CN112491314B - 基于特征模型的伺服系统离散自适应鲁棒滑模控制方法 - Google Patents

基于特征模型的伺服系统离散自适应鲁棒滑模控制方法 Download PDF

Info

Publication number
CN112491314B
CN112491314B CN202011576505.4A CN202011576505A CN112491314B CN 112491314 B CN112491314 B CN 112491314B CN 202011576505 A CN202011576505 A CN 202011576505A CN 112491314 B CN112491314 B CN 112491314B
Authority
CN
China
Prior art keywords
motor
servo system
measurement noise
characteristic
sliding mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011576505.4A
Other languages
English (en)
Other versions
CN112491314A (zh
Inventor
吴益飞
吴红婷
郭健
陈庆伟
李胜
成爱萍
赵鹏
梁皓
郑瑞琳
张翠艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202011576505.4A priority Critical patent/CN112491314B/zh
Publication of CN112491314A publication Critical patent/CN112491314A/zh
Application granted granted Critical
Publication of CN112491314B publication Critical patent/CN112491314B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0007Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于特征模型的伺服系统离散自适应鲁棒滑模控制方法。该方法为:建立四电机伺服系统动力学模型;根据特征建模理论,建立含测量噪声的四电机伺服系统特征模型,并利用递推最小二乘法对特征模型参数进行辨识;构建STF滤波器对测量噪声进行滤波,抑制测量噪声对实际系统控制性能的影响;采用基于特征模型的离散自适应鲁棒滑模控制器作为四电机伺服系统的位置控制器。本发明提高了多电机伺服系统的跟踪精度和动态性能,改善了系统的控制效果。

Description

基于特征模型的伺服系统离散自适应鲁棒滑模控制方法
技术领域
本发明涉及电机控制技术领域,特别是一种基于特征模型的伺服系统离散自适应鲁棒滑模控制方法。
背景技术
随着现代科学技术的飞速发展,高超声速飞机、无人战斗机等各类空中机动目标层出不穷,呈现出速度更快、机动性更强的趋势,这给国土防空带来了巨大的压力。为了对抗这些机动目标,武器装备对其伺服系统的快速性、控制精度、鲁棒性提出了更高的要求。
传统的伺服系统驱动方式是单电机驱动,但是由于体积、工艺、结构等限制,单电机驱动难以满足武器系统大功率的要求。所以多电机驱动的控制方法被提出。但是多电机伺服系统是一个高阶的、强耦合的复杂系统,控制器的设计难度较大。而由吴宏鑫院士等人提出的特征建模理论,不仅可以有效降低多电机伺服系统控制器的设计难度,而且可以提高系统的控制性能。该理论的核心是将复杂高阶系统信息融入到特征模型的时变参数中,即用低阶的时变差分方程来等价系统的动态特性。在实际系统中,测量噪声普遍存在。在特征模型的参数辨识时,如果不对系统中的测量噪声进行处理,往往会造成特征参数收敛缓慢。目前针对系统特征模型含测量噪声问题提出的滤波方法主要为扩展卡尔曼滤波算法。但是扩展卡尔曼滤波算法对于存在模型不确定的系统鲁棒性很差,并且缺少对系统状态突变的快速跟踪能力。离散滑模控制方法在伺服系统控制中得到广泛应用,但传统的离散滑模控制设计方法存在两方面不足:一是由于趋近律自身参数及切换开关的影响造成的系统抖振;二是由于根据不确定性上下界设计控制器使得抖振加剧。
发明内容
本发明的目的在于提供一种适用于多电机伺服系统的离散自适应鲁棒滑模控制方法,提高多电机伺服系统的跟踪精度和动态性能,并改善系统的控制效果。
实现本发明目的的技术方案为:一种基于特征模型的伺服系统离散自适应鲁棒滑模控制方法,包括以下步骤:
步骤1、建立多电机同步驱动伺服系统动力学模型;
步骤2、依据特征建模理论,建立含测量噪声的四电机伺服系统特征模型,并采用递推最小二乘法对特征模型参数进行辨识;
步骤3、构建STF强跟踪滤波器,对测量噪声进行滤波后反馈至位置控制器;
步骤4、采用离散自适应鲁棒滑模控制器作为四电机伺服系统的位置控制器,控制器输出作为伺服系统的控制量。
本发明与现有技术相比,其显著优点为:(1)针对系统中存在测量噪声的情况,设计了STF滤波算法,抑制了测量噪声对系统控制性能的影响,具有更好的滤波效果;(2)设计了离散自适应鲁棒滑模控制方法,削弱了传统离散滑模控制造成的抖振现象,进一步提高了伺服系统的动静态性能。
附图说明
图1为本发明的基于特征模型的离散自适应鲁棒滑模控制系统结构图。
图2为本发明的多电机伺服系统结构框图。
图3为本发明的STF滤波算法流程图。
具体实施方式
结合图1,本发明基于特征模型的伺服系统离散自适应鲁棒滑模控制方法,包括以下步骤:
步骤1、建立多电机同步驱动伺服系统动力学模型;
步骤2、依据特征建模理论,建立含测量噪声的四电机伺服系统特征模型,并采用递推最小二乘法对特征模型参数进行辨识;
步骤3、构建STF强跟踪滤波器,对测量噪声进行滤波后反馈至位置控制器;
步骤4、采用离散自适应鲁棒滑模控制器作为四电机伺服系统的位置控制器,控制器输出作为伺服系统的控制量。
进一步地,结合图2,步骤1建立含齿隙和摩擦非线性因素的多电机同步驱动伺服系统动力学模型,具体为:
步骤1-1、建立单永磁同步电机伺服系统动力学模型:
Figure BDA0002863544490000021
其中,uq代表电机q轴的等效电压,iq代表电机q轴的等效电流,Rq代表q轴的等效电阻,Lq代表q轴的等效电感,Ce代表电机反电势系数,θm为电机角度;
Figure BDA0002863544490000032
为电机角速度;
Figure BDA0002863544490000033
为电机角加速度;Ct为电机转矩系数;ks为电机的刚度系数;im为小齿轮与大齿轮之间的减速比;Jm和bm分别为电机的转动惯量和粘性系数;JL和bL为负载的转动惯量和粘性系数,TL为负载转矩;τm为电机与负载之间的弹性力矩;θL为负载角度;
Figure BDA0002863544490000034
为负载角速度;
Figure BDA0002863544490000035
为负载角加速度。
步骤1-2、利用单电机伺服系统动力学模型构建四电机伺服系统动力学模型为:
Figure BDA0002863544490000031
其中:j=1,2,3,4代表电机1、电机2、电机3和电机4;Ujq(t)为电机在q轴的等效电压;Ijq(t)为电机在q轴的等效电流。
进一步地,步骤2依据特征建模理论,建立含测量噪声的四电机伺服系统特征模型,并采用递推最小二乘法对特征模型参数进行辨识,具体为:
步骤2-1、用一个慢时变的二阶差分方程表示四电机伺服系统的特征模型:
y(k)=f1(k)y(k-1)+f2(k)y(k-2)+g0(k)u(k-1)
其中,y(k)为下一时刻多电机伺服系统的位置,y(k-1)为当前时刻多电机伺服系统的位置,y(k-2)为上一时刻多电机伺服系统的位置;u(k)为控制量;f1(k)、f1(k)和g0(k)分别为特征模型的参数。
步骤2-2、考虑系统含有的测量噪声,将多电机伺服系统用含测量噪声的特征模型描述:
Figure BDA0002863544490000041
其中,v(k)为测量噪声。
步骤2-3、采用递推最小二乘法对特征参数f1(k)、f1(k)和g0(k)进行在线辨识:
Figure BDA0002863544490000042
其中,K(k)为修正的增益矩阵,λ为遗忘因子,P(k)为k时刻的递推参数矩阵,
Figure BDA0002863544490000043
为当前时刻的特征参数估计值,X(k)为当前时刻的输出测量值。
进一步地,结合图3,步骤3构建STF强跟踪滤波器,对测量噪声进行滤波后反馈至位置控制器,具体为:
步骤3-1、初始化时刻k、状态变量x、协方差矩阵Pr
步骤3-2、得先验估计值:
Figure BDA0002863544490000044
步骤3-3、将当前时刻的输出残差r(k)加入滤波器模型,进一步计算输出残差r(k)的协方差矩阵V(k)为:
Figure BDA0002863544490000045
Figure BDA0002863544490000046
其中,增加遗忘因子ρ,ρ的取值范围为0≤ρ≤1,一般取ρ=0.95。
步骤3-4、计算渐消因子λ(k):
Figure BDA0002863544490000051
Figure BDA0002863544490000052
Figure BDA0002863544490000053
λ(k)=diag[λ1(k)λ2(k)…λn(k)]
其中,β为弱化因子,β≥1,合理的选择β可以使得到的测量噪声状态估计更加平滑,有效避免过调节。ai为预先确定的常数项,ai较大时,当系统状态xi发生突变,滤波器可以表现出对其较强的跟踪能力。
步骤3-5、计算k时刻先验估计的协方差矩阵,得协方差矩阵Pr(k|k-1):
Pr(k|k-1)=λ(k)Φ(k-1)Pr(k-1)ΦT(k-1)+Q
步骤3-6、更新强跟踪滤波算法的增益矩阵K(k):
K(k)=Pr(k|k-1)CT(k)[C(k)Pr(k|k-1)CT(k)+R]-1
步骤3-7、更新后验估计的协方差矩阵Pr(k):
Pr(k)=(I-K(k)C(k))Pr(k|k-1)
步骤3-8、得到后验状态估计值:
Figure BDA0002863544490000054
进一步地,步骤4采用离散自适应鲁棒滑模控制器作为四电机伺服系统的位置控制器,控制器输出作为伺服系统的控制量,具体为:
步骤4-1:建立多电机同步驱动伺服系统的误差特征模型:
Figure BDA0002863544490000055
其中,
Figure BDA0002863544490000056
分别为k时刻特征参数估计值,Δ(k)为辨识误差、不确定性等的总和,并设|Δ(k)-Δ(k-1)|<δ。
步骤4-2:设计滑模函数为:
s(k)=e(k)+βe(k-1)
步骤4-3:将控制律分为自适应补偿项uα(k)、反馈项us1(k)与鲁棒项us2(k)三项,即
u(k)=uα(k)+us1(k)+us2(k)
步骤4-4:定义自适应补偿项为:
Figure BDA0002863544490000061
步骤4-5:设计反馈项和鲁棒项分别为:
Figure BDA0002863544490000062
Figure BDA0002863544490000063
步骤4-6:得到伺服系统离散自适应鲁棒滑模控制律为:
Figure BDA0002863544490000064
本发明采用基于特征模型的离散自适应鲁棒滑模方法作为多电机伺服系统的位置控制算法,可以提高伺服系统的动静态性能。设计的STF强跟踪滤波器,能够有效抑制测量噪声对系统控制性能的影响。

Claims (1)

1.一种基于特征模型的伺服系统离散自适应鲁棒滑模控制方法,其特征在于,包括以下步骤:
步骤1、建立多电机同步驱动伺服系统动力学模型;
步骤2、依据特征建模理论,建立含测量噪声的四电机伺服系统特征模型,并采用递推最小二乘法对特征模型参数进行辨识;
步骤3、构建STF强跟踪滤波器,对测量噪声进行滤波后反馈至位置控制器;
步骤4、采用离散自适应鲁棒滑模控制器作为四电机伺服系统的位置控制器,控制器输出作为伺服系统的控制量;
步骤1建立含齿隙和摩擦非线性因素的多电机同步驱动伺服系统动力学模型,具体为:
步骤1-1、建立单永磁同步电机伺服系统动力学模型:
Figure FDA0003750612680000011
其中,uq代表电机q轴的等效电压,iq代表电机q轴的等效电流,Rq代表q轴的等效电阻,Lq代表q轴的等效电感,Ce代表电机反电势系数,θm为电机角度;
Figure FDA0003750612680000012
为电机角速度;
Figure FDA0003750612680000013
为电机角加速度;Ct为电机转矩系数;ks为电机的刚度系数;im为小齿轮与大齿轮之间的减速比;Jm和bm分别为电机的转动惯量和粘性系数;JL和bL为负载的转动惯量和粘性系数,TL为负载转矩;τm为电机与负载之间的弹性力矩;θL为负载角度;
Figure FDA0003750612680000014
为负载角速度;
Figure FDA0003750612680000015
为负载角加速度;
步骤1-2、利用单电机伺服系统动力学模型构建四电机伺服系统动力学模型为:
Figure FDA0003750612680000021
其中:j=1,2,3,4代表电机1、电机2、电机3和电机4;Ujq(t)为电机在q轴的等效电压;Ijq(t)为电机在q轴的等效电流;
步骤2所述依据特征建模理论,建立含测量噪声的四电机伺服系统特征模型,并采用递推最小二乘法对特征模型参数进行辨识,具体为:
步骤2-1、用一个慢时变的二阶差分方程表示四电机伺服系统的特征模型:
y(k)=f1(k)y(k-1)+f2(k)y(k-2)
+g0(k)u(k-1)
其中,y(k)为下一时刻多电机伺服系统的位置,y(k-1)为当前时刻伺服系统的位置,y(k-2)为上一时刻系统的位置;u(k)为控制量;f1(k)、f2(k)和g0(k)分别为k时刻系统特征模型的三个特征参数;
步骤2-2、考虑系统含有的测量噪声,将多电机伺服系统用含测量噪声的特征模型描述:
Figure FDA0003750612680000022
其中,v(k)为测量噪声;
步骤2-3、采用递推最小二乘法对特征参数f1(k)、f1(k)和g0(k)进行在线辨识:
Figure FDA0003750612680000023
其中,K(k)为修正的增益矩阵,λ为遗忘因子,P(k)为k时刻的递推参数矩阵,
Figure FDA0003750612680000031
为当前时刻的特征参数估计值,X(k)为当前时刻的输出测量值;
步骤3所述的构建STF强跟踪滤波器,对测量噪声进行滤波后反馈至位置控制器,具体为:
步骤3-1、初始化时刻k、状态变量x、协方差矩阵Pr
步骤3-2、得先验估计值:
Figure FDA0003750612680000032
步骤3-3、将当前时刻的输出残差r(k)加入滤波器模型,进一步计算输出残差r(k)的协方差矩阵V(k)为:
Figure FDA0003750612680000033
Figure FDA0003750612680000034
其中,增加遗忘因子ρ,ρ的取值范围为0≤ρ≤1;
步骤3-4、计算渐消因子λ(k):
Figure FDA0003750612680000035
Figure FDA0003750612680000036
Figure FDA0003750612680000037
λ(k)=diag[λ1(k)λ2(k)···λn(k)]
其中,β为弱化因子,β≥1;ai为预先确定的常数项;
步骤3-5、计算k时刻先验估计的协方差矩阵,得协方差矩阵Pr(k|k-1):
Pr(k|k-1)=λ(k)Φ(k-1)Pr(k-1)ΦT(k-1)+Q
步骤3-6、更新强跟踪滤波算法的增益矩阵K(k):
K(k)=Pr(k|k-1)CT(k)[C(k)Pr(k|k-1)CT(k)+R]-1
步骤3-7、更新后验估计的协方差矩阵Pr(k):
Pr(k)=(I-K(k)C(k))Pr(k|k-1)
步骤3-8、得到后验状态估计值:
Figure FDA0003750612680000041
步骤4所述的采用离散自适应鲁棒滑模控制器作为四电机伺服系统的位置控制器,控制器输出作为伺服系统的控制量,具体为:
步骤4-1:建立多电机同步驱动伺服系统的误差特征模型:
Figure FDA0003750612680000042
其中,e(k+1)为k+1时刻的系统误差,
Figure FDA0003750612680000043
分别为特征参数的估计值,Δ(k)为辨识误差、不确定性的总和,并设|Δ(k)-Δ(k-1)|<δ;
步骤4-2:设计滑模函数s(k)为:
s(k)=e(k)+βe(k-1)
步骤4-3:将控制律分为自适应补偿项uα(k)、反馈项us1(k)与鲁棒项us2(k)三项,即
u(k)=uα(k)+us1(k)+us2(k)
步骤4-4:定义自适应补偿项uα(k)为:
Figure FDA0003750612680000044
步骤4-5:设计反馈项和鲁棒项为:
Figure FDA0003750612680000045
Figure FDA0003750612680000051
步骤4-6:得到伺服系统离散自适应鲁棒滑模控制律u(k)为:
Figure FDA0003750612680000052
CN202011576505.4A 2020-12-28 2020-12-28 基于特征模型的伺服系统离散自适应鲁棒滑模控制方法 Active CN112491314B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011576505.4A CN112491314B (zh) 2020-12-28 2020-12-28 基于特征模型的伺服系统离散自适应鲁棒滑模控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011576505.4A CN112491314B (zh) 2020-12-28 2020-12-28 基于特征模型的伺服系统离散自适应鲁棒滑模控制方法

Publications (2)

Publication Number Publication Date
CN112491314A CN112491314A (zh) 2021-03-12
CN112491314B true CN112491314B (zh) 2022-09-20

Family

ID=74914418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011576505.4A Active CN112491314B (zh) 2020-12-28 2020-12-28 基于特征模型的伺服系统离散自适应鲁棒滑模控制方法

Country Status (1)

Country Link
CN (1) CN112491314B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113110021B (zh) * 2021-03-17 2022-06-14 华南理工大学 一种用于伺服系统辨识与控制器设计的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518846A (zh) * 2019-08-01 2019-11-29 南京理工大学 基于惯量辨识的多电机伺服系统自抗扰滑模速度控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656193B2 (ja) * 2011-04-20 2015-01-21 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置を備えたアクチュエータの位置決め装置
CO2018000028A1 (es) * 2018-01-02 2019-07-10 Inst Tecnologico Metropolitano Sistema de control robusto por modos deslizantes de un motor ac
SE544631C2 (en) * 2018-06-04 2022-09-27 Robotikum Ab Method, system and computer program for controlling dynamic manipulations by a robot
CN110262246B (zh) * 2019-07-04 2022-05-20 南京理工大学 基于滑模自适应鲁棒控制的立式物料传送装置控制方法
CN110376893A (zh) * 2019-07-19 2019-10-25 南京理工大学 基于特征模型的前馈与离散二阶滑模复合控制系统及方法
CN111106772B (zh) * 2019-12-23 2022-05-17 天津电气科学研究院有限公司 一种包含参数跟踪的感应电机状态强跟踪滤波估计方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518846A (zh) * 2019-08-01 2019-11-29 南京理工大学 基于惯量辨识的多电机伺服系统自抗扰滑模速度控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于特征模型的PMSM调速系统离散自适应滑模控制;王志宏等;《南京理工大学学报》;20151230;第39卷(第06期);第29-34页 *
基于特征模型的双电机伺服系统二阶离散滑模控制;高熠等;《机械设计与制造工程》;20200315;第49卷(第03期);第5-10页 *

Also Published As

Publication number Publication date
CN112491314A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
CN110289795B (zh) 一种电动汽车用永磁同步电机控制系统及控制方法
CN108306568B (zh) 电梯用pmsm抗负载扰动的自适应积分反步控制方法
CN110557070A (zh) 基于二阶滑模观测器的永磁同步电机参数辨识方法
CN110581677B (zh) 一种滑模和等价输入干扰方法的永磁同步电机抑制方法
CN107612445B (zh) 具有负载加速度反馈的随动调速系统控制方法
CN108333928B (zh) 一种基于动态面多直流无刷电机位置协调控制方法
CN110401391B (zh) 异步电动机随机系统模糊自适应动态面控制方法
CN108880370B (zh) 改进永磁同步电机控制性能的方法
CN111546346B (zh) 一种柔性关节扰动观测方法、力矩控制方法和设备
CN109426150B (zh) 基于扩张状态观测器的负载模拟器反步控制方法
CN111106772B (zh) 一种包含参数跟踪的感应电机状态强跟踪滤波估计方法
CN110112971B (zh) 一种基于有限时间动态面的异步电动机位置跟踪控制方法
CN112491314B (zh) 基于特征模型的伺服系统离散自适应鲁棒滑模控制方法
CN112187127B (zh) 一种永磁同步电机控制方法
CN111766775B (zh) 具有未知饱和pi回滞的非线性系统动态面隐逆控制器
CN112643670A (zh) 一种基于滑模观测器的柔性关节控制方法
CN110649845B (zh) 基于鲁棒广义预测控制的光电转台位置跟踪控制方法
CN114421835A (zh) 一种基于模糊偏差耦合反步滑模策略的多电机控制方法
CN114726278A (zh) 基于机械参数辨识的永磁同步电机自适应控制方法
CN110389525B (zh) 基于极限学习机的混联机构自适应反步控制方法
CN115102444B (zh) 一种永磁同步电机自适应积分滑模预测控制方法
CN113977571B (zh) 一种柔性关节机器人输出力矩控制方法
CN107544250B (zh) 一种少保守性的永磁球形电机轨迹跟踪控制方法
CN115313931A (zh) 基于aekf的永磁同步电动机无传感器矢量控制方法
CN114374346A (zh) 一种永磁同步电动机高性能控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant