CN112420400A - 一种超疏水、自修复柔性超级电容器的制备方法 - Google Patents

一种超疏水、自修复柔性超级电容器的制备方法 Download PDF

Info

Publication number
CN112420400A
CN112420400A CN202011257861.XA CN202011257861A CN112420400A CN 112420400 A CN112420400 A CN 112420400A CN 202011257861 A CN202011257861 A CN 202011257861A CN 112420400 A CN112420400 A CN 112420400A
Authority
CN
China
Prior art keywords
super
hydrophobic
preparation
self
repairing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011257861.XA
Other languages
English (en)
Other versions
CN112420400B (zh
Inventor
王鹏
张希民
段巍
丁海民
谢庆
李春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202011257861.XA priority Critical patent/CN112420400B/zh
Publication of CN112420400A publication Critical patent/CN112420400A/zh
Application granted granted Critical
Publication of CN112420400B publication Critical patent/CN112420400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D187/00Coating compositions based on unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种超疏水、自修复柔性超级电容器的制备方法。本发明选用聚乙烯醇、硝酸、碳纳米管制备水凝胶,选用多壁碳纳米管和石墨烯制备疏水悬浮液,通过将由表面改性石墨烯和表面改性碳纳米管组成的疏水性悬浮液喷涂到水凝胶电解质的两侧,制备了超疏水性电容器。本发明超级电容器具有出色的自清洁能力,良好的耐磨性和可靠的自修复能力,而且避免了传统超级电容器多层移位的问题,并且成本低,制备方式简单,为超疏水性和灵活的能量存储的组合提供了新的策略,使其可能在户外可穿戴电子设备中具有广泛的应用。

Description

一种超疏水、自修复柔性超级电容器的制备方法
技术领域
本发明属于超级电容器储能器件领域,具体涉及一种超疏水、自修复性柔性超级电容器。
背景技术
随着可穿戴电子设备的迅猛发展,迫切需要轻便,智能和灵活的高性能储能设备。超级电容器具有长寿命,快速充电/放电时间和安全性的优点,是一种可能的解决方案。尽管如此,大多数传统的超级电容器还是笨重的,在机械变形下很容易遭受不可避免的损坏和界面分层。因此,自修复式超级电容器吸引了越来越多的关注,因为它们即使在严重的物理损坏(例如切断)之后也可以自发地恢复其储能能力。
从室外实际应用的角度来看,防水能力已被视为下一代可穿戴电子设备和储能设备的必要特性。近年来,已经引入了两种防水超级电容器。例如,龚等在超级电容器上涂覆一层聚合物(Nanoscale 9(2017)10794-10801.)。Jin等将超级电容器插入热缩管(NanoEnergy 35(2017)199-206.)。实际上,极端防水被定义为超疏水性,同时具有大于150°的水接触角和小于10°的滑动角。在自然界的荷叶中可以发现典型的超疏水性。可以发现,水滴在荷叶的表面呈近乎圆形的形状,并以很小的滑动角容易滚动。因此,赋予超级电容器超疏水性可能是可穿戴超级电容器实际应用中的一种潜在方法。最近,Parkin等发明了“涂料+粘合剂”方法来制备坚固的超疏水涂料(Science 347(2015)1132-1135.)。由于水凝胶已被广泛用作一种胶水,因此我们试图利用水凝胶的粘度来粘合双尺度碳材料(微米尺度的石墨烯和纳米尺度的碳纳米管。石墨烯和碳纳米管不仅用作电极材料,而且有助于构造获得超疏水性所必需的分层结构。超疏水超级电容器是通过碳材料的进一步氟化改性而制成的。所制备的超疏水超级电容器同时显示出优异的柔韧性,优异的超疏水性和可靠的自愈能力。这种集成的超级电容器具有改善的电容能力、良好的抗磨性能和可靠的自愈能力。因此,将自修复与超疏水相结合来制备柔性超级电容器可能会在柔性储能器件领域得到广泛应用。
发明内容
本发明提供了一种基于水凝胶与功能性碳纳米材料整合而使制备器件,具有自修复、自清洁的效果,并且显示出优异的柔韧性、出色的超疏水性和可靠的自愈能力。
为达到上述目的,采用如下技术方案:
一种超疏水、自修复柔性超级电容器的制备方法,按照如下步骤进行:
S1聚乙烯醇/硝酸/碳纳米管水凝胶的制备:
(1)将6.5g聚乙烯醇粉末添加到50mL去离子水和2.7mL硝酸的混合溶液中;
(2)将混合溶液在90℃下进行加热搅拌20分钟;
(3)将3mL的多壁碳纳米管水溶液滴加到混合溶液中直到混合溶液变成粘稠状;
(4)将混合溶液倒入模具中,抽真空30分钟,在室温下逐渐冷却24小时,得到尺寸为20mm×20mm×2mm的样品;
S2疏水悬浮液的制备:
(1)将0.5-0.9克多壁碳纳米管和0.5-0.1克石墨烯放入40毫升的四氢呋喃溶液中;
(2)再往溶液中添加0.45-0.5g改性剂和0.02g聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)导电颗粒;
(3)将该溶液磁力搅拌6小时,得到油漆状疏水悬浮液;
S3超疏水、自修复柔性超级电容器的制备:
(1)使用喷枪在0.5MPa的压力下将S2制得的疏水悬浮液喷涂到S1制得的聚乙烯醇/硝酸/碳纳米管水凝胶的两个面上;
(2)室温下将样品干燥8小时,为了避免短路,我们对超级电容器的边缘进行了裁剪,将尺寸裁剪为10mm×10mm×2mm。
优选地,S2中所述的改性剂为十三氟辛基三乙氧基硅烷、十七氟癸基三甲氧基硅烷或九氟己基三甲氧基硅烷。
优选地,S2中所述多壁碳纳米管为0.9克,石墨烯为0.1克,改性剂为0.5克。
与现有技术相比,本发明具有如下有益效果:本发明制备了一种新型的超疏水超级电容器,超疏水性赋予了超级电容器自清洁性能,在户外应用中具有明显的优势。通过石墨烯和碳纳米管用改性剂进行改性以降低表面能,并因此构建了超疏水性电极。该超级电容器具有出色的自清洁能力,良好的耐磨性和可靠的自修复能力,而且避免了传统超级电容器多层移位的问题,并且成本低,制备方式简单。
附图说明
图1为实施例1超疏水、自修复柔性超级电容器的示意图。
图2为实施例1超疏水、自修复柔性超级电容器的循环伏安曲线图。
图3为实施例1超疏水、自修复柔性超级电容器的充放电曲线(0.3mA/cm2)图。
图4为实施例1超疏水、自修复柔性超级电容器的超疏水界面现象图。
图5为实施例1超疏水、自修复柔性超级电容器的自修复过程图。
具体实施方式
下面结合附图和实施例对本发明作详细描述,但本发明的实施不仅限于此。
实施例1
一种具有水凝胶与功能性碳纳米材料整合而形成的超疏水、自修复柔性超级电容器的制备方法,按照如下步骤进行:
(1)自修复水凝胶的制备:
首先,将6.5g聚乙烯醇粉末添加到50mL去离子水和2.7mL硝酸的混合溶液中。然后,将混合溶液在90℃下进行加热搅拌20分钟。之后将3mL的多壁碳纳米管水溶液滴加到混合物中直到混合溶液变成粘稠状,最后倒入制备好的模具中,为了去除气泡,使用真空泵抽取真空30分钟。最后将混合物在室温下逐渐冷却24小时得到尺寸为20mm×20mm×2mm的样品。
(2)疏水悬浮液的制备:
在典型的制备过程中,将0.9克多壁碳纳米管和0.1克石墨烯放入40毫升的四氢呋喃溶液中。然后,在添加0.5g改性剂和0.02g聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)导电颗粒。最后将该溶液磁力搅拌6小时便获得油漆状疏水悬浮液。
(3)多合一自修复、超疏水超级电容器的制备:
在这项研究中,使用喷枪在0.5MPa的压力下将疏水性悬浮液喷涂到聚乙烯醇/硝酸/碳纳米管水凝胶的两个大侧面上。之后在室温下将样品干燥8小时后,即可制备超疏水超级电容器。为了避免短路,我们对超级电容器的边缘进行了裁剪。最终样品的尺寸为10mm×10mm×2mm。
实施例2
一种具有水凝胶与功能性碳纳米材料整合而形成的超疏水、自修复柔性超级电容器的制备方法,按照如下步骤进行:
(1)自修复水凝胶的制备:
首先,将6.5g聚乙烯醇粉末添加到50mL去离子水和2.7mL硝酸的混合溶液中。然后,将混合溶液在90℃下进行加热搅拌20分钟。之后将3mL的多壁碳纳米管水溶液滴加到混合物中直到混合溶液变成粘稠状,最后倒入制备好的模具中,为了去除气泡,使用真空泵抽取真空30分钟。最后将混合物在室温下逐渐冷却24小时得到尺寸为20mm×20mm×2mm的样品。
(2)疏水悬浮液的制备:
在典型的制备过程中,将0.8克多壁碳纳米管和0.2克石墨烯放入40毫升的四氢呋喃溶液中。然后,在添加0.5g改性剂和0.02g聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)导电颗粒。最后将该溶液磁力搅拌6小时便获得油漆状疏水悬浮液。
(3)多合一自修复、超疏水超级电容器的制备:
在这项研究中,使用喷枪在0.5MPa的压力下将疏水性悬浮液喷涂到聚乙烯醇/硝酸/碳纳米管水凝胶的两个大侧面上。之后在室温下将样品干燥8小时后,即可制备超疏水超级电容器。为了避免短路,我们对超级电容器的边缘进行了裁剪。最终样品的尺寸为10mm×10mm×2mm。
实施例3
一种具有水凝胶与功能性碳纳米材料整合而形成的超疏水、自修复柔性超级电容器的制备方法,按照如下步骤进行:
(1)自修复水凝胶的制备:
首先,将6.5g聚乙烯醇粉末添加到50mL去离子水和2.7mL硝酸的混合溶液中。然后,将混合溶液在90℃下进行加热搅拌20分钟。之后将3mL的多壁碳纳米管水溶液滴加到混合物中直到混合溶液变成粘稠状,最后倒入制备好的模具中,为了去除气泡,使用真空泵抽取真空30分钟。最后将混合物在室温下逐渐冷却24小时得到尺寸为20mm×20mm×2mm的样品。
(2)疏水悬浮液的制备:
在典型的制备过程中,将0.7克多壁碳纳米管和0.2克石墨烯放入40毫升的四氢呋喃溶液中。然后,在添加0.45g改性剂和0.02g聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)导电颗粒。最后将该溶液磁力搅拌6小时便获得油漆状疏水悬浮液。
(3)多合一自修复、超疏水超级电容器的制备:
在这项研究中,使用喷枪在0.5MPa的压力下将疏水性悬浮液喷涂到聚乙烯醇/硝酸/碳纳米管水凝胶的两个大侧面上。之后在室温下将样品干燥8小时后,即可制备超疏水超级电容器。为了避免短路,我们对超级电容器的边缘进行了裁剪。最终样品的尺寸为10mm×10mm×2mm。
实施例4
一种具有水凝胶与功能性碳纳米材料整合而形成的超疏水、自修复柔性超级电容器的制备方法,按照如下步骤进行:
(1)自修复水凝胶的制备:
首先,将6.5g聚乙烯醇粉末添加到50mL去离子水和2.7mL硝酸的混合溶液中。然后,将混合溶液在90℃下进行加热搅拌20分钟。之后将3mL的多壁碳纳米管水溶液滴加到混合物中直到混合溶液变成粘稠状,最后倒入制备好的模具中,为了去除气泡,使用真空泵抽取真空30分钟。最后将混合物在室温下逐渐冷却24小时得到尺寸为20mm×20mm×2mm的样品。
(2)疏水悬浮液的制备:
在典型的制备过程中,将0.6克多壁碳纳米管和0.3克石墨烯放入40毫升的四氢呋喃溶液中。然后,在添加0.45g改性剂和0.02g聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)导电颗粒。最后将该溶液磁力搅拌6小时便获得油漆状疏水悬浮液。
(3)多合一自修复、超疏水超级电容器的制备:
在这项研究中,使用喷枪在0.5MPa的压力下将疏水性悬浮液喷涂到聚乙烯醇/硝酸/碳纳米管水凝胶的两个大侧面上。之后在室温下将样品干燥8小时后,即可制备超疏水超级电容器。为了避免短路,我们对超级电容器的边缘进行了裁剪。最终样品的尺寸为10mm×10mm×2mm。
实施例5
一种具有水凝胶与功能性碳纳米材料整合而形成的超疏水、自修复柔性超级电容器的制备方法,按照如下步骤进行:
(1)自修复水凝胶的制备:
首先,将6.5g聚乙烯醇粉末添加到50mL去离子水和2.7mL硝酸的混合溶液中。然后,将混合溶液在90℃下进行加热搅拌20分钟。之后将3mL的多壁碳纳米管水溶液滴加到混合物中直到混合溶液变成粘稠状,最后倒入制备好的模具中,为了去除气泡,使用真空泵抽取真空30分钟。最后将混合物在室温下逐渐冷却24小时得到尺寸为20mm×20mm×2mm的样品。
(2)疏水悬浮液的制备:
在典型的制备过程中,将0.5克多壁碳纳米管和0.5克石墨烯放入40毫升的四氢呋喃溶液中。然后,在添加0.5g改性剂和0.02g聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)导电颗粒。最后将该溶液磁力搅拌6小时便获得油漆状疏水悬浮液。
(3)多合一自修复、超疏水超级电容器的制备:
在这项研究中,使用喷枪在0.5MPa的压力下将疏水性悬浮液喷涂到聚乙烯醇/硝酸/碳纳米管水凝胶的两个大侧面上。之后在室温下将样品干燥8小时后,即可制备超疏水超级电容器。为了避免短路,我们对超级电容器的边缘进行了裁剪。最终样品的尺寸为10mm×10mm×2mm。
以实施例1制备的柔性超级电容器作为检测对象,柔性超级电容器自修复的实物图如图1所示,这体现了优异的自修复能力以及超疏水性。柔性超级电容器电极材料的循环伏安曲线如图2所示,柔性超级电容器电极在双电极测试下的充放电曲线如图3所示,其放电时间约为220s,说明其具有优异的电化学性能。如图4展现了二维界面的水凝胶超疏水现象。
以上公开的仅为本发明的具体实施例,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (3)

1.一种超疏水、自修复柔性超级电容器的制备方法,其特征在于,按照如下步骤进行:
S1聚乙烯醇/硝酸/碳纳米管水凝胶的制备:
(1)将6.5g聚乙烯醇粉末添加到50mL去离子水和2.7mL硝酸的混合溶液中;
(2)将混合溶液在90℃下进行加热搅拌20分钟;
(3)将3mL的多壁碳纳米管水溶液滴加到混合溶液中直到混合溶液变成粘稠状;
(4)将混合溶液倒入模具中,抽真空30分钟,在室温下逐渐冷却24小时,得到尺寸为20mm×20mm×2mm的样品;
S2疏水悬浮液的制备:
(1)将0.5-0.9克多壁碳纳米管和0.5-0.1克石墨烯放入40毫升的四氢呋喃溶液中;
(2)再往溶液中添加0.45-0.5g改性剂和0.02g聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)导电颗粒;
(3)将该溶液磁力搅拌6小时,得到油漆状疏水悬浮液;
S3超疏水、自修复柔性超级电容器的制备:
(1)使用喷枪在0.5MPa的压力下将S2制得的疏水悬浮液喷涂到S1制得的聚乙烯醇/硝酸/碳纳米管水凝胶的两个面上;
(2)室温下将样品干燥8小时,将尺寸裁剪为10mm×10mm×2mm。
2.根据权利要求1所述一种超疏水、自修复柔性超级电容器的制备方法,其特征在于,S2中所述的改性剂为十三氟辛基三乙氧基硅烷、十七氟癸基三甲氧基硅烷或九氟己基三甲氧基硅烷。
3.根据权利要求1所述一种超疏水、自修复柔性超级电容器的制备方法,其特征在于,S2中所述多壁碳纳米管为0.9克,石墨烯为0.1克,改性剂为0.5克。
CN202011257861.XA 2020-11-11 2020-11-11 一种超疏水、自修复柔性超级电容器的制备方法 Active CN112420400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011257861.XA CN112420400B (zh) 2020-11-11 2020-11-11 一种超疏水、自修复柔性超级电容器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011257861.XA CN112420400B (zh) 2020-11-11 2020-11-11 一种超疏水、自修复柔性超级电容器的制备方法

Publications (2)

Publication Number Publication Date
CN112420400A true CN112420400A (zh) 2021-02-26
CN112420400B CN112420400B (zh) 2021-12-10

Family

ID=74781728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011257861.XA Active CN112420400B (zh) 2020-11-11 2020-11-11 一种超疏水、自修复柔性超级电容器的制备方法

Country Status (1)

Country Link
CN (1) CN112420400B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395331B1 (en) * 1997-10-28 2002-05-28 Yazaki Corporation Transparent substrate bearing an anti-stain, hydrophobic coating, and process for making it
CN104240973A (zh) * 2014-09-22 2014-12-24 复旦大学 一种透明、柔性的超级电容器织物及其制备方法
CN104600243A (zh) * 2015-01-28 2015-05-06 清华大学深圳研究生院 一种极片、储能器件及其制备方法
CN104992844A (zh) * 2015-06-24 2015-10-21 复旦大学 一种可拼接的超级电容器及其制备方法
CN105140048A (zh) * 2015-09-11 2015-12-09 复旦大学 一种连续制备复合纤维状超级电容器的方法
CN105161316A (zh) * 2015-09-16 2015-12-16 中国科学院电工研究所 一种柔性超级电容器及其制备方法
CN107958794A (zh) * 2017-10-27 2018-04-24 东华大学 超薄柔性全固态石墨烯水凝胶超级电容器及其制备方法
US20190027738A1 (en) * 2017-07-18 2019-01-24 Ph Matter, Llc Multi-functional electrode additive
CN110164704A (zh) * 2019-04-30 2019-08-23 同济大学 一种光增强型柔性超级电容器及其制备方法
CN111171573A (zh) * 2020-02-03 2020-05-19 华北电力大学(保定) 一种超疏水应变传感器复合材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395331B1 (en) * 1997-10-28 2002-05-28 Yazaki Corporation Transparent substrate bearing an anti-stain, hydrophobic coating, and process for making it
CN104240973A (zh) * 2014-09-22 2014-12-24 复旦大学 一种透明、柔性的超级电容器织物及其制备方法
CN104600243A (zh) * 2015-01-28 2015-05-06 清华大学深圳研究生院 一种极片、储能器件及其制备方法
CN104992844A (zh) * 2015-06-24 2015-10-21 复旦大学 一种可拼接的超级电容器及其制备方法
CN105140048A (zh) * 2015-09-11 2015-12-09 复旦大学 一种连续制备复合纤维状超级电容器的方法
CN105161316A (zh) * 2015-09-16 2015-12-16 中国科学院电工研究所 一种柔性超级电容器及其制备方法
US20190027738A1 (en) * 2017-07-18 2019-01-24 Ph Matter, Llc Multi-functional electrode additive
CN107958794A (zh) * 2017-10-27 2018-04-24 东华大学 超薄柔性全固态石墨烯水凝胶超级电容器及其制备方法
CN110164704A (zh) * 2019-04-30 2019-08-23 同济大学 一种光增强型柔性超级电容器及其制备方法
CN111171573A (zh) * 2020-02-03 2020-05-19 华北电力大学(保定) 一种超疏水应变传感器复合材料的制备方法

Also Published As

Publication number Publication date
CN112420400B (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
Wang et al. Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials
Fong et al. Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes
Hou et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes
KR101310520B1 (ko) 전기화학 소자 전극재료 및 복합 입자
Zong et al. Recent advances and perspectives of 3D printed micro-supercapacitors: from design to smart integrated devices
Zhu et al. A focus review on 3D printing of wearable energy storage devices
CN105633344A (zh) 二硫化钼纳米片/纳米纤维素/碳纳米管/石墨烯复合的锂电池薄膜负极材料及其制备方法
Faraji et al. Facile and scalable preparation of highly porous polyvinyl chloride-multi walled carbon nanotubes-polyaniline composite film for solid-state flexible supercapacitor
CN111755259B (zh) 基于石墨烯/聚合物/水泥复合材料的结构超级电容器及其制备方法
CN111029164B (zh) 磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用
Pan et al. Hierarchical vertically aligned titanium carbide (MXene) array for flexible all-solid-state supercapacitor with high volumetric capacitance
CN110423348B (zh) 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用
Moniz et al. Electrospray deposition of PEDOT: PSS on carbon yarn electrodes for solid-state Flexible supercapacitors
CN105754337A (zh) 一种用于电容器的纳米复合薄膜材料及其制备方法
Wang et al. Stretchable and compressible conductive foam based on Cu nanowire/MWCNT/ethylene-vinyl acetate composites for high-mass-loading supercapacitor electrode
CN112420400B (zh) 一种超疏水、自修复柔性超级电容器的制备方法
JP2002353074A (ja) 電気二重層コンデンサ、該コンデンサに用いる電極用ペースト及び電極
WO2005001861A1 (ja) 電気二重層キャパシタ用電極の製造方法
KR101973895B1 (ko) 그래핀/고분자 복합섬유 구조의 열전재료 및 그의 제조방법
CN101923963A (zh) 一种固体钽电解电容器及其制备方法
KR101764968B1 (ko) 유연 슈퍼커패시터의 제조 방법
Cao et al. 3D-printed ultralight, superelastic reduced graphene oxide/manganese dioxide foam for high-performance compressible supercapacitors
CN109637828A (zh) 石墨烯-聚苯胺-evoh纳米纤维膜的制备方法
CN106449154A (zh) 一种低维碳材料薄膜为极片的超级电容器及制备方法
CN109559906A (zh) 氧化还原石墨烯-聚苯胺-evoh纳米纤维膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant