CN109637828A - 石墨烯-聚苯胺-evoh纳米纤维膜的制备方法 - Google Patents

石墨烯-聚苯胺-evoh纳米纤维膜的制备方法 Download PDF

Info

Publication number
CN109637828A
CN109637828A CN201811575734.7A CN201811575734A CN109637828A CN 109637828 A CN109637828 A CN 109637828A CN 201811575734 A CN201811575734 A CN 201811575734A CN 109637828 A CN109637828 A CN 109637828A
Authority
CN
China
Prior art keywords
evoh
graphene
polyaniline
membrane preparation
fibrous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811575734.7A
Other languages
English (en)
Inventor
赵妙妙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201811575734.7A priority Critical patent/CN109637828A/zh
Publication of CN109637828A publication Critical patent/CN109637828A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及化工新型材料技术领域,具体地涉及一种石墨烯‑聚苯胺‑EVOH纳米纤维膜的制备方法。石墨烯‑聚苯胺‑EVOH纳米纤维膜的制备方法,包括如下步骤:(1)EVOH纳米纤维的制备;(2)石墨烯‑聚苯胺‑EVOH复合纳米纤维膜的制备。通过本发明提供的方法制备的石墨烯‑聚苯胺‑EVOH纳米纤维膜具有良好的柔性和电化学性能,可作为柔性超级电容器电极材料使用。

Description

石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法
技术领域
本发明涉及化工新型材料技术领域,具体地涉及一种石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法。
背景技术
石墨烯因具有独特的物理化学结构表现出优异的电化学性能。自验证了石墨烯在超级电容器电极材料领域的应用可行性后,其与碳材料、金属氧化物及导电高分子等的复合体系被大量报道。然而在实际应用中,由于石墨烯表面较好的稳定性导致其难以被电解液润湿,或者石墨烯片层之间较强的范德华力容易造成团聚导致电容量较低,这些均限制了石墨烯在超级电容器领域的应用。
聚苯胺(P苯胺)有多重氧化还原态,理论比电容高达2000F/g,经酸掺杂后具有较高的电导率,可提高充放电过程中电子的传导速率。然而P苯胺力学性能较差,循环寿命短。因此,将P苯胺与石墨烯进行复合,可弥补各自的缺点,发挥二者的协同作用,从而引起众多研究者的关注。用电化学聚合法制备了石墨烯/P苯胺复合材料,发现当电流密度为0.5A/g时,比电容达352F/g。
随着科学技术的进步,电子设备从“可使用”逐步向“便携化”方向迈进。要求电子设备具有超薄的电极材料和精简的组装过程,使器件更小型、轻质。传统的超级电容器多为平面状,刚性有余柔性不足,无法满足可穿戴的需求。高聚物纳米纤维有比表面积大、长径比高、孔径小、柔性好等诸多优点,是颇具潜力的柔性超级电容器电极基底材料。将P苯胺/碳纳米管复合膜粘附在弹性纤维表面作为电极、以聚乙烯醇一磷酸作为凝胶电解质构建了纤维状智能超级电容器,其电化学储能性能在弯曲和拉伸过程中均保持着良好的稳定性。
发明内容
本发明旨在针对上述问题,提出一种石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法。
本发明的技术方案在于:
石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法,包括如下步骤:
(1)EVOH纳米纤维的制备;
将EVOH 和CAB置于8O℃真空烘箱干燥24h,将干燥好的EVOH 和CAB混合均匀,然后进行熔融挤出,熔融挤出所得试样以丙酮为溶剂,萃取,去除基体材料CAB,获得EVOH纳米纤维;
(2)石墨烯-聚苯胺-EVOH复合纳米纤维膜的制备;
将20mg 石墨烯分散到20mL去离子水中形成1mg/mL 石墨烯分散液,超声波和细胞粉碎机分别分散0.5h待用;将经高速分散剂剪切分散30min形成的EVOH 纳米纤维悬浮液加入其中,再添加稀盐酸后搅拌30min;取200mg经减压蒸馏纯化的苯胺分散于HC1溶液中,超声分散后加入上述混合液;0℃反应槽中磁力搅拌,同时滴加HC1溶液中所溶解的APS,滴加速度为ld/s;持续反应12h,所得产物经真空抽滤成膜,用去离子水和无水乙醇反复洗涤至无色,过滤、冷冻真空干燥48h。
所述的EVOH 和CAB的混合质量比为20:8O。
所述的APS与苯胺的质量比为1:1.25。
所述的熔融挤出采用双螺杆共混挤出机,其螺杆转速为50r/min,温度为200~225℃。
所述的萃取采用索式萃取器,萃取的温度为8O℃,萃取时间为72h。
所述的HC1溶液的浓度为lmol/L,体积为10mL。
本发明的技术效果在于:
通过本发明提供的方法制备的石墨烯-聚苯胺-EVOH纳米纤维膜具有良好的柔性和电化学性能,可作为柔性超级电容器电极材料使用。
具体实施方式
实施例1
石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法,包括如下步骤:
(1)EVOH纳米纤维的制备;
将EVOH 和CAB置于8O℃真空烘箱干燥24h,将干燥好的EVOH 和CAB按质量比20:8O混合均匀,然后利用双螺杆共混挤出机进行熔融挤出,螺杆转速为50r/min,温度为200~225℃ ,熔融挤出所得试样以丙酮为溶剂,经索式萃取器在8O℃萃取72h,去除基体材料CAB,获得EVOH纳米纤维;
(2)石墨烯-聚苯胺-EVOH复合纳米纤维膜的制备;
将20mg 石墨烯 分散到20mL去离子水中形成1mg/mL 石墨烯分散液,超声波和细胞粉碎机分别分散0.5h待用;将经高速分散剂剪切分散30min形成的EVOH 纳米纤维悬浮液加入其中,再添加稀盐酸后搅拌30min;取200mg经减压蒸馏纯化的苯胺分散于10mL浓度为lmol/L的HC1溶液中,超声分散后加入上述混合液;0℃反应槽中磁力搅拌,同时滴加10mL浓度为lmol/L HC1所溶解的APS,其中,APS与苯胺的质量比为1:1.25;滴加速度为ld/s;持续反应12h,所得产物经真空抽滤成膜,用去离子水和无水乙醇反复洗涤至无色,过滤、冷冻真空干燥48h。
实施例2
石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法,包括如下步骤:
(1)EVOH纳米纤维的制备;
将EVOH 和CAB置于8O℃真空烘箱干燥24h,将干燥好的EVOH 和CAB按质量比20:8O混合均匀,然后利用双螺杆共混挤出机进行熔融挤出,螺杆转速为50r/min,温度为200~225℃ ,熔融挤出所得试样以丙酮为溶剂,经索式萃取器在8O℃萃取72h,去除基体材料CAB,获得EVOH纳米纤维;
(2)石墨烯-聚苯胺-EVOH复合纳米纤维膜的制备;
将20mg 石墨烯 分散到20mL去离子水中形成1mg/mL 石墨烯分散液,超声波和细胞粉碎机分别分散0.5h待用;将经高速分散剂剪切分散30min形成的EVOH 纳米纤维悬浮液加入其中,再添加稀盐酸后搅拌30min;取200mg经减压蒸馏纯化的苯胺分散于10mL浓度为lmol/L的HC1溶液中,超声分散后加入上述混合液;0℃反应槽中磁力搅拌,同时滴加10mL浓度为lmol/L HC1所溶解的APS,其中,APS与苯胺的质量比为1:1.32;滴加速度为ld/s;持续反应12h,所得产物经真空抽滤成膜,用去离子水和无水乙醇反复洗涤至无色,过滤、冷冻真空干燥48h。

Claims (6)

1.石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法,其特征在于:包括如下步骤:
(1)EVOH纳米纤维的制备;
将EVOH 和CAB置于8O℃真空烘箱干燥24h,将干燥好的EVOH 和CAB混合均匀,然后进行熔融挤出,熔融挤出所得试样以丙酮为溶剂,萃取,去除基体材料CAB,获得EVOH纳米纤维;
(2)石墨烯-聚苯胺-EVOH复合纳米纤维膜的制备;
将20mg 石墨烯分散到20mL去离子水中形成1mg/mL 石墨烯分散液,超声波和细胞粉碎机分别分散0.5h待用;将经高速分散剂剪切分散30min形成的EVOH 纳米纤维悬浮液加入其中,再添加稀盐酸后搅拌30min;取200mg经减压蒸馏纯化的苯胺分散于HC1溶液中,超声分散后加入上述混合液;0℃反应槽中磁力搅拌,同时滴加HC1溶液中所溶解的APS,滴加速度为ld/s;持续反应12h,所得产物经真空抽滤成膜,用去离子水和无水乙醇反复洗涤至无色,过滤、冷冻真空干燥48h。
2.根据权利要求1所述的石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法,其特征在于:所述的EVOH 和CAB的混合质量比为20:8O。
3.根据权利要求2所述的石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法,其特征在于:所述的APS与苯胺的质量比为1:1.25~1.32。
4.根据权利要求3所述的石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法,其特征在于:所述的熔融挤出采用双螺杆共混挤出机,其螺杆转速为50r/min,温度为200~225℃。
5.根据权利要求4所述的石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法,其特征在于:所述的萃取采用索式萃取器,萃取的温度为8O℃,萃取时间为72h。
6.根据权利要求5所述的石墨烯-聚苯胺-EVOH纳米纤维膜的制备方法,其特征在于:所述的HC1溶液的浓度为lmol/L,体积为10mL。
CN201811575734.7A 2018-12-22 2018-12-22 石墨烯-聚苯胺-evoh纳米纤维膜的制备方法 Pending CN109637828A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811575734.7A CN109637828A (zh) 2018-12-22 2018-12-22 石墨烯-聚苯胺-evoh纳米纤维膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811575734.7A CN109637828A (zh) 2018-12-22 2018-12-22 石墨烯-聚苯胺-evoh纳米纤维膜的制备方法

Publications (1)

Publication Number Publication Date
CN109637828A true CN109637828A (zh) 2019-04-16

Family

ID=66076512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811575734.7A Pending CN109637828A (zh) 2018-12-22 2018-12-22 石墨烯-聚苯胺-evoh纳米纤维膜的制备方法

Country Status (1)

Country Link
CN (1) CN109637828A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114743809A (zh) * 2022-04-29 2022-07-12 晋江瑞碧科技有限公司 一种纤维素纳米纤维膜基柔性电极材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114743809A (zh) * 2022-04-29 2022-07-12 晋江瑞碧科技有限公司 一种纤维素纳米纤维膜基柔性电极材料的制备方法
CN114743809B (zh) * 2022-04-29 2023-08-18 武夷学院 一种纤维素纳米纤维膜基柔性电极材料的制备方法

Similar Documents

Publication Publication Date Title
Sun et al. Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors
Yu et al. Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance
Zhao et al. Flexible hydrogel electrolyte with superior mechanical properties based on poly (vinyl alcohol) and bacterial cellulose for the solid-state zinc–air batteries
Sun et al. A single robust hydrogel film based integrated flexible supercapacitor
Deng et al. A high-voltage quasi-solid-state flexible supercapacitor with a wide operational temperature range based on a low-cost “water-in-salt” hydrogel electrolyte
Li et al. Vaper phase polymerized PEDOT/cellulose paper composite for flexible solid-state supercapacitor
Jin et al. A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance
Li et al. Flexible poly (vinyl alcohol)–polyaniline hydrogel film with vertically aligned channels for an integrated and self-healable supercapacitor
Xia et al. Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors
Yan et al. Hydrogen bond interpenetrated agarose/PVA network: a highly ionic conductive and flame-retardant gel polymer electrolyte
Fei et al. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly (vinyl alcohol)–H2SO4 porous gel electrolytes
Zhang et al. Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor
Salleh et al. Electrode polymer binders for supercapacitor applications: a review
Du et al. Polyaniline-modified oriented graphene hydrogel film as the free-standing electrode for flexible solid-state supercapacitors
CN101781458B (zh) 一种石墨烯-有机酸掺杂聚苯胺复合材料及其制备方法
CN107578927B (zh) 一种聚苯胺基mof纳米复合材料柔性超级电容器的制备方法
Liu et al. High performance all-carbon thin film supercapacitors
Wang et al. An anti-freezing and anti-drying multifunctional gel electrolyte for flexible aqueous zinc-ion batteries
CN105206430B (zh) 聚苯胺纳米管阵列/石墨烯复合材料电极及其制备方法和应用
Chen et al. Preparation of polyaniline onto dl-tartaric acid assembled MXene surface as an electrode material for supercapacitors
He et al. Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor
Xun et al. A biomass-based redox gel polymer electrolyte for improving energy density of flexible supercapacitor
CN104925778A (zh) 碳纳米管微球及其制备方法与应用
Han et al. Enhanced hybrid capacitive deionization performance by sodium titanium phosphate/reduced porous graphene oxide composites
Zhao et al. Natural biomass hydrogel based on cotton fibers/PVA for acid supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190416