CN110423348B - 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用 - Google Patents

磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用 Download PDF

Info

Publication number
CN110423348B
CN110423348B CN201910652906.4A CN201910652906A CN110423348B CN 110423348 B CN110423348 B CN 110423348B CN 201910652906 A CN201910652906 A CN 201910652906A CN 110423348 B CN110423348 B CN 110423348B
Authority
CN
China
Prior art keywords
phosphomolybdic acid
conductive hydrogel
polymer
polymer composite
composite conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910652906.4A
Other languages
English (en)
Other versions
CN110423348A (zh
Inventor
王美玲
刘旭光
崔明珠
刘伟峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910652906.4A priority Critical patent/CN110423348B/zh
Publication of CN110423348A publication Critical patent/CN110423348A/zh
Application granted granted Critical
Publication of CN110423348B publication Critical patent/CN110423348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明属多酸基复合新材料技术领域,提供一种磷钼酸‑聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用。在一步原位聚合过程中通过带负电的磷钼酸和带正电的聚合物导电水凝胶通过静电自组装作用及物理吸附作用而形成,磷钼酸纳米颗粒均匀的锚定或镶嵌在相互连接的3D网格结构的聚合物导电水凝胶表面或内部。直接作为无粘合剂的超级电容器电极材料,实现电化学储能。磷钼酸的均匀负载,提高复合材料的导电性,利于PMo12的均匀扎钉及反应活性位点的暴露,不仅加快了电子传输,优异的延展性及溶胀性促成了其在柔性器件中的应用。当弯曲较大角度,柔性器件显示了极高的电容保持率,在集成柔性电子器件领域显示出极大的实用性。

Description

磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态 柔性超级电容器中的应用
技术领域
本发明属于多酸基复合新材料技术领域,具体涉及一种磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用。
背景技术
PMo12因其快速可逆的多电子传输能力、独特的晶体结构和稳定的氧化还原价态成为基于表层法拉第反应的赝电容器中被广泛研究的热点材料。然而,PMo12本身易溶于水及极性有机溶剂,且导电性较差,故不能单独用作活性电极材料。
在过去的十几年中,科学家一直致力于寻找合适的导电基底与PMo12复合以期更大程度的发挥其固有电容。到目前为止,国内外报道的导电基体主要包括一些常见的碳材料和传统导电聚合物,如碳纳米管、活性炭、石墨烯、聚苯胺及聚吡咯等。然而,额外粘结剂的引入、基底碳材料的团聚及PMo12氧化还原活性位点的有限暴露等问题都不同程度的抑制了PMo12固有电容的有效利用。因此,必须优化复合材料的结构来提高PMo12活性颗粒的分散性,以充分暴露其氧化还原活性位点及高效发挥PMo12的固有电容。
近年来,新型导电聚合物水凝胶因具有较大的表面积、分级多孔的结构,良好的导电性、优异的亲水性及杰出的溶胀性受到了广泛的关注。三维分级多孔纳米结构的新型导电聚合物水凝胶可以为电极及电解质之间提供更大的界面接触面积,缩短离子/电子传输路径,且本身具有良好的韧性、高的导电性和亲水性,成为具有巨大多电子传输能力PMo12的优选基底材料。
发明内容
本发明的第一目的在于提供一种磷钼酸/聚合物复合导电水凝胶,以实现磷钼酸纳米颗粒的均匀负载。
本发明的第二目的在于提供一种磷钼酸/聚合物复合导电水凝胶的制备方法。
本发明的第三目的在于提供一种柔性超级电容器,该器件能够在弯曲条件下保持性能稳定,可以应用于柔性显示器和可穿戴电子器件。
本发明由如下技术方案实现的:一种磷钼酸/聚合物复合导电水凝胶,所述磷钼酸/聚合物复合导电水凝胶是在一步原位聚合过程中通过带负电的磷钼酸和带正电的聚合物导电水凝胶通过静电自组装作用及物理吸附作用而形成,磷钼酸纳米颗粒均匀的锚定或镶嵌在相互连接的3D网格结构的聚合物导电水凝胶表面或内部;其中聚合过程中磷钼酸纳米颗粒与聚合物单体的摩尔浓度比范围为1/70-4/70。
所述磷钼酸纳米颗粒大小<2nm;所述聚合物导电水凝胶中的聚合物单体为吡咯、苯胺或吲哚。
制备所述的一种磷钼酸/聚合物复合导电水凝胶的方法,具体步骤如下:
(1)磷钼酸溶液的制备:0.08-1.28 g PMo12粉末、0.05-0.8 g无水氯化铁、0.06-0.096 g交联剂混合,超声均匀分散在去离子水中,制备成0.5-8ml混合溶液即可;
(2)聚合物导电水凝胶的制备:21-336 μL聚合物单体溶解在0.25-4 mL溶剂,所述溶剂为异丙醇或水;
(3)磷钼酸/聚合物复合导电水凝胶的制备:将步骤(1)制备的磷钼酸混合溶液和步骤(2)制备的聚合物导电水凝胶均置于4℃冰箱中,静置10-30min,然后将聚合物导电水凝胶迅速加到磷钼酸混合溶液中,0.5min中内即可得到黑色的磷钼酸/聚合物复合导电水凝胶。
步骤(1)中所述的交联剂可以为常规带多个羧基的交联剂。步骤(1)中所述的交联剂优选为TCPP或植酸。
步骤(1)中的磷钼酸用磷钨酸替代。
步骤(1)中超声条件为 超声10-30分钟。
一种所述的磷钼酸/聚合物复合导电水凝胶在全固态柔性超级电容器中的应用,所述柔性超级电容器为:所述柔性超级电容器为:将磷钼酸/聚合物复合导电水凝胶配成10mg/mL的分散液,均匀滴涂在柔性基底上,形成1-3 mm厚的无粘合剂的超级电容器电极材料,然后以PVA/H2SO4凝胶固体电解质作为固态电解质,刮涂在磷钼酸/聚合物复合导电水凝胶电极表面,厚度为2-5 mm,制成柔性超级电容器器件。
所述柔性基底为商业碳布或碳纳米管纸或常规柔性导电基底。
所述PVA/H2SO4凝胶固体电解质为H2SO4酸性电解质材料、PVA加入到去离子水中,在90-95℃搅拌制得;所述H2SO4酸性电解质、PVA以及去离子水的质量比为1:1:10。
本发明所述的磷钼酸/聚合物复合导电水凝胶呈现出具有大孔的互连纳米纤维的均匀形貌,为PMo12的锚定和均匀分布提供了丰富的孔道结构。磷钼酸纳米颗粒均匀地分布于三维水凝胶的体相与表面层,磷钼酸颗粒大小小于2 nm。
构成柔性超级电容器的基底电极表面刮涂有如上述的磷钼酸/聚合物复合导电水凝胶;以及PVA/H2SO4固体凝胶电解质。其中,PVA/H2SO4凝胶电解质是将硫酸、PVA加入到去离子水中,在 90-95 ℃搅拌制得;电解质材料、PVA以及去离子水的质量比为1:1:10。
本发明一步制得磷钼酸/聚合物复合材导电水凝胶,该复合水凝胶结构的设计实现了磷钼酸颗粒的均匀负载。与传统聚合物相比,该聚合物水凝胶结构为磷钼酸纳米颗粒提供了电子传递的有效通道,它可以为电极及电解质之间提供更大的界面接触面积,显示了更高的导电性和离子电导率,更强的亲水性,更好的生物相容性及优异的韧性和可加工性,可以实现活性纳米颗粒的最大化利用。与现有负载磷钼酸的技术相比,该方法中磷钼酸分散效果更好,可以实现其最大化利用,且操作简单,成本低,应用前景广阔。
本发明提供的柔性超级电容器,具有良好的力学柔性,在弯曲状态下,器件的性能仍能够保持较高稳定性,这一特性使其有望应用于柔性显示设备及可穿戴电子器件。该器件还可以实现提升电容和输出电压的串、并联器件的构建。
附图说明
图1为本发明实施例提供的聚吡咯/磷钼酸复合导电水凝胶在干燥或润湿状态下的数码图片;
图2为本发明实施例提供的聚吡咯/磷钼酸复合导电水凝胶的扫描电子显微照片;
图3为本发明实施例提供的聚吡咯/磷钼酸复合导电水凝胶的透射电子显微照片;
图4本发明实施例提供的聚吡咯/磷钼酸复合导电水凝胶的STEM照片及C (a),Mo(b),N (c),O (d)和P (e) 的EDX元素分布图;
图5 本发明实施例提供的聚吡咯/磷钼酸复合导电水凝胶的高倍透射照片;
图6为本发明实施例提供的固态超级电容器单个器件与三个串联器件的充放电曲线 (A);
图7为本发明实施例提供的固态超级电容器单个器件与三个并联器件的GCD曲线(B);
图8为本发明实施例提供的柔性超级电容器的数码图片;
图9为本发明实施例提供的柔性超级电容器的在无形变状态 (A)、扭曲60°(B)及扭曲120°(C)下的充放电曲线;
图10为本发明实施例提供的柔性超级电容器在不同电流密度下的恒流充放电曲线图;
图11 为本发明实施例提供的三个串联超级电容器点亮LED灯泡的数码图片。
具体实施方式
现在结合附图和以下实施例对本发明作进一步详细的说明,但应了解的是,这些实施例仅为例示说明之用,而不应被解释为本发明实施的限制。
实施例1:一种磷钼酸/聚合物复合导电水凝胶,在一步原位聚合过程中通过带负电的磷钼酸和带正电的聚合物导电水凝胶通过静电自组装作用及物理吸附作用而形成,磷钼酸纳米颗粒均匀的锚定或镶嵌在相互连接的3D网格结构的聚合物导电水凝胶表面或内部。
制备方法如下:21-336微升吡咯(Py)单体溶于0.25-4 mL异丙醇中,标记为A液。接着称取0.08 g PMo12粉末溶解在1 mL去离子水中,并超声20 min,接着加入0.05-0.8 g无水氯化铁粉末,继续超声20 min,然后加入0.06-0.096 g TCPP交联剂并剧烈搅拌至均匀分散,标记为B液。将制得的A和B液均置于4℃冰箱中,冰箱中放置10-30分钟以后,将A液迅速加入B液中,半分钟内获得黑色的复合水凝胶。所述磷钼酸纳米颗粒大小<2nm。
实施例2:本实施例提供的一种磷钼酸/聚合物复合导电水凝胶,制备方法与实施例1的基本步骤相同,所不同之处在于,本实施例中的单体是苯胺。
实施例3:本实施例提供的一种磷钼酸/聚合物复合导电水凝胶,制备方法与实施例1的基本步骤相同,所不同之处在于,本实施例中的PMo12粉末的质量是0.32 g。
实施例4:本实施例提供的一种磷钼酸/聚吡咯复合导电水凝胶,制备方法与实施例1的基本步骤相同,所不同之处在于,本实施例中的PMo12粉末的质量是1.28 g。
实施例5:本实施例提供的一种磷钼酸/聚吡咯复合导电水凝胶,制备方法与实施例1的基本步骤相同,所不同之处在于,本实施例中的交联剂是植酸。
实施例6:本实施例制备的一种柔性超级电容器,制备方法如下:
选取厚度为0.33 mm的商业化碳布,裁剪成2×1 cm的长方形,用去离子水和乙醇超声清洗几次,烘干待用。将磷钼酸/聚吡咯复合水凝胶活性材料配成10 mg/mL的分散液,然后将其均匀涂覆在1×2 cm的碳布上 (工作面积为1 cm2) 并烘干备用。将1 g浓硫酸溶于10 mL H2O中,随后加入1 g PVA,然后将整个混合物加热至95℃,同时剧烈搅拌直至溶液变澄清制得凝胶电解质。将热的电解质均匀刮涂在修饰好的电极上,并刮涂成均匀的厚度,以具有相同载量的两片电极对称组装,待电解质冷却凝固,最外层再用聚四氟乙烯(PTFE)进行封装,即可得到基于磷钼酸/聚吡咯复合导电水凝胶的柔性超级电容器。
实施例7本实施例提供的一种柔性超级电容器,制备方法与实施例5的基本步骤相同,所不同之处在于,本实施例中的电解质选择[BmimHSO4],水浴温度选90℃。
下面结合试验例考察实施例1-5提供的磷钼酸/聚吡咯复合导电水凝胶的性能。
试验例1:将反应完全的复合水凝胶加工成中国汉字“龙”,如图1所示,体现了该复合水凝胶的可塑性和延展性,向室温放置干燥状态的“龙”滴加适量的蒸馏水,该材料体积略微膨胀迅速恢复原状,确实展现了产物较好的亲水性、优异的溶胀性和一定的自愈合性能,在柔性器件应用方面展示了一定的潜力。
试验例2:采用扫描电镜和透射电镜对实施例1-5制备得到的磷钼酸/聚吡咯复合导电水凝胶的形貌进行检测。检测结果如图2和3所示。从SEM和TEM照片中可以看出,它表现出具有大孔的互连纳米纤维的均匀形貌,为PMo12的锚定和均匀分布提供了丰富的孔道。表明PMo12的锚定不仅不会改变PPy水凝胶的3D原始分级多孔纳米结构,而且还可以提供连续的电子和离子传输途径。这种结构有利于电解液的浸润和离子传输。采用元素映射图(图4)表征PMo12在水凝胶中的分布情况。元素映射图中PPy的C,N和PMo12的Mo,O和P的存在清楚地证实PMo12在整个3D网络水凝胶结构内的均匀分布。如图5所示,高倍透射电子显微镜图像表明大量PMo12纳米颗粒确实均匀地锚定在水凝胶上。
试验例3:对实施例5-6提供的固态超级电容器可以设计成三个串联或并联的结构。结果见图6和图7。三个串联器件的GCD曲线显示了从1.5 V(1个器件)到4.5 V的逐步电压扩张;且与单个器件相比,三个并联的器件放电时间显示了三倍的增长,证明该全固态超级电容器可以串并联连接而不改变其本身的电容性能,在一定程度上可满足集成电子产品的需求。
试验例4:图8为施例5-6提供的柔性超级电容器的实物图,从图9看出,柔性超级电容器具有良好的柔性,可以横向弯曲。对柔性超级电容器的柔性进行测试,测试结果见图10。柔性超级电容器在弯曲不同角度的状态下的充放电曲线和无形变状态下的测试曲线的形状基本保持一致,证明了组装的全固态柔性超级电容器在具有一定的抗机械变形性,可在一定程度上满足柔性电子皮肤和可穿戴电子器件对储能装置的需求。
试验例5:对实施例5-6提供的柔性超级电容器考察恒流充放电,结果见图10。如图10所示,在恒流充放电曲线中,充电曲线和放电曲线呈对称的形状,说明器件的库仑效率很高。
试验例6:图11提供了串联三个器件点亮一额定电压为2.2 V的小灯泡实物图。持续点亮近20 min,表明该器件具有优异的储能性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种磷钼酸/聚合物复合导电水凝胶,其特征在于:所述磷钼酸/聚合物复合导电水凝胶是在一步原位聚合过程中通过带负电的磷钼酸和带正电的聚合物导电水凝胶通过静电自组装作用及物理吸附作用而形成,磷钼酸纳米颗粒均匀的锚定或镶嵌在相互连接的3D网格结构的聚合物导电水凝胶表面或内部;其中磷钼酸纳米颗粒与聚合物水凝胶的摩尔浓度比范围为1/70-4/70;所述磷钼酸纳米颗粒大小<2nm;所述聚合物导电水凝胶中的聚合物单体为吡咯、苯胺或吲哚;
具体制备方法步骤如下:
(1)磷钼酸溶液的制备:0.08-1.28 g PMo12粉末、0.05-0.8 g无水氯化铁、0.06-0.096g交联剂混合,超声均匀分散在去离子水中,制备成0.5-8ml混合溶液即可;
(2)聚合物导电水凝胶的制备:21-336 μL聚合物单体溶解在0.25-4 mL溶剂,所述溶剂为异丙醇或水;
(3)磷钼酸/聚合物复合导电水凝胶的制备:将步骤(1)制备的磷钼酸混合溶液和步骤(2)制备的聚合物导电水凝胶均置于4℃冰箱中,静置10-30min,然后将聚合物导电水凝胶迅速加到磷钼酸混合溶液中,0.5min中内即可得到黑色的磷钼酸/聚合物复合导电水凝胶;
步骤(1)中所述的交联剂为TCPP或植酸。
2.根据权利要求1所述的一种磷钼酸/聚合物复合导电水凝胶,其特征在于:步骤(1)中超声条件为超声10-30分钟。
3.一种如权利要求1所述的磷钼酸/聚合物复合导电水凝胶在全固态柔性超级电容器中的应用,其特征在于:所述柔性超级电容器为:将磷钼酸/聚合物复合导电水凝胶配成10mg/mL的分散液,均匀滴涂在柔性基底上,形成1-3 mm厚的无粘合剂的超级电容器电极材料,然后以PVA/H2SO4凝胶固体电解质作为固态电解质,刮涂在磷钼酸/聚合物复合导电水凝胶电极表面,厚度为2-5 mm,制成柔性超级电容器器件。
4.根据权利要求3所述的一种磷钼酸/聚合物复合导电水凝胶在全固态柔性超级电容器中的应用,其特征在于:所述柔性基底为商业碳布或碳纳米管纸,基底厚度为30-100 mm。
5.根据权利要求3所述的一种磷钼酸/聚合物复合导电水凝胶在全固态柔性超级电容器中的应用,其特征在于:所述PVA/H2SO4凝胶固体电解质为H2SO4酸性电解质材料、PVA加入到去离子水中,在90-95℃搅拌制得;所述H2SO4酸性电解质、PVA以及去离子水的质量比为1:1:10。
CN201910652906.4A 2019-07-19 2019-07-19 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用 Active CN110423348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910652906.4A CN110423348B (zh) 2019-07-19 2019-07-19 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910652906.4A CN110423348B (zh) 2019-07-19 2019-07-19 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用

Publications (2)

Publication Number Publication Date
CN110423348A CN110423348A (zh) 2019-11-08
CN110423348B true CN110423348B (zh) 2021-11-12

Family

ID=68410137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910652906.4A Active CN110423348B (zh) 2019-07-19 2019-07-19 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用

Country Status (1)

Country Link
CN (1) CN110423348B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029164B (zh) * 2019-12-16 2021-06-04 太原理工大学 磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用
CN114121497B (zh) * 2021-11-12 2023-08-22 东莞理工学院 一种双碳耦合MoO2电极材料及其制备方法与应用
CN115805093A (zh) * 2022-11-25 2023-03-17 太原理工大学 一种精准限域路径制备不同尺寸的过渡金属Mo基材料的方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449128A (zh) * 2016-09-28 2017-02-22 东南大学 一体化杂多酸修饰聚苯胺/氮化钛核壳纳米线阵列复合材料及其制备方法和应用
CN108376618A (zh) * 2018-03-27 2018-08-07 西南交通大学 聚苯胺/植酸导电水凝胶及其制备方法以及柔性超级电容器
CA2703454C (en) * 2010-05-12 2018-08-21 The Governing Council Of The University Of Toronto Method of producing electrically conductive polymer and cellulose nanocomposites
CN109326458A (zh) * 2018-09-30 2019-02-12 成都信息工程大学 一种柔性微型超级电容器的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2703454C (en) * 2010-05-12 2018-08-21 The Governing Council Of The University Of Toronto Method of producing electrically conductive polymer and cellulose nanocomposites
CN106449128A (zh) * 2016-09-28 2017-02-22 东南大学 一体化杂多酸修饰聚苯胺/氮化钛核壳纳米线阵列复合材料及其制备方法和应用
CN108376618A (zh) * 2018-03-27 2018-08-07 西南交通大学 聚苯胺/植酸导电水凝胶及其制备方法以及柔性超级电容器
CN109326458A (zh) * 2018-09-30 2019-02-12 成都信息工程大学 一种柔性微型超级电容器的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A Polypyrrole/Phosphomolybdic Acid/Poly(3,4-ethylenedioxythiophene)/Phosphotungstic Acid Asymmetric Supercapacitor;Graeme M. Suppes等;《Journal of The Electrochemical Society》;20100726;第157卷(第9期);1030-1034页 *
Chemical polymerization of polyaniline and polypyrrole by phosphomolybdic acid in situ formation of hybrid organic-inorganic materials;P.Gomez Romero等;《Solid State Ionics》;19971130;第101卷;875-880页 *
P.Gomez Romero等.Chemical polymerization of polyaniline and polypyrrole by phosphomolybdic acid in situ formation of hybrid organic-inorganic materials.《Solid State Ionics》.1997,第101卷 *

Also Published As

Publication number Publication date
CN110423348A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
Yu et al. Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance
Na et al. Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors
Sardana et al. Conducting polymer hydrogel based electrode materials for supercapacitor applications
Sun et al. A single robust hydrogel film based integrated flexible supercapacitor
Chu et al. Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors
Bavio et al. Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline-carbon nanotubes
Ramkumar et al. Fabrication of ultrathin CoMoO 4 nanosheets modified with chitosan and their improved performance in energy storage device
Wu et al. Synthesis and characterization of hierarchical Bi2MoO6/Polyaniline nanocomposite for all-solid-state asymmetric supercapacitor
Huang et al. Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing–thawing method as self-supported electrode for supercapacitors
Song et al. Freestanding needle-like polyaniline–coal based carbon nanofibers composites for flexible supercapacitor
Wu et al. Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors
Liu et al. Glycerol-crosslinked PEDOT: PSS as bifunctional binder for Si anodes: Improved interfacial compatibility and conductivity
Zhou et al. Highly stable multi-wall carbon nanotubes@ poly (3, 4-ethylenedioxythiophene)/poly (styrene sulfonate) core–shell composites with three-dimensional porous nano-network for electrochemical capacitors
Sun et al. Synthesis of polypyrrole coated melamine foam by in-situ interfacial polymerization method for highly compressible and flexible supercapacitor
Heydari et al. An all-solid-state asymmetric device based on a polyaniline hydrogel for a high energy flexible supercapacitor
CN111029164B (zh) 磷钼酸/聚合物/碳纳米管复合导电水凝胶及制备方法和在全固态柔性超级电容器中的应用
CN110423348B (zh) 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用
Lu et al. Phosphomolybdic acid cluster bridging carbon dots and polyaniline nanofibers for effective electrochemical energy storage
Shieh et al. High-performance flexible supercapacitor based on porous array electrodes
Yan et al. A flexible polyelectrolyte-based gel polymer electrolyte for high-performance all-solid-state supercapacitor application
Chen et al. Pulsed electrochemical fabrication of graphene/polypyrrole composite gel films for high performance and flexible supercapacitors
Xun et al. A biomass-based redox gel polymer electrolyte for improving energy density of flexible supercapacitor
Zhou et al. A facile approach to improve the electrochemical properties of polyaniline-carbon nanotube composite electrodes for highly flexible solid-state supercapacitors
Malik et al. Electrochemical behavior of composite electrode based on sulphonated polymeric surfactant (SPEEK/PSS) incorporated polypyrrole for supercapacitor
Yuan et al. Flexible electrochemical capacitors based on polypyrrole/carbon fibers via chemical polymerization of pyrrole vapor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant