CN105754337A - 一种用于电容器的纳米复合薄膜材料及其制备方法 - Google Patents

一种用于电容器的纳米复合薄膜材料及其制备方法 Download PDF

Info

Publication number
CN105754337A
CN105754337A CN201610213961.XA CN201610213961A CN105754337A CN 105754337 A CN105754337 A CN 105754337A CN 201610213961 A CN201610213961 A CN 201610213961A CN 105754337 A CN105754337 A CN 105754337A
Authority
CN
China
Prior art keywords
stirring
capacitor
mixed liquor
polyaniline
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610213961.XA
Other languages
English (en)
Inventor
汤卓群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610213961.XA priority Critical patent/CN105754337A/zh
Publication of CN105754337A publication Critical patent/CN105754337A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种用于电容器的纳米复合薄膜材料及其制备方法,由聚苯胺、二甲基乙酰胺、纳米碳化硅、碳纳米管、十二烷基苯磺酸钠、硅烷偶联剂和二氧化硅溶胶制备而成,将聚苯胺溶于乙醇中搅拌形成混合液,加入二甲基乙酰胺,搅拌至完全溶解,冰水浴中缓慢加入十二烷基苯磺酸钠进行反应,加热搅拌,加入纳米碳化硅和硅烷偶联剂,继续搅拌进行反应,超声处理,冷却后,快速搅拌,同时缓慢加入碳纳米管和二氧化硅溶胶进行反应,冷却至室温,在玻璃板上涂膜,阶段升温处理,冷却后,取出于水中浸泡,脱模晾干,即可。本发明纳米复合薄膜材料具有很好的耐热性能以及优异的电绝缘性,可操作性和稳定性高,适合做电子器件的绝缘膜。

Description

一种用于电容器的纳米复合薄膜材料及其制备方法
技术领域
本发明涉及纳米薄膜材料领域,具体是一种用于电容器的纳米复合薄膜材料及其制备方法。
背景技术
电容器分为超级电容器和普通电容器,在通讯、信息储存、电动汽车等领域具有广泛的应用。目前应用最广泛的电容器为双电层电容器,双电层电容器主要是由两个固体多孔碳电极组成,其电容的产生主要基于多孔碳电极/电解液相界面上电荷分离所形成的双电层电容,这种电容器的缺点是使用寿命短,而且电容量不大,无法满足电器快速发展的需要。目前正在逐渐发展的是法拉第电容器,法拉第电容器是由过渡金属氧化物和导电聚合物电极组成,其电容的产生是基于电活性离子在电极表面上或体相中的二维或准二维空间上发生活性材料的欠电位沉积或氧化还原反应而产生的吸附电容,这种电容器具有寿命长、电容量大的优点。但是目前制造法拉第电容器所使用的材料成本高,而且使用效果并没有达到很好的预期目的。因此需要对现有的法拉第电容器的电极材料以及表面的覆膜进行改进,从而满足实际的需要。
发明内容
本发明的目的在于提供一种用于电容器的纳米复合薄膜材料及其制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种用于电容器的纳米复合薄膜材料,由以下质量分数的原料制备而成:聚苯胺48~54%,二甲基乙酰胺8~12%,纳米碳化硅6~8%,碳纳米管6~8%,十二烷基苯磺酸钠2~4%,硅烷偶联剂8~10%,二氧化硅溶胶12~14%。
作为本发明进一步的方案:具体由以下质量分数的原料制备而成:聚苯胺51%,二甲基乙酰胺10%,纳米碳化硅7%,碳纳米管7%,十二烷基苯磺酸钠3%,硅烷偶联剂9%,二氧化硅溶胶13%。
一种所述的用于电容器的纳米复合薄膜材料的制备方法,具体步骤如下:
(1)按配比称取上述各原料,备用;
(2)将聚苯胺溶于乙醇中,充分搅拌形成混合液,将二甲基乙酰胺加入聚苯胺混合液中,搅拌至完全溶解,在2~4℃的冰水浴中缓慢加入十二烷基苯磺酸钠,反应6~8h,得到高粘度混合液A;
(3)将混合液加热到50~60℃,搅拌的同时缓慢加入纳米碳化硅和硅烷偶联剂,继续搅拌18~20h充分反应,并在超声波中处理20~30min,冷却至室温,得到混合液B;
(4)对混合液B进行快速搅拌,搅拌的同时加入碳纳米管,待碳纳米管加完后,再缓慢加入二氧化硅溶胶,并加热至30~36℃,继续搅拌16~18h,冷却至室温,得混合液C;
(5)将混合液C在干净的玻璃板上涂膜,然后阶段升温处理:80℃,lh→100℃,1h→150℃,lh→200℃,lh→250℃,lh→300℃,1h;冷却后得到复合薄膜;
(6)将冷却后的玻璃板取出,在蒸馏水中浸泡,脱模,晾干,即可。
与现有技术相比,本发明的有益效果是:本发明纳米复合薄膜材料具有很好的耐热性能以及优异的电绝缘性,能增大电容量器的电容量,使用寿命长,可操作性和稳定性高,成本低,制作工艺简单,适合做电子器件的绝缘膜。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
用于电容器的纳米复合薄膜材料,由以下质量分数的原料制备而成:聚苯胺50%,二甲基乙酰胺12%,纳米碳化硅6%,碳纳米管8%,十二烷基苯磺酸钠2%,硅烷偶联剂10%,二氧化硅溶胶12%。
上述纳米复合薄膜材料的制备步骤如下:
(1)按配比称取上述各原料,备用;
(2)将聚苯胺溶于乙醇中,充分搅拌形成混合液,将二甲基乙酰胺加入聚苯胺混合液中,搅拌至完全溶解,在2℃的冰水浴中缓慢加入十二烷基苯磺酸钠,反应8h,得到高粘度混合液A;
(3)将混合液加热到50℃,搅拌的同时缓慢加入纳米碳化硅和硅烷偶联剂,继续搅拌20h充分反应,并在超声波中处理30min,冷却至室温,得到混合液B;
(4)对混合液B进行快速搅拌,搅拌的同时加入碳纳米管,待碳纳米管加完后,再缓慢加入二氧化硅溶胶,并加热至30℃,继续搅拌18h,冷却至室温,得混合液C;
(5)将混合液C在干净的玻璃板上涂膜,然后阶段升温处理:80℃,lh→100℃,1h→150℃,lh→200℃,lh→250℃,lh→300℃,1h;冷却后得到复合薄膜;
(6)将冷却后的玻璃板取出,在蒸馏水中浸泡,脱模,晾干,即可。
实施例2
用于电容器的纳米复合薄膜材料,由以下质量分数的原料制备而成:聚苯胺51%,二甲基乙酰胺10%,纳米碳化硅7%,碳纳米管7%,十二烷基苯磺酸钠3%,硅烷偶联剂9%,二氧化硅溶胶13%。
上述纳米复合薄膜材料的制备步骤如下:
(1)按配比称取上述各原料,备用;
(2)将聚苯胺溶于乙醇中,充分搅拌形成混合液,将二甲基乙酰胺加入聚苯胺混合液中,搅拌至完全溶解,在3℃的冰水浴中缓慢加入十二烷基苯磺酸钠,反应7h,得到高粘度混合液A;
(3)将混合液加热到55℃,搅拌的同时缓慢加入纳米碳化硅和硅烷偶联剂,继续搅拌19h充分反应,并在超声波中处理25min,冷却至室温,得到混合液B;
(4)对混合液B进行快速搅拌,搅拌的同时加入碳纳米管,待碳纳米管加完后,再缓慢加入二氧化硅溶胶,并加热至33℃,继续搅拌17h,冷却至室温,得混合液C;
(5)将混合液C在干净的玻璃板上涂膜,然后阶段升温处理:80℃,lh→100℃,1h→150℃,lh→200℃,lh→250℃,lh→300℃,1h;冷却后得到复合薄膜;
(6)将冷却后的玻璃板取出,在蒸馏水中浸泡,脱模,晾干,即可。
实施例3
用于电容器的纳米复合薄膜材料,由以下质量分数的原料制备而成:聚苯胺52%,二甲基乙酰胺8%,纳米碳化硅8%,碳纳米管6%,十二烷基苯磺酸钠4%,硅烷偶联剂8%,二氧化硅溶胶14%。
上述纳米复合薄膜材料的制备步骤如下:
(1)按配比称取上述各原料,备用;
(2)将聚苯胺溶于乙醇中,充分搅拌形成混合液,将二甲基乙酰胺加入聚苯胺混合液中,搅拌至完全溶解,在4℃的冰水浴中缓慢加入十二烷基苯磺酸钠,反应6h,得到高粘度混合液A;
(3)将混合液加热到60℃,搅拌的同时缓慢加入纳米碳化硅和硅烷偶联剂,继续搅拌18h充分反应,并在超声波中处理20min,冷却至室温,得到混合液B;
(4)对混合液B进行快速搅拌,搅拌的同时加入碳纳米管,待碳纳米管加完后,再缓慢加入二氧化硅溶胶,并加热至36℃,继续搅拌16h,冷却至室温,得混合液C;
(5)将混合液C在干净的玻璃板上涂膜,然后阶段升温处理:80℃,lh→100℃,1h→150℃,lh→200℃,lh→250℃,lh→300℃,1h;冷却后得到复合薄膜;
(6)将冷却后的玻璃板取出,在蒸馏水中浸泡,脱模,晾干,即可。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。

Claims (3)

1.一种用于电容器的纳米复合薄膜材料,其特征在于,由以下质量分数的原料制备而成:聚苯胺48~54%,二甲基乙酰胺8~12%,纳米碳化硅6~8%,碳纳米管6~8%,十二烷基苯磺酸钠2~4%,硅烷偶联剂8~10%,二氧化硅溶胶12~14%。
2.根据权利要求1所述的用于电容器的纳米复合薄膜材料,其特征在于,具体由以下质量分数的原料制备而成:聚苯胺51%,二甲基乙酰胺10%,纳米碳化硅7%,碳纳米管7%,十二烷基苯磺酸钠3%,硅烷偶联剂9%,二氧化硅溶胶13%。
3.一种如权利要求1或所述的用于电容器的纳米复合薄膜材料的制备方法,其特征在于,具体步骤如下:
(1)按配比称取上述各原料,备用;
(2)将聚苯胺溶于乙醇中,充分搅拌形成混合液,将二甲基乙酰胺加入聚苯胺混合液中,搅拌至完全溶解,在2~4℃的冰水浴中缓慢加入十二烷基苯磺酸钠,反应6~8h,得到高粘度混合液A;
(3)将混合液加热到50~60℃,搅拌的同时缓慢加入纳米碳化硅和硅烷偶联剂,继续搅拌18~20h充分反应,并在超声波中处理20~30min,冷却至室温,得到混合液B;
(4)对混合液B进行快速搅拌,搅拌的同时加入碳纳米管,待碳纳米管加完后,再缓慢加入二氧化硅溶胶,并加热至30~36℃,继续搅拌16~18h,冷却至室温,得混合液C;
(5)将混合液C在干净的玻璃板上涂膜,然后阶段升温处理:80℃,lh→100℃,1h→150℃,lh→200℃,lh→250℃,lh→300℃,1h;冷却后得到复合薄膜;
(6)将冷却后的玻璃板取出,在蒸馏水中浸泡,脱模,晾干,即可。
CN201610213961.XA 2016-04-06 2016-04-06 一种用于电容器的纳米复合薄膜材料及其制备方法 Pending CN105754337A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610213961.XA CN105754337A (zh) 2016-04-06 2016-04-06 一种用于电容器的纳米复合薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610213961.XA CN105754337A (zh) 2016-04-06 2016-04-06 一种用于电容器的纳米复合薄膜材料及其制备方法

Publications (1)

Publication Number Publication Date
CN105754337A true CN105754337A (zh) 2016-07-13

Family

ID=56334277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610213961.XA Pending CN105754337A (zh) 2016-04-06 2016-04-06 一种用于电容器的纳米复合薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105754337A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106543508A (zh) * 2016-10-26 2017-03-29 安徽飞达电气科技有限公司 一种稳定性较好的导电性复合材料
CN107840956A (zh) * 2017-10-23 2018-03-27 东莞产权交易中心 一种溶胶型聚苯胺导电薄膜及其制备方法
CN108586812A (zh) * 2018-05-02 2018-09-28 太仓美克斯机械设备有限公司 一种溶胶分散液的制备方法及其应用
CN109852972A (zh) * 2019-03-05 2019-06-07 河北工业大学 一种防腐碳纳米管/硅烷复合超疏水涂层及制备方法
CN113096966A (zh) * 2021-04-16 2021-07-09 广德天运新技术股份有限公司 基于二氧化硅的高比容量超级电容器电极材料及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1789338A (zh) * 2004-12-15 2006-06-21 中国科学院化学研究所 导电聚苯胺与碳纳米管复合的电磁屏蔽复合膜及其制法
CN103123870A (zh) * 2013-02-06 2013-05-29 燕山大学 用于超级电容器的纳米复合薄膜电极材料及其制备方法
CN103965569A (zh) * 2014-04-23 2014-08-06 浙江大学 纳米改性复合导电塑料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1789338A (zh) * 2004-12-15 2006-06-21 中国科学院化学研究所 导电聚苯胺与碳纳米管复合的电磁屏蔽复合膜及其制法
CN103123870A (zh) * 2013-02-06 2013-05-29 燕山大学 用于超级电容器的纳米复合薄膜电极材料及其制备方法
CN103965569A (zh) * 2014-04-23 2014-08-06 浙江大学 纳米改性复合导电塑料的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106543508A (zh) * 2016-10-26 2017-03-29 安徽飞达电气科技有限公司 一种稳定性较好的导电性复合材料
CN107840956A (zh) * 2017-10-23 2018-03-27 东莞产权交易中心 一种溶胶型聚苯胺导电薄膜及其制备方法
CN108586812A (zh) * 2018-05-02 2018-09-28 太仓美克斯机械设备有限公司 一种溶胶分散液的制备方法及其应用
CN109852972A (zh) * 2019-03-05 2019-06-07 河北工业大学 一种防腐碳纳米管/硅烷复合超疏水涂层及制备方法
CN113096966A (zh) * 2021-04-16 2021-07-09 广德天运新技术股份有限公司 基于二氧化硅的高比容量超级电容器电极材料及制备方法

Similar Documents

Publication Publication Date Title
Chen et al. Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors
Guo et al. Multicomponent hierarchical Cu‐doped NiCo‐LDH/CuO double arrays for ultralong‐life hybrid fiber supercapacitor
Song et al. High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte
Yin et al. MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature
Ji et al. Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors
Liu et al. High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films
CN105754337A (zh) 一种用于电容器的纳米复合薄膜材料及其制备方法
Lin et al. Synthetic multifunctional graphene composites with reshaping and self‐healing features via a facile biomineralization‐inspired process
Chen et al. All‐solid‐state asymmetric supercapacitors with metal selenides electrodes and ionic conductive composites electrolytes
Pandey et al. Performance studies of activated charcoal based electrical double layer capacitors with ionic liquid gel polymer electrolytes
Pandey et al. Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: A comparative study with lithium and magnesium systems
Miao et al. Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors
Sellam et al. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) and its hydrous ruthenium oxide composite electrodes
Zhao et al. In situ synthesis of interlinked three-dimensional graphene foam/polyaniline nanorod supercapacitor
Wu et al. Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors
Ni et al. Highly flexible and self‐healable zinc‐ion hybrid supercapacitors based on MWCNTs‐RGO fibers
Hou et al. Low-temperature-resistant flexible solid supercapacitors based on organohydrogel electrolytes and microvoid-incorporated reduced graphene oxide electrodes
Xun et al. A biomass-based redox gel polymer electrolyte for improving energy density of flexible supercapacitor
Liu et al. Freestanding, three-dimensional, and conductive MoS2 hydrogel via the mediation of surface charges for high-rate supercapacitor
CN105206430B (zh) 聚苯胺纳米管阵列/石墨烯复合材料电极及其制备方法和应用
Ho et al. Manganese oxide nanowires grown on ordered macroporous conductive nickel scaffold for high-performance supercapacitors
Moussa et al. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge
Ahmed et al. A free-standing, flexible PEDOT: PSS film and its nanocomposites with graphene nanoplatelets as electrodes for quasi-solid-state supercapacitors
Wang et al. Hierarchical self-assembly flower-like ammonium nickel phosphate as high-rate performance electrode material for asymmetric supercapacitors with enhanced energy density
Sun et al. Template synthesis of 2D carbon nanosheets: improving energy density of supercapacitors by dual redox additives anthraquinone-2-sulfonic acid sodium and KI

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160713

RJ01 Rejection of invention patent application after publication