggccgg aatgccggaa 540
gataaagtga tgcaggtaag cgcaatggcg gaccagatgc tgctggattc caaaaatccg 600
caaagcgcgg gcaaccggcg cattgagatt atggtgctga ccaaaagtgc gtccgatacg 660
ctgtatcaat actttggtca gcatggggat aaagtggtgc agccgctggt gcaaaagctg 720
gataagcagc aggtgctttc gcagcgaacg cgttaa 756
<210> 6
<211> 4791
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(4791)
<400> 6
gtcagtaaat ccgagcgtga aagcattatc gccgcgctgc acgggcagtc gatttttaac 60
ggtggtgggc tgtcgccgtt aaataaaatc agcccgtctc atccgccaaa acctgccacc 120
gtgttgacaa ttaatcatcc ggctcgtata atgtgtggaa ttgtgagcgg ataacaattt 180
cacacaggaa acagaccgtg agaatacaga aaagacgaac acacgtcgaa aacattctcc 240
gtattctttt gcccccaatt atgatactta gcctaatcct cccaacacca cccattcatg 300
cagaagaaag cgcggctcct caggtgcatc tgagtatttt ggctacgact gatattcatg 360
ccaacatgat ggattacgat tactacagcg acaaagaaac ggcggatttc ggtctggcga 420
gaacagcgca attgatccaa aagcaccgcg agcaaaaccc taacaccctg cttgtggata 480
acggcgactt gattcaaggg aatccgctgg gtgaatacgc ggtgaaatat caaaaagacg 540
acattatctc cggcacgaaa acccatccga ttatcagcgt catgaatgcg ctgaaatacg 600
acgccggaac gcttggcaat catgaattca actacgggct cgactttctc gacggcacaa 660
tcaaaggagc cgatttcccg attgtaaatg ccaacgtcaa aacaactagc ggcgaaaacc 720
gttatacgcc gtatgtgatt aatgaaaaaa ccctcattga tgaaaacggt aatgagcaga 780
aagtaaaagt cggctacata ggctttgtcc cgccgcaaat catgacatgg gacaaaaaga 840
atctcgaggg gcaagttcag gtgcaggata tcgtagaatc cgccaatgaa acgatcccga 900
aaatgaaggc ggaaggcgca gatgtcatta ttgccctcgc ccacaccggc attgaaaagc 960
aggcgcaatc atcaggcgca gaaaacgccg tgtttgacct tgccaccaaa acgaaaggca 1020
ttgacgcgat tatctcgggc catcagcacg gactctttcc ttccgccgag tatgcgggtg 1080
ttgctcagtt caatgtggaa aagggaacaa ttaacggcat tcctgtcgtc atgccaagca 1140
gctggggcaa atatttaggc gtgattgacc tcaagcttga aaaggcggac ggctcatgga 1200
aggtagcaga ttccaaagga agtattgaat ctattgctgg caacgtcaca tcaagaaacg 1260
aaaccgttac aaacaccatt cagcaaacac accaaaacac actggagtat gtccgaaagc 1320
cagtcggcaa aaccgaagca gatattaaca gcttctttgc acaggtcaaa gatgatcctt 1380
ccattcagat cgtgactgac gcgcaaaagt ggtacgctga aaaagaaatg aaggataccg 1440
agtacaagaa cctgccgatt ttatccgctg gagcgccgtt taaagcaggc ggcagaaacg 1500
gagccaatta ctatacaaac attccagccg gagatcttgc gattaaaaat gtcggtgact 1560
tgtatcttta cgataatact gttcaaatcg tcaagctgac aggcagcgag gtcaaggact 1620
ggctggagat gtcagcaggc caattcaatc aaattgatcc agctaaaggc ggcgaccagg 1680
ccttgctgaa cgagaatttc cgctcctata attttgacgt gattgacggt gtcacatatc 1740
aggtcgatgt gacaaaaccg gctaaataca atgagaacgg aaaagtgatc aatgcggatt 1800
catcccgtat catcaatctt tcctatgaag gcaagccgat cagcccaagc caggaatttc 1860
tcgtagtcac caataactat cgtgcgtccg gaggcggcgg gttccctcat ctgacgagcg 1920
ataaaattgt ccacggctct gcagttgaaa ataggcaggt gctgatggat tacattattg 1980
aacaaaaaac agtcaatcca aaagcagaca acaactggtc aatcgcgcct gtttccggca 2040
cgaatctgac gtttgaatcc tcgcttttgg ccaagccatt tgccgataaa gcagacgatg 2100
tcgcttatgt aggcaagtct gcgaatgaag gctatggtgt gtataagctg caattcgatg 2160
atgattcaaa tccagatcct cctaaagacg gactgtggga tctgaccgtc atgcacacca 2220
atgatacgca cgcccatctc gatgatgcag cgagacgaat gacgaaaatc aacgaagtac 2280
gcagcgaaac aaatcacaat attctccttg atgcgggaga tgtgttttcc ggcgatctgt 2340
attttactaa atggaacggt ttggccgatc tgaaaatgat gaacatgatg ggctatgacg 2400
ccatgacctt cggaaaccat gaatttgaca aaggcccgac ggtgctttct gattttctaa 2460
gcggaaacag cgcaaccgtt gatccggcga accgctatca ctttgaagcg ccggaatttc 2520
cgattgtcag tgcaaacgta gatgtgtcaa atgagcccaa gctgaaatca tttgtcaaaa 2580
agccgcaaac ctttacggca ggtgaaaaga aagaggccgg cattcaccct tacattctgt 2640
tagacgttga cggggagaaa gtcgccgtat tcggcctgac aacagaagat acagccacca 2700
catcaagccc gggcaaaagc atcgtattca atgatgcctt tgaaacagca caaaacaccg 2760
tcaaagcgat tcaagaagaa gaaaaggtaa ataaaattat tgctttaacc cacatcggac 2820
ataaccggga tcttgagcta gccaaaaaag taaaaggcat tgatttgatc atcggcggac 2880
acactcacac cctcgtagac aaaatggagg tcgtgaacaa cgaagaaccg acgatcgtgg 2940
cgcaggcaaa agaatacggc caattcttgg ggcgcgttga tgtcgcgttt gatgaaaaag 3000
gcgttgtgca aacagataaa tcaaatctga gcgtgctgcc aattgatgaa catacagaag 3060
aaaacccaga agcaaaacaa gagctcgatc agttcaaaaa tgaattagag gacgtgaaaa 3120
atgaaaaagt cggctacacg gatgtggcgc ttgacggcca gcgtgagcat gtgcgcacga 3180
aagaaacgaa tctcggaaac ttcatcgcgg acggtatgct ggcaaaagcg aaagaagcag 3240
ccggcgccag aatagcgata acaaatggcg gcggcatcag agcaggcatt gacaaaggtg 3300
atatcacact cggcgaggtg ctcaacgtga tgccgttcgg caatacgctt tacgtggccg 3360
atttaaccgg aaaacaaatt aaagaagccc ttgaacaagg cctaagcaat gtggaaaatg 3420
gcggcggcgc tttccctcag gtggccggaa tcgaatatac ctttacatta aacaacaaac 3480
ctggacaccg tgtgttagaa gtgaaaattg aatcgcctaa cggagacaaa gttgctataa 3540
atacggatga tacctaccgc gtggcaacaa ataattttgt cggtgccgga ggagacggat 3600
attctgtctt tacagaagcc tcccatggtg aagaccttgg ctacgttgat tatgagattt 3660
tcaccgaaca gctgaaaaaa ctaggaaaca aggtctctcc taaagttgaa ggacgaatca 3720
aagaagtatt cctgccgaca aagcagaagg acggcagctg gacacttgat gaagacaaat 3780
ttgcgattta tgctaaaaat gccaacacgc catttgtcta ttatggaata catgaaggat 3840
ctcaagagaa gcctatcaat cttaaagtga aaaaagatca ggtcaaactt ttgaaagaaa 3900
gagagtcaga tccttcattg acgatgttca actactggta cagcatgaag atgccaatgg 3960
cgaaccttaa aaccgcagac actgcaatcg gaatcaagtc tacgggagaa ttggatgtgt 4020
cactgtcaga tgtatatgac tttacagtga agcaaaaagg aaaagaaata aaatcattca 4080
aggagcccgt acagctttcg cttcgcatgt ttgatattga agaagcccat aaccctgcca 4140
tttatcacgt cgatagaaaa aagaaagctt tcacaaagac aggtcacgga tcagtcgatg 4200
atgatatggt gacaggatat acaaaccact tcagcgaata cacgatctta aattccggtt 4260
caaacaacaa accgccggca ttcccgtcag atcaaccgac aggcggtgat gacggcaatc 4320
atggcggagg ctccgacaaa ccaggcggaa aacagccaac tgacggaaac ggaggaaatg 4380
atacgcctcc cggcactcaa ccgactaacg gctctggtgg aaacggttcg ggcggatcag 4440
gaacagacgg tccggctggc ggcctgcttc cggacacagc cacatccatg tactcgatcc 4500
tgttggccgg atttctgatc agcgcactcg gaacggcaat gtacttacat cagaggagaa 4560
aacagaatag agcgaatcag gcataacaaa taaaacgaaa ggctcagtcg aaagactggg 4620
cctttcgttt tatctgttgt ttgtcggtga acgctctcct gagtaggaca aatgaccaaa 4680
agtgcgtccg atacgctgta tcaatacttt ggtcagcatg gggataaagt ggtgcagccg 4740
ctggtgcaaa agctggataa gcagcaggtg ctttcgcagc gaacgcgtta a 4791
<210> 7
<211> 1467
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(1467)
<400> 7
atgctacgta tcgctaaaga agctctgacg tttgacgacg ttctcctcgt tcctgctcac 60
tctaccgttc tgccgaatac tgctgacctc agcacccagc tgacgaaaac tattcgtctg 120
aatatcccta tgctttccgc agcaatggat accgtaacgg aagcgcgcct ggctattgct 180
ctggctcagg aaggcggtat cggctttatc cacaaaaaca tgtccattga acgccaggca 240
gaagaagttc gccgtgtgaa aaaacacgaa tctggtgtgg tgactgatcc gcagactgtt 300
ctgccaacca cgacgctgcg cgaagtgaaa gaactgaccg agcgtaacgg ttttgcgggc 360
tatccggtcg ttaccgaaga aaacgaactg gtgggtatta tcaccggtcg tgacgtgcgt 420
tttgttaccg acctgaacca gccggttagc gtttacatga cgccgaaaga gcgtctggtc 480
accgtgcgtg aaggtgaagc ccgtgaagtg gtgctggcaa aaatgcacga aaaacgcgtt 540
gaaaaagcgc tggtggttga tgacgaattc cacctgatcg gcatgatcac cgtgaaagac 600
ttccagaaag cggaacgtaa accgaacgcc tgtaaagacg agcaaggccg tctgcgtgtt 660
ggtgcagcgg ttggcgcagg tgcgggtaac gaagagcgtg ttgacgcgct ggttgccgca 720
ggcgttgacg ttctgctgat cgactcctcc cacggtcact cagaaggtgt actgcaacgt 780
atccgtgaaa cccgtgctaa atatccggat ctgcaaatta tcggcggcaa cgtggcaaca 840
gctgcaggtg cacgcgctct ggcagaagct ggttgcagtg cggttaaagt cggcattggc 900
cctggctcta tctgtacaac tcgtatcgtg actggcgtcg gtgttccgca gattaccgct 960
gttgctgacg cagtagaagc cctggaaggc accggtattc cggttatcgc tgatggcggt 1020
attcgcttct ccggcgacat cgccaaagct atcgccgctg gcgcaagcgc ggtgatggta 1080
ggttccatgc tggcgggtac tgaagaatct ccgggtgaaa tcgaactcta ccagggccgt 1140
tcttacaaat cttaccgtgg tatgggttcc ctgggcgcga tgtccaaagg ttcctctgac 1200
cgttatttcc agagcgataa cgctgccgac aaactggtgc cggaaggtat cgaaggtcgc 1260
gtagcctata aaggtcgcct gaaagagatc attcaccagc agatgggcgg cctgcgctcc 1320
tgtatgggtc tgaccggctg tggtactatc gacgaactgc gtactaaagc ggagtttgta 1380
cgtatcagcg gtgcgggcat tcaggaaagc cacgttcacg acgtgaccat tactaaagag 1440
tccccgaact accgtctggg ctcctga 1467
<210> 8
<211> 481
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(481)
<400> 8
atgctacgta tcgctaaaga agctctgacg tttgacgacg ttctcctcgt tcctgctcac 60
tctaccgttc tgccgaatac tgctgacctc agcacccagc tgacgaaaac tattcgtctg 120
aatatcccta tgctttccgc agcaatggat accgtaacgg aagcgcgcct ggctattgct 180
ctggctcagg aaggcggtat cggctttatc tgaccgttat ttccagagcg ataacgctgc 240
cgacaaactg gtgccggaag gtatcgaagg tcgcgtagcc tataaaggtc gcctgaaaga 300
gatcattcac cagcagatgg gcggcctgcg ctcctgtatg ggtctgaccg gctgtggtac 360
tatcgacgaa ctgcgtacta aagcggagtt tgtacgtatc agcggtgcgg gcattcagga 420
aagccacgtt cacgacgtga ccattactaa agagtccccg aactaccgtc tgggctcctg 480
a 481
<210> 9
<211> 1002
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(1002)
<400> 9
atgattgata ccaccctgcc attaactgat atccatcgcc accttgatgg caacattcgt 60
ccccagacca ttcttgaact tggccgccag tataatatct cgcttcctgc acaatccctg 120
gaaacactga ttccccacgt tcaggtcatt gccaacgaac ccgatctggt gagctttctg 180
accaaacttg actggggcgt taaagttctc gcctctcttg atgcctgtcg ccgcgtggca 240
tttgaaaaca ttgaagatgc agcccgtcac ggcctgcact atgtcgagct gcgtttttca 300
ccaggctaca tggcaatggc acatcagctg cctgtagcgg gtgttgtcga agcggtgatc 360
gatggcgtac gtgaaggttg ccgcaccttt ggtgtgcagg cgaagcttat cggcattatg 420
agccggacct tcggcgaagc cgcctgtcag caagagctgg aggccttttt agcccaccgt 480
gaccagatta ccgcacttga tttagccggt gatgaacttg gtttcccggg aagtctgttc 540
ctttctcact tcaaccgcgc gcgtgatgcg ggctggcata ttaccgtcca tgcaggcgaa 600
gctgccgggc cggaaagcat ctggcaggcg attcgtgaac tgggtgcgga gcgtattgga 660
catggcgtaa aagccattga agatcgggcg ctgatggatt ttctcgccga gcaacaaatt 720
ggtattgaat cctgtctgac ctccaatatt cagaccagca ccgtagcaga gctggctgca 780
catccgctga aaacgttcct tgagcatggc attcgtgcca gcattaacac tgacgatccc 840
ggcgtacagg gagtggatat cattcacgaa tataccgttg ccgcgccagc tgctgggtta 900
tcccgcgagc aaatccgcca ggcacagatt aatggtctgg aaatggcttt cctcagcgct 960
gaggaaaaac gcgcactgcg agaaaaagtc gccgcgaagt aa 1002
<210> 10
<211> 132
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(132)
<400> 10
atgattgata ccaccctgcc attaaggtta tcccgcgagc aaatccgcca ggcacagatt 60
aatggtctgg aaatggcttt cctcagcgct gaggaaaaac gcgcactgcg agaaaaagtc 120
gccgcgaagt aa 132
<210> 11
<211> 1455
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(1455)
<400> 11
atgaataata agggctccgg tctgacccca gctcaggcac tggataaact cgacgcgctg 60
tatgagcaat ctgtagtcgc attacgcaac gccattggca actatattac aagtggcgaa 120
ttacctgatg aaaacgcccg caaacaaggt ctttttgtct atccatcact gaccgtaacc 180
tgggacggta gcacaaccaa tccccccaaa acgcgcgcat ttggtcgctt tacccacgca 240
ggcagctaca ccaccacgat tactcgccct actctctttc gttcgtatct taatgaacaa 300
cttacgttgc tgtatcagga ttatggtgcg catatctcag tgcaaccctc gcagcatgaa 360
atcccttatc cttatgtcat cgatggctct gaattgacac ttgatcgctc aatgagcgct 420
gggttaactc gctacttccc gacaacagaa ctggcgcaaa ttggcgatga aactgcagac 480
ggcatttatc atccaactga attctccccg ctatcgcatt ttgatgcgcg ccgcgtcgat 540
ttttccctcg cacggttgcg ccattatacc ggtacgccag ttgaacattt tcagccgttc 600
gtcttgttta ccaactacac acgttatgtg gatgaattcg ttcgttgggg atgcagccag 660
atcctcgatc ctgatagtcc ctacattgcc ctttcttgtg ctggcgggaa ctggatcacc 720
gccgaaaccg aagcgccaga agaagccatt tccgaccttg catggaaaaa acatcagatg 780
ccagcatggc atttaattac cgccgatggt cagggtatta ctctggtgaa tattggcgtg 840
ggaccgtcaa atgctaaaac catctgcgat catctggcag tgctacgccc ggatgtctgg 900
ttgatgattg gtcactgtgg cggattacgt gaaagtcagg ccattggcga ttatgtactt 960
gcacacgctt atttacgcga tgaccacgtt cttgatgcgg ttctgccgcc cgatattcct 1020
attccgagca ttgctgaagt gcaacgtgcg ctttatgacg ccaccaagct ggtgagcggc 1080
aggcccggtg aggaagtcaa acagcggcta cgtactggta ctgtggtaac cacagatgac 1140
aggaactggg aattacgtta ctcagcttct gcacttcgtt ttaacttaag ccgggccgta 1200
gcaattgata tggaaagtgc aaccattgcc gcgcaaggat atcgtttccg cgtgccatac 1260
gggacactac tgtgtgtttc agataaaccg ttgcatggcg agattaaact tcccggccag 1320
gctaaccgtt tttatgaagg cgctatttcc gaacatctgc aaattggcat tcgggcgatc 1380
gatttgctgc gcgcagaagg cgaccgactg cattcgcgta aattacgaac ctttaatgag 1440
ccgccgttcc gataa 1455
<210> 12
<211> 291
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(291)
<400> 12
atgaataata agggctccgg tctgacccca gctcaggcac tggataaact cgacgcgctg 60
tatgagcaat ctgtagtcgc attacgcgtg ccatacggga cactactgtg tgtttcagat 120
aaaccgttgc atggcgagat taaacttccc ggccaggcta accgttttta tgaaggcgct 180
atttccgaac atctgcaaat tggcattcgg gcgatcgatt tgctgcgcgc agaaggcgac 240
cgactgcatt cgcgtaaatt acgaaccttt aatgagccgc cgttccgata a 291
<210> 13
<211> 1365
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(1365)
<400> 13
ttgattacac atattagccc gcttggctcc atggatatgt tgtcgcagct ggaagtggat 60
atgcttaaac gcaccgccag cagcgacctc tatcaactgt ttcgcaactg ttcacttgcc 120
gtactgaact ccggtagttt gaccgataac agcaaagaat tgctgtctcg ttttgaaaat 180
ttcgatatta acgtcttgcg ccgtgaacgc ggcgtaaagc tggaactgat taatcccccg 240
gaagaggctt ttgtcgatgg gcgaattatt cgcgctttgc aggccaactt gttcgcggtc 300
ctgcgtgaca ttctcttcgt ttacgggcaa atccataaca ccgttcgttt tcccaacctg 360
aatctcgaca actccgtcca catcactaac ctggtctttt ccatcttgcg taacgctcgc 420
gcgctgcatg tgggtgaagc gccaaatatg gtggtctgct ggggcggtca ctcaattaac 480
gaaaacgagt atttgtatgc ccgtcgcgtc ggaaaccagc tgggcctgcg tgagctgaat 540
atctgcaccg gctgtggtcc gggagcgatg gaagcgccga tgaaaggtgc tgcggtcgga 600
cacgcgcagc agcgttacaa agacagtcgt tttattggta tgacagagcc gtcgattatc 660
gccgctgaac cgcctaaccc gctggtcaac gaattgatca tcatgccaga tatcgaaaaa 720
cgtctggaag cgtttgtccg tatcgctcac ggtatcatta tcttccctgg cggtgtgggt 780
acggcagaag agttgctcta tttgctggga attttaatga acccggccaa caaagatcag 840
gttttaccat tgatcctcac cggcccgaaa gagagcgccg actacttccg cgtactggac 900
gagtttgtcg tgcatacgct gggtgaaaac gcgcgccgcc attaccgcat catcattgat 960
gacgccgctg aagtcgctcg tcagatgaaa aaatcgatgc cgctggtgaa agaaaatcgc 1020
cgtgatacag gcgatgccta cagctttaac tggtcaatgc gcattgcgcc agatttgcaa 1080
atgccgtttg agccgtctca cgagaatatg gctaatctga agctttaccc ggatcaacct 1140
gttgaagtgc tggctgccga cctgcgccgt gcgttctccg gtattgtggc gggtaacgta 1200
aaagaagtcg gtattcgcgc cattgaagag tttggtcctt acaaaatcaa cggcgataaa 1260
gagattatgc gtcgtatgga cgacctgcta cagggttttg ttgcccagca tcgtatgaag 1320
ttgccaggct cagcctacat cccttgctac gaaatctgca cgtaa 1365
<210> 14
<211> 258
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(258)
<400> 14
ttgattacac atattagccc gcttggctcc atggatatgt tgtcgcagct ggaagtggat 60
atgcttaaac gcaccgccag cagcgacctc tatcaactgt ttcgcaactg ttcacttgcc 120
gtactgaact ccggtagttt gaccgataac agcgagatta tgcgtcgtat ggacgacctg 180
ctacagggtt ttgttgccca gcatcgtatg aagttgccag gctcagccta catcccttgc 240
tacgaaatct gcacgtaa 258
<210> 15
<211> 720
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(720)
<400> 15
atggctaccc cacacattaa tgcagaaatg ggcgatttcg ctgacgtagt tttgatgcca 60
ggcgacccgc tgcgtgcgaa gtatattgct gaaactttcc ttgaagatgc ccgtgaagtg 120
aacaacgttc gcggtatgct gggcttcacc ggtacttaca aaggccgcaa aatttccgta 180
atgggtcacg gtatgggtat cccgtcctgc tccatctaca ccaaagaact gatcaccgat 240
ttcggcgtga agaaaattat ccgcgtgggt tcctgtggcg cagttctgcc gcacgtaaaa 300
ctgcgcgacg tcgttatcgg tatgggtgcc tgcaccgatt ccaaagttaa ccgcatccgt 360
tttaaagacc atgactttgc cgctatcgct gacttcgaca tggtgcgtaa cgcagtagat 420
gcagctaaag cactgggtat tgatgctcgc gtgggtaacc tgttctccgc tgacctgttc 480
tactctccgg acggcgaaat gttcgacgtg atggaaaaat acggcattct cggcgtggaa 540
atggaagcgg ctggtatcta cggcgtcgct gcagaatttg gcgcgaaagc cctgaccatc 600
tgcaccgtat ctgaccacat ccgcactcac gagcagacca ctgccgctga gcgtcagact 660
accttcaacg acatgatcaa aatcgcactg gaatccgttc tgctgggcga taaagagtaa 720
<210> 16
<211> 261
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> gene
<222> (1)..(261)
<400> 16
atggctaccc cacacattaa tgcagaaatg ggcgatttcg ctgacgtagt tttgatgcca 60
ggcgaccttc tcggcgtgga aatggaagcg gctggtatct acggcgtcgc tgcagaattt 120
ggcgcgaaag ccctgaccat ctgcaccgta tctgaccaca tccgcactca cgagcagacc 180
actgccgctg agcgtcagac taccttcaac gacatgatca aaatcgcact ggaatccgtt 240
ctgctgggcg ataaagagta a 261
<210> 17
<211> 25
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(25)
<400> 17
gtgctggagg gatgattgtt gggag 25
<210> 18
<211> 76
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(76)
<400> 18
aattgttatc cgctcacaat tccacacatt atacgagccg gatgattaat tgtcaacgca 60
gtacttcctg ctggct 76
<210> 19
<211> 45
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(45)
<400> 19
tgcgctggtt gatttcttct aggcgaatta ccggcgttca ctata 45
<210> 20
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<400> 20
tcacctccac cagcacatcc 20
<210> 21
<211> 69
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(69)
<400> 21
tgtggaattg tgagcggata acaatttcac acaggaaaca gaccatgcag ccgctagtag 60
gaatcatca 69
<210> 22
<211> 70
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(70)
<400> 22
tatagtgaac gccggtaatt cgcctagaag aaatcaacca gcgcactatg ctaaacctaa 60
acgttcaaag 70
<210> 23
<211> 19
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(19)
<400> 23
ggttcatctg caatgccgc 19
<210> 24
<211> 25
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(25)
<400> 24
gaaagacgtg acgtgatttt ctctt 25
<210> 25
<211> 45
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(45)
<400> 25
atgaacataa ctcaatttgt aggcgaatta ccggcgttca ctata 45
<210> 26
<211> 28
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(28)
<400> 26
aagagaaaat cacgtcacgt ctttctcc 28
<210> 27
<211> 48
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(48)
<400> 27
cctacaaatt gagttatgtt cattcaagca gtagtgacat gagtttcc 48
<210> 28
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(24)
<400> 28
gaggattttc ttacggcgat tact 24
<210> 29
<211> 34
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(34)
<400> 29
tcacgataga ctggaacaat ttaagaccgt cggc 34
<210> 30
<211> 45
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(45)
<400> 30
aggaatatcc gcaataatta tggcgaatta ccggcgttca ctata 45
<210> 31
<211> 27
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(27)
<400> 31
gtcttaaatt gttccagtct atcgtga 27
<210> 32
<211> 51
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(51)
<400> 32
attcgccata attattgcgg atattccttt aagcctttga tttcagcaag c 51
<210> 33
<211> 25
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(25)
<400> 33
agatacagcg cacattacaa cacag 25
<210> 34
<211> 25
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(25)
<400> 34
caaatggaac gattgatatt catgg 25
<210> 35
<211> 45
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(45)
<400> 35
tgcgctggtt gatttcttct aggcgaatta ccggcgttca ctata 45
<210> 36
<211> 24
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(24)
<400> 36
aatatcaatc gttccatttg cagc 24
<210> 37
<211> 59
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(59)
<400> 37
ccggtaattc gcctagaaga aatcaaccag cgcagctgtt taatcacact cggatacca 59
<210> 38
<211> 19
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(19)
<400> 38
acaaaccgca ggcgaaagt 19
<210> 39
<211> 44
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(44)
<400> 39
ctgtggagat gacttcaacg ccaagctctg tcagttcttt tacg 44
<210> 40
<211> 46
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(46)
<400> 40
gctttaaagg ctgcccaaaa ataacgaatt accggcgttc actata 46
<210> 41
<211> 44
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(44)
<400> 41
cgtaaaagaa ctgacagagc ttggcgttga agtcatctcc acag 44
<210> 42
<211> 46
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(46)
<400> 42
tatagtgaac gccggtaatt cgttattttt gggcagcctt taaagc 46
<210> 43
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<400> 43
gtcaggcact ggcgaaagat 20
<210> 44
<211> 75
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(75)
<400> 44
aattgttatc cgctcacaat tccacacatt atacgagccg gatgattaat tgtcaacgca 60
agccataaac ccaca 75
<210> 45
<211> 82
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(82)
<400> 45
aaagactggg cctttcgttt tatctgttgt ttgtcggtga acgctctcct gagtaggaca 60
aatttccgac atcgaaatgc gt 82
<210> 46
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<400> 46
aggcgttgtt gtggcagatt 20
<210> 47
<211> 75
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(75)
<400> 47
tagggtctag aaataatttt gtttaacttt aagaaggaga tataccatgt cttcagtagt 60
tgtagtaggt acgca 75
<210> 48
<211> 57
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(57)
<400> 48
agacccgttt agaggcccca aggggttatg ctagttagtt cgcacggtac acactgc 57
<210> 49
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<400> 49
gccagcacga acataatccc 20
<210> 50
<211> 74
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(74)
<400> 50
aattgttatc cgctcacaat tccacacatt atacgagccg gatgattaat tgtcaacacg 60
gtggcaggtt ttgg 74
<210> 51
<211> 44
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(44)
<400> 51
aggaatatcc gcaataatta tgggaccaaa agtgcgtccg atac 44
<210> 52
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<400> 52
cggcgtaatc acaaactggc 20
<210> 53
<211> 87
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(87)
<400> 53
tccggctcgt ataatgtgtg gaattgtgag cggataacaa tttcacacag gaaacagacc 60
gtgagaatac agaaaagacg aacacac 87
<210> 54
<211> 59
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(59)
<400> 54
cgcacttttg gtcccataat tattgcggat attcctcatt cgcagacttg cctacataa 59
<210> 55
<211> 23
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(23)
<400> 55
tgttcaaatc gtcaagctga cag 23
<210> 56
<211> 34
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(34)
<400> 56
cattcgcaga cttgcctaca taagcgacat cgtc 34
<210> 57
<211> 40
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(40)
<400> 57
atgtcgctta tgtaggcaag tctgcgaatg aaggctatgg 40
<210> 58
<211> 45
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(45)
<400> 58
gtatcggacg cacttttggt cttatgcctg attcgctcta ttctg 45
<210> 59
<211> 22
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<400> 59
gcggtgtcgt ctttgagtgt aa 22
<210> 60
<211> 42
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(42)
<400> 60
tcgctctgga aataacggtc agataaagcc gataccgcct tc 42
<210> 61
<211> 42
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(42)
<400> 61
gaaggcggta tcggctttat ctgaccgtta tttccagagc ga 42
<210> 62
<211> 22
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<400> 62
cgcctgcttc aaagacatac tg 22
<210> 63
<211> 22
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(22)
<400> 63
accggtgctt acgggattat ag 22
<210> 64
<211> 41
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(41)
<400> 64
tttgctcgcg ggataacctt aatggcaggg tggtatcaat c 41
<210> 65
<211> 41
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(41)
<400> 65
gattgatacc accctgccat taaggttatc ccgcgagcaa a 41
<210> 66
<211> 21
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(21)
<400> 66
atcccgaggc agttatgtga a 21
<210> 67
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<400> 67
ttggtcgccg tagggtttat 20
<210> 68
<211> 44
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(44)
<400> 68
agtagtgtcc cgtatggcac gcgtaatgcg actacagatt gctc 44
<210> 69
<211> 44
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(44)
<400> 69
gagcaatctg tagtcgcatt acgcgtgcca tacgggacac tact 44
<210> 70
<211> 18
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(18)
<400> 70
ttcatctccg ccgccttt 18
<210> 71
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<400> 71
ataactggga tgaggtgcgc 20
<210> 72
<211> 44
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(44)
<400> 72
cgtccatacg acgcataatc tcgctgttat cggtcaaact accg 44
<210> 73
<211> 44
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(44)
<400> 73
cggtagtttg accgataaca gcgagattat gcgtcgtatg gacg 44
<210> 74
<211> 18
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(18)
<400> 74
ggcgttgatt ggcaggaa 18
<210> 75
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<400> 75
tgacgccacc atcaaagaga 20
<210> 76
<211> 36
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(36)
<400> 76
ccatttccac gccgagaagg tcgcctggca tcaaaa 36
<210> 77
<211> 36
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(36)
<400> 77
ttttgatgcc aggcgacctt ctcggcgtgg aaatgg 36
<210> 78
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(20)
<400> 78
tggcaacaag gcgtgagaac 20
<210> 79
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 79
agtcctaggt ataatactag tatcccgcat ttcttaaagt cgttttagag ctagaa 56
<210> 80
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 80
ttctagctct aaaacgactt taagaaatgc gggatactag tattatacct aggact 56
<210> 81
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 81
agtcctaggt ataatactag ttgcgctggt tgatttcttc tgttttagag ctagaa 56
<210> 82
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 82
ttctagctct aaaacagaag aaatcaacca gcgcaactag tattatacct aggact 56
<210> 83
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 83
agtcctaggt ataatactag tatgaacata actcaatttg tgttttagag ctagaa 56
<210> 84
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 84
ttctagctct aaaacacaaa ttgagttatg ttcatactag tattatacct aggact 56
<210> 85
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 85
agtcctaggt ataatactag tcgtgaaaga cttccagaaa ggttttagag ctagaa 56
<210> 86
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 86
ttctagctct aaaacctttc tggaagtctt tcacgactag tattatacct aggact 56
<210> 87
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 87
agtcctaggt ataatactag tattgaagat gcagcccgtc agttttagag ctagaa 56
<210> 88
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 88
ttctagctct aaaactgacg ggctgcatct tcaatactag tattatacct aggact 56
<210> 89
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 89
agtcctaggt ataatactag tacaacagaa ctggcgcaaa tgttttagag ctagaa 56
<210> 90
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 90
ttctagctct aaaacatttg cgccagttct gttgtactag tattatacct aggact 56
<210> 91
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 91
agtcctaggt ataatactag tgcgaattat tcgcgctttg cgttttagag ctagaa 56
<210> 92
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 92
ttctagctct aaaacgcaaa gcgcgaataa ttcgcactag tattatacct aggact 56
<210> 93
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 93
agtcctaggt ataatactag tactgggtat tgatgctcgc ggttttagag ctagaa 56
<210> 94
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 94
ttctagctct aaaaccgcga gcatcaatac ccagtactag tattatacct aggact 56
<210> 95
<211> 84
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(84)
<400> 95
aaagactggg cctttcgttt tatctgttgt ttgtcggtga acgctctcct gagtaggaca 60
aatgaccaaa agtgcgtccg atac 84
<210> 97
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 97
agtcctaggt ataatactag taggaatatc cgcaataatt agttttagag ctagaa 56
<210> 97
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 97
ttctagctct aaaactaatt attgcggata ttcctactag tattatacct aggact 56
<210> 98
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 98
agtcctaggt ataatactag tcattaccac ttatggcgaa cgttttagag ctagaa 56
<210> 99
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 99
ttctagctct aaaacgttcg ccataagtgg taatgactag tattatacct aggact 56
<210> 100
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 100
agtcctaggt ataatactag tgcgtgatgt gaatgagaaa agttttagag ctagaa 56
<210> 101
<211> 56
<212> DNA
<213> 人工序列(Artificial sequence)
<220>
<221> primer_bind
<222> (1)..(56)
<400> 101
ttctagctct aaaacttttc tcattcacat cacgcactag tattatacct aggact 56

Claims (6)

1.一种腺苷工程菌,其特征在于:是由下述方法制备得到的:在含pREDCas9质粒的大肠杆菌E.coli W3110的基因组上构建嘌呤核苷操纵子purEKBCSQLFMNHD,将嘌呤核苷操纵子purEKBCSQLFMNHD整合在大肠杆菌假基因yjiV位点上,所述大肠杆菌假基因yjiV的原始基因序列为序列表SEQ ID NO:1所示序列,还将腺苷琥珀酸合酶基因purA连接Ptrc启动子整合在大肠杆菌假基因位点yghE上;在大肠杆菌mbhA基因位点整合了核苷酸磷酸酯酶基因yfkN,并用启动子Ptrc启动,敲除guaB、add、amn、ygdH和deoD基因,所述嘌呤核苷操纵子purEKBCSQLFMNHD以及purA基因和yfkN基因均来源于枯草芽孢杆菌Bacillus subtilis XGL
2.权利要求1所述腺苷工程菌的构建方法,其特征在于:步骤如下:在含pREDCas9质粒的大肠杆菌E.coli W3110的基因组上构建嘌呤核苷操纵子purEKBCSQLFMNHD,将嘌呤核苷操纵子purEKBCSQLFMNHD整合在大肠杆菌假基因yjiV位点上,并由Ptrc启动子启动;还在假基因位点yghE上整合了purA基因,用Ptrc启动子启动;在大肠杆菌mbhA基因位点整合了yfkN基因,并用启动子Ptrc启动,敲除guaB、add、amn、ygdH和deoD基因,所述嘌呤核苷操纵子purEKBCSQLFMNHD以及purA基因和yfkN基因均来源于枯草芽孢杆菌Bacillus subtilis XGL
3.根据权利要求2所述的腺苷工程菌的构建方法,其特征在于:采用CRISPR/Cas9介导的基因编辑技术对大肠杆菌进行定向基因改造,包括如下步骤:
(1)将嘌呤核苷操纵子purEKBCSQLFMNHD整合在大肠杆菌假基因yjiV位点上,并用强启动子Ptrc启动;
(2)purA基因整合在大肠杆菌假基因位点yghE上,并链接Ptrc启动子;
(3)在大肠杆菌mbhA基因位点整合了yfkN基因,并用启动子Ptrc启动;
(4)敲除guaB基因,阻断腺苷的前体物IMP的支路代谢;
(5)敲除amn,ygdH基因,减弱腺苷的前体物AMP的降解;
(6)敲除add和deoD基因,减弱腺苷的降解。
4.根据权利要求2所述的腺苷工程菌的构建方法,其特征在于:包括以下步骤:
(1)将强启动子Ptrc与purE, purK和purB基因连接后,并在purB后面插入一个剪切识别序列,整合到E.coli W3110的假基因位点yjiV上;
(2)将purCSQ基因依次整合在purB基因的后面,在该基因后面插入靶序列gRNA-pur1-S和gRNA-pur1 -A;
(3)把purL基因整合在purQ基因的后面;
(4)把purFMN基因整合在purL基因的后面;
(5)把purHD基因整合在purN基因的后面。
5.根据权利要求4所述的腺苷工程菌的构建方法,其特征在于:在上述步骤(5)的基础上,继续进行如下操作步骤:
(6)将purA基因与Ptrc启动子连接,整合到假基因yghE位点上;
(7)把yfkN基因的前1900bp的碱基与强启动子Ptrc连接,后加识别靶序列,整合到假基因mbhA上,之后再把yfkN基因的后半部分碱基整合到前半部分碱基的后面;
(8)将guaB基因敲除,减弱前体物IMP的支路代谢,使其更多地流向腺苷的合成途径中;
(9)敲除add基因,阻断腺苷到肌苷的降解途径;
(10)敲除amn和ygdH基因,减少腺苷前体物AMP到腺嘌呤的转化;
(11)敲除deoD基因,减弱腺苷到腺嘌呤的降解途径。
6.权利要求1所述腺苷工程菌在摇瓶发酵生产腺苷方面的应用。
CN202110188665.XA 2021-02-19 2021-02-19 一种腺苷工程菌及其构建方法与应用 Active CN112553135B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110188665.XA CN112553135B (zh) 2021-02-19 2021-02-19 一种腺苷工程菌及其构建方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110188665.XA CN112553135B (zh) 2021-02-19 2021-02-19 一种腺苷工程菌及其构建方法与应用

Publications (2)

Publication Number Publication Date
CN112553135A CN112553135A (zh) 2021-03-26
CN112553135B true CN112553135B (zh) 2021-05-28

Family

ID=75035973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110188665.XA Active CN112553135B (zh) 2021-02-19 2021-02-19 一种腺苷工程菌及其构建方法与应用

Country Status (1)

Country Link
CN (1) CN112553135B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144560A (zh) * 2022-09-28 2023-05-23 天津科技大学 一种苯丙氨酸大肠杆菌生产菌及其应用
CN116925993B (zh) * 2023-09-19 2023-12-08 北京量维生物科技研究院有限公司 用于酶催化生产胞苷酸的基因工程改造菌株和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232674A (zh) * 2014-07-15 2014-12-24 广东肇庆星湖生物科技股份有限公司 一种提高解淀粉芽孢杆菌生产鸟苷产量的方法
WO2018083692A1 (en) * 2016-11-01 2018-05-11 Tamar Levin Novel methods for modulating protein expression in microorganisms
WO2020071538A1 (en) * 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
CN111363709A (zh) * 2018-12-26 2020-07-03 中国科学院青岛生物能源与过程研究所 一种提高异戊二烯产量的基因工程菌及其构建方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232674A (zh) * 2014-07-15 2014-12-24 广东肇庆星湖生物科技股份有限公司 一种提高解淀粉芽孢杆菌生产鸟苷产量的方法
WO2018083692A1 (en) * 2016-11-01 2018-05-11 Tamar Levin Novel methods for modulating protein expression in microorganisms
WO2020071538A1 (en) * 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
CN111363709A (zh) * 2018-12-26 2020-07-03 中国科学院青岛生物能源与过程研究所 一种提高异戊二烯产量的基因工程菌及其构建方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production;Shuobo Shi等;《Metabolic Engineering》;20091230;全文 *
枯草芽孢杆菌嘌呤合成途径的修饰对腺苷积累的影响;徐庆阳等;《微生物学报》;20141230;全文 *

Also Published As

Publication number Publication date
CN112553135A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
CN111712570B (zh) 一种生产阿洛酮糖及其衍生物的工程菌株及其构建方法和应用
TWI682998B (zh) 用於生產塔格糖的組成物及利用其生產塔格糖的方法
CN107267579A (zh) 微生物发酵生产n‑乙酰‑d‑氨基葡萄糖和/或d‑氨基葡萄糖盐的方法
CN112553135B (zh) 一种腺苷工程菌及其构建方法与应用
CN112458034B (zh) 一种基因工程构建的重组大肠杆菌及生物合成6’-唾液乳糖的方法
CN113186142B (zh) 一种高效生产2′-岩藻糖基乳糖的大肠杆菌工程菌株
CN112795582B (zh) 一种适合在微生物中高效合成nad衍生物的酶基因
CN113652385B (zh) 一种高产乳酰-n-四糖的微生物的构建方法及应用
CN101107356B (zh) 3’-磷酸腺苷-5’-磷酸硫酸的酶合成法
CN113774075B (zh) 一株大肠杆菌基因工程菌及其发酵生产l-茶氨酸的方法
CN113832092B (zh) 一种提高乳酰-n-岩藻五糖产量的基因工程菌及其生产方法
CN113564190B (zh) 高产核黄素大肠杆菌工程菌株及构建方法
KR20200134333A (ko) 발효에 의한 히스타민 생산을 위해 조작된 생합성 경로
Teng et al. Cell-free regeneration of ATP based on polyphosphate kinase 2 facilitates cytidine 5'-monophosphate production
CN115960736B (zh) 一种产香草胺和辣椒碱的酿酒酵母工程菌及其构建方法与应用
CN109706106B (zh) 一种强化脂肪酸降解和乙醛酸循环提高苏氨酸产量的方法
CN113957027B (zh) 一种提高乳酰-n-岩藻六糖产量的基因工程菌及其生产方法
CN114806995B (zh) 一种基于乙酰辅酶a代谢改造后高效合成四氢嘧啶的基因工程菌的构建和应用
CN116287066A (zh) 一种重组菌株生产脱氧胸苷三磷酸的方法
CN114107143B (zh) 一种生产5’-胞苷酸的方法
CN113684163B (zh) 一种提高乳酰-n-四糖产量的基因工程菌及其生产方法
CN106906192B (zh) 一种葡萄糖基转移酶及在合成藏红花酸葡萄糖酯中的应用
KR101818561B1 (ko) 바실러스 유래 뉴클레오시드 포스포릴라아제를 이용한 3&#39;-아미노-2&#39;,3&#39;-디데옥시아데노신의 제조 방법
CN109722404B (zh) 利用纤维素制备金合欢烯的工程菌株及方法
CN106191017B (zh) 一种来源于虎眼万年青的尿苷-5’-二磷酸芹菜糖/木糖合成酶,其核苷酸序列及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230414

Address after: Room A281, SME Incubation Park, No.999 Huining Road, Yining Park, Khorgos Economic Development Zone, Yining City, Yili Kazak Autonomous Prefecture, Xinjiang Uygur Autonomous Region, 835100

Patentee after: Xinjiang Ruinuo Biotechnology Co.,Ltd.

Address before: No.9, 13th Street, economic and Technological Development Zone, Binhai New Area, Tianjin

Patentee before: TIANJIN University OF SCIENCE AND TECHNOLOGY