CN109326458A - 一种柔性微型超级电容器的制备方法 - Google Patents
一种柔性微型超级电容器的制备方法 Download PDFInfo
- Publication number
- CN109326458A CN109326458A CN201811165847.XA CN201811165847A CN109326458A CN 109326458 A CN109326458 A CN 109326458A CN 201811165847 A CN201811165847 A CN 201811165847A CN 109326458 A CN109326458 A CN 109326458A
- Authority
- CN
- China
- Prior art keywords
- flexible
- preparation
- super capacitor
- oxygen
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- 239000003990 capacitor Substances 0.000 claims abstract description 29
- 239000004744 fabric Substances 0.000 claims abstract description 29
- 239000002131 composite material Substances 0.000 claims abstract description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000007772 electrode material Substances 0.000 claims abstract description 20
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 19
- 239000001301 oxygen Substances 0.000 claims abstract description 19
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 18
- 125000000524 functional group Chemical group 0.000 claims abstract description 17
- 239000011245 gel electrolyte Substances 0.000 claims abstract description 13
- 239000000178 monomer Substances 0.000 claims abstract description 12
- 239000002105 nanoparticle Substances 0.000 claims abstract description 10
- 239000002322 conducting polymer Substances 0.000 claims abstract description 8
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 229910000314 transition metal oxide Inorganic materials 0.000 claims abstract description 7
- 229910052976 metal sulfide Inorganic materials 0.000 claims abstract description 6
- 230000001052 transient effect Effects 0.000 claims abstract description 6
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 5
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 3
- 230000001376 precipitating effect Effects 0.000 claims abstract description 3
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 229910021389 graphene Inorganic materials 0.000 claims description 15
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 12
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims description 8
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 6
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002244 precipitate Substances 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 claims description 3
- 125000003700 epoxy group Chemical group 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 230000020477 pH reduction Effects 0.000 claims description 3
- 150000003233 pyrroles Chemical class 0.000 claims description 3
- 229930192474 thiophene Natural products 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical group O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 238000002525 ultrasonication Methods 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 239000011800 void material Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 239000011593 sulfur Substances 0.000 claims 1
- 229910052723 transition metal Inorganic materials 0.000 claims 1
- 150000003624 transition metals Chemical class 0.000 claims 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 claims 1
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 238000004146 energy storage Methods 0.000 abstract description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 9
- 239000011206 ternary composite Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 4
- 101710116850 Molybdenum cofactor sulfurase 2 Proteins 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 235000013399 edible fruits Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000013215 result calculation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/70—Current collectors characterised by their structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
本发明提供一种基于柔性基底的微型超级电容器制备方法,包括如下步骤:首先采用水热法合成三元复合电极材料,在带有含氧官能团的碳材料中加入过渡金属氧化物(或过渡金属硫化物)纳米颗粒及导电聚合物单体材料,100℃共同加热搅拌生成所需三元复合材料;然后将沉淀的复合材料过滤在柔性织物基底上,压力机将生成三元复合材料嵌压入导电织物空隙中,形成超级电容器电极;最后,通过凝胶电解质将两片电极材料叠在一起,制备成柔性微型超级电容器件。本发明电极材料制备方法简单可控,制备的微型超级电容器件具备良好的可弯折性和储能特性,基于本发明所描述的柔性微型超级电容器在柔性可穿戴器件等微能源领域具有良好的应用前景。
Description
技术领域
本发明属于电化学储能技术领域,特别涉及一种柔性微型超级电容器的制备方法。
背景技术
在能源危机日益紧迫的今天,持续可再生清洁能源的收集越来越被人们重视。目前的科技发展大大降低了电子器件的能量消耗并且提高了其工作效率,利用周围环境中无处不在的能源(例如机械能、太阳能等)转化并存储为电能来驱动电子器件成为解决电子器件能量供给问题的一个有效且绿色的途径。特别地,在可拉伸和可穿戴电子器件飞速发展的今天,研究柔性能量存储器件及其阵列具有十分重要的价值和意义。当前主要的储能器件包括燃料电池、锂离子电池和电化学超级电容器。其中,超级电容器以其较高的功率密度、短的充电时间、较长的循环寿命以及环境友好等优点受到广泛关注,尤其是微型柔性超级电容器,它不仅能作为独立的元件为电子器件系统存储能量,还有望取代电池直接给系统供电。因此发展高性能柔性超级电容器及其阵列结构具有重大的社会效益和意义。
纵观能源技术的发展过程,柔性电极材料是柔性超级电容器的核心,因此寻找高电导率、大比表面积和高孔隙率的柔性电极材料是高性能柔性超级电容器及其阵列研制和开发的关键。目前各个高校及科研机构都竞相提出制备柔性微型超级电容器的制备方法。其中,涉及到的专利申请有一种石墨烯柔性复合电极、其制备方法及柔性超级电容器((公开专利)NO.CN107221447A);一种基于碳布的柔性超级电容器的制备方法((公开专利)NO.CN102509635A);超薄、自支撑、柔性、全固态超级电容器及其制备方法((公开专利)NO.CN103219164A);高比容和高功率密度印刷柔性微型超级电容器((公开专利)NO.CN104813425A)。这些方法制备的柔性微型超级电容器具有良好电化学性能及可弯折性,但是制备工艺多重复杂,所选用电极材料单一,且在组装器件过程中不可避免地用到导电性差的粘结剂,会进一步降低器件性能。
发明内容
本发明为了解决现有技术中存在的不足,本发明的目的是提供一种柔性微型超级电容器的制备方法,主要采用简单可控的水热法工艺,制备出电导率高,比容量大及稳定性强的三元复合电极材料,并结合凝胶电解质将复合电极组装成柔性微型超级电容器件,可作为能量存储装置应用于微电子器件、电子皮肤及智能可穿戴装备中。
为达到上述目的,本发明主要提供如下技术方案:
一种柔性微型超级电容器的制备方法,包括如下步骤:首先采用水热法合成三元复合电极材料,然后将沉淀的复合材料过滤在柔性织物基底上,压力机将生成三元复合材料嵌压入导电织物空隙中,形成超级电容器电极;最后,通过凝胶电解质将两片电极材料叠在一起,制备成柔性微型超级电容器件。
具体步骤如下:S1:将带有含氧官能团的碳材料超声均匀分散在去离子水中,配置带有含氧官能团的碳材料分散液,带有含氧官能团碳材料与去离子水的质量比为8~10∶10~15;
S2:在S1配置的带有含氧官能团的碳材料分散液中加入过渡金属氧化物或过渡金属硫化物纳米颗粒,超声作用下分散2~4小时;其中纳米颗粒的添加量为带有含氧官能团碳材料质量的10%~50%;得含氧官能团碳材料与过度金属氧化物或过渡金属硫化物的混合溶液;
S3:在S2配置的混合溶液中加入导电聚合物单体材料,并在100℃下加热搅拌45~60分钟,生成的黑色沉淀物即为三元复合材料;其中加入的导电聚合物单体质量为带有含氧官能团碳材料质量的1%~10%;
S4:将S3生成的三元复合材料过滤在导电柔性织物基底上,清洗后烘至微干,压力机25MPa压实10分钟,三元复合材料的微粒嵌压入导电柔性织物空隙中,形成三元复合材料基超级电容器电极;
S5:以S4制备的嵌压在导电柔性织物上三元复合材料为超级电容器电极,聚乙烯醇-磷酸PVA-H3PO4凝胶为电解质和隔膜,通过PVA-H3PO4凝胶电解质将两片复合电极组装在一起,制备成柔性微型超级电容器件及其阵列。
所述S1中所述带有含氧官能团的碳材料为包含有羟基、羧基、环氧基等含氧官能团的氧化石墨烯或酸化处理过的碳纳米管。
其中,S2中所述的过渡金属氧化物或过渡金属硫化物纳米颗粒为粒径在20~30nm的氧化钌(RuO2)、二氧化铱(IrO2)、二氧化钛(TiO2)、二氧化锰(MnO2)、二硫化钼(MoS2)或硫化钨(WS2)。
其中,S3中所述导电聚合物单体材料为苯胺、吡咯或噻吩。
其中,S4中所述的导电柔性织物为碳纤维布或沉积有金属薄膜的普通织物布。
其中,S5中所述柔性微型超级电容器件为两片电极材料夹裹凝胶电解质的“三明治”结构器件或“叉指型”结构器件。
本发明由于采取以上技术方案,其具有以下优点:
本发明电极材料制备方法简单可控,制备的微型超级电容器件具备良好的可弯折性和储能特性,基于本发明所描述的柔性微型超级电容器在柔性可穿戴器件等微能源领域具有良好的应用前景。具体如下:优势一:因为采用带有含氧官能团的碳材料为氧化石墨烯或酸化处理过的碳纳米管,它们包含有大量的羟基、羧基和环氧基团,能作为氧化剂使单体(苯胺、吡咯、噻吩等)发生聚合反应,生成导电聚合物(聚苯胺、聚吡咯、聚噻吩等),优势二:水热反应采用在100℃下搅拌进行,这样能保证氧化石墨烯得到充分的还原,生成还原氧化石墨烯,步骤2中加入的过渡金属氧化物或过渡金属硫化物纳米颗粒为粒径在20~30nm的纳米粒子,这些纳米颗粒的存在既能提供赝电容,又能阻止还原氧化石墨烯发生堆叠,最终优化三元复合材料的电化学性能。优势三:采用导电柔性织物作为基底(碳纤维布或沉积有金属薄膜的普通织物布),这些导电基底的微空隙不仅能容纳三元复合材料,而且能为电极材料提供柔性支撑。优势四:组装的器件可以是两片电极材料夹裹凝胶电解质的“三明治”结构器件,也可以将制备的电极材料裁成叉指形状组装成二维“叉指型”结构器件。
附图说明
图1为所制备微型柔性超级电容器件
具体实施方式
实例1
10mg氧化石墨烯颗粒加入10mL去离子水中,超声分散4小时,均匀分散后加入1mg二硫化钼纳米颗粒,超声分散2小时,然后加入0.2mg EDOT单体,100℃下加热搅拌1小时,生成黑色沉淀物为还原氧化石墨烯/二硫化钼/聚3,4-乙烯二氧噻吩(rGO/MoS2/PEDOT)三元复合材料。将此三元复合材料过滤在沉积有铝膜的织物上干燥,无水乙醇清洗后25MPa压实10分钟,得到rGO/MoS2/PEDOT三元复合电极,并通过聚乙烯醇磷酸(PVA-H3PO4)凝胶电解质将两片复合电极叠在一起,组装成“三明治”结构微型超级电容器件,(PVA-H3PO4既是电解质又充当隔膜),电化学工作站测试结果计算,电极材料的比容量可达313.46F/g,组装微型器件的比容量为28.92F/g,1000次恒流充放电循环显示器件的库伦充放电效率为97%。
实例2
10mg氧化石墨烯颗粒加入10mL去离子水中,超声分散4小时,均匀分散后加入3mg二硫化钼纳米颗粒,超声分散2小时,然后加入0.2mg EDOT单体,100℃下加热搅拌1小时,生成黑色沉淀物为还原氧化石墨烯/二硫化钼/聚3,4-乙烯二氧噻吩(rGO/MoS2/PEDOT)三元复合材料。将此三元复合材料过滤在沉积有铝膜的织物上干燥,无水乙醇清洗后25MPa压实10分钟,得到rGO/MoS2/PEDOT三元复合电极,并通过聚乙烯醇磷酸(PVA-H3PO4)凝胶电解质将两片复合电极叠在一起,组装成“三明治”结构微型超级电容器件,电化学工作站测试结果计算,电极材料的比容量可达366.58F/g,组装微型器件的比容量为30.86F/g,1000次恒流充放电循环显示器件的库伦充放电效率为96%。
实例3
20mg氧化石墨烯颗粒加入30mL去离子水中,超声分散4小时,均匀分散后加入3mg二硫化钼纳米颗粒,超声分散2小时,然后加入0.2mg EDOT单体,100℃下加热搅拌1小时,生成黑色沉淀物为还原氧化石墨烯/二硫化钼/聚3,4-乙烯二氧噻吩(rGO/MoS2/PEDOT)三元复合材料。将此三元复合材料过滤在沉积有铝膜的织物上干燥,无水乙醇清洗后25MPa压实10分钟,得到rGO/MoS2/PEDOT三元复合电极,并通过聚乙烯醇磷酸(PVA-H3PO4)凝胶电解质将两片复合电极叠在一起,组装成“三明治”结构微型超级电容器件,电化学工作站测试结果计算,电极材料的比容量可达320.45F/g,组装微型器件的比容量为25.74F/g,1000次恒流充放电循环显示器件的库伦充放电效率为95%。
实例4
20mg氧化石墨烯颗粒加入30mL去离子水中,超声分散4小时,均匀分散后加入3mg二硫化钼纳米颗粒,超声分散2小时,然后加入0.3mg EDOT单体,100℃下加热搅拌1小时,生成黑色沉淀物为还原氧化石墨烯/二硫化钼/聚3,4-乙烯二氧噻吩(rGO/MoS2/PEDOT)三元复合材料。将此三元复合材料过滤在沉积有铝膜的织物上干燥,无水乙醇清洗后25MPa压实10分钟,得到rGO/MoS2/PEDOT三元复合电极,并通过聚乙烯醇磷酸(PVA-H3PO4)凝胶电解质将两片复合电极叠在一起,组装成“三明治”结构微型超级电容器件,电化学工作站测试结果计算,电极材料的比容量可达372.18F/g,组装微型器件的比容量为31.33F/g,1000次恒流充放电循环显示器件的库伦充放电效率为96%。
以上仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
Claims (7)
1.一种柔性微型超级电容器的制备方法,其特征在于,包括如下步骤:首先采用水热法合成三元复合电极材料,然后将沉淀的复合材料过滤在柔性织物基底上,压力机将生成三元复合材料嵌压入导电织物空隙中,形成超级电容器电极;最后,通过凝胶电解质将两片电极材料叠在一起,制备成柔性微型超级电容器件。
2.按权利要求1所述柔性微型超级电容器的制备方法,其特征在于:
S1:将带有含氧官能团的碳材料超声均匀分散在去离子水中,配置带有含氧官能团的碳材料分散液,带有含氧官能团碳材料与去离子水的质量比为8~10∶10~15;
S2:在S1配置的带有含氧官能团的碳材料分散液中加入过渡金属氧化物或过渡金属硫化物纳米颗粒,超声作用下分散2~4小时;其中纳米颗粒的添加量为带有含氧官能团碳材料质量的10%~50%;得含氧官能团碳材料与过度金属氧化物或过渡金属硫化物的混合溶液;
S3:在S2配置的混合溶液中加入导电聚合物单体材料,并在100℃下加热搅拌45~60分钟,生成的黑色沉淀物即为三元复合材料;其中加入的导电聚合物单体质量为带有含氧官能团碳材料质量的1%~10%;
S4:将S3生成的三元复合材料过滤在导电柔性织物基底上,清洗后烘至微干,压力机25MPa压实10分钟,三元复合材料的微粒嵌压入导电柔性织物空隙中,形成三元复合材料基超级电容器电极;
S5:以S4制备的嵌压在导电柔性织物上三元复合材料为超级电容器电极,聚乙烯醇-磷酸PVA-H3PO4凝胶为电解质和隔膜,通过PVA-H3PO4凝胶电解质将两片复合电极组装在一起,制备成柔性微型超级电容器件及其阵列。
3.按权利要求2所述柔性微型超级电容器的制备方法,其特征在于:S1中所述带有含氧官能团的碳材料为包含有羟基、羧基、环氧基等含氧官能团的氧化石墨烯或酸化处理过的碳纳米管。
4.按权利要求2所述柔性微型超级电容器的制备方法,其特征在于:S2中所述的过渡金属氧化物或过渡金属硫化物纳米颗粒为粒径在20~30nm的氧化钌(RuO2)、二氧化铱(IrO2)、二氧化钛(TiO2)、二氧化锰(MnO2)、二硫化钼(MoS2)或硫化钨(WS2)。
5.按权利要求2所述柔性微型超级电容器的制备方法,其特征在于:S3中所述导电聚合物单体材料为苯胺、吡咯或噻吩。
6.按权利要求2所述柔性微型超级电容器的制备方法,其特征在于:S4中所述的导电柔性织物为碳纤维布或沉积有金属薄膜的普通织物布。
7.按权利要求2所述柔性微型超级电容器的制备方法,其特征在于:S5中所述柔性微型超级电容器件为两片电极材料夹裹凝胶电解质的“三明治”结构器件或“叉指型”结构器件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811165847.XA CN109326458A (zh) | 2018-09-30 | 2018-09-30 | 一种柔性微型超级电容器的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811165847.XA CN109326458A (zh) | 2018-09-30 | 2018-09-30 | 一种柔性微型超级电容器的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109326458A true CN109326458A (zh) | 2019-02-12 |
Family
ID=65265705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811165847.XA Pending CN109326458A (zh) | 2018-09-30 | 2018-09-30 | 一种柔性微型超级电容器的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109326458A (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110423348A (zh) * | 2019-07-19 | 2019-11-08 | 太原理工大学 | 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用 |
CN111446423A (zh) * | 2020-04-24 | 2020-07-24 | 深圳市海盈科技有限公司 | 一种锂离子电池电极材料及其制备方法、锂离子电池 |
CN111584252A (zh) * | 2020-05-08 | 2020-08-25 | 中南民族大学 | 一种多功能传感器与超级电容器集成一体的柔性器件的制备方法 |
CN112053859A (zh) * | 2020-08-29 | 2020-12-08 | 盐城工学院 | 一种基于织物的柔性平面微型超级电容器的制备方法 |
CN112185711A (zh) * | 2020-10-13 | 2021-01-05 | 福州大学 | 一种聚3,4-乙撑二氧噻吩/二硫化钼/石墨烯复合材料的制备方法 |
CN112242547A (zh) * | 2020-10-19 | 2021-01-19 | 苏州科技大学 | 一种电子皮肤生物燃料电池的制备方法及生物燃料电池 |
CN112350611A (zh) * | 2020-11-06 | 2021-02-09 | 西安交通大学 | 一种仿生的水下电化学驱动器及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140239236A1 (en) * | 2012-01-18 | 2014-08-28 | Deepak Shukla | Method for reducing graphite oxide |
CN106876147A (zh) * | 2017-01-18 | 2017-06-20 | 北京大学 | 基于织物的自充电能量设备及其制备方法 |
CN108573817A (zh) * | 2017-03-09 | 2018-09-25 | 香港中文大学 | 三元复合柔性电极、柔性超级电容器及它们的制备方法和装置 |
-
2018
- 2018-09-30 CN CN201811165847.XA patent/CN109326458A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140239236A1 (en) * | 2012-01-18 | 2014-08-28 | Deepak Shukla | Method for reducing graphite oxide |
CN106876147A (zh) * | 2017-01-18 | 2017-06-20 | 北京大学 | 基于织物的自充电能量设备及其制备方法 |
CN108573817A (zh) * | 2017-03-09 | 2018-09-25 | 香港中文大学 | 三元复合柔性电极、柔性超级电容器及它们的制备方法和装置 |
Non-Patent Citations (1)
Title |
---|
韩广强: "石墨烯复合材料,活性炭复合材料的制备及表征", 《中国优秀硕士学位论文全文数据库》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110423348A (zh) * | 2019-07-19 | 2019-11-08 | 太原理工大学 | 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用 |
CN110423348B (zh) * | 2019-07-19 | 2021-11-12 | 太原理工大学 | 磷钼酸-聚合物复合导电水凝胶及其制备方法以及在全固态柔性超级电容器中的应用 |
CN111446423A (zh) * | 2020-04-24 | 2020-07-24 | 深圳市海盈科技有限公司 | 一种锂离子电池电极材料及其制备方法、锂离子电池 |
CN111446423B (zh) * | 2020-04-24 | 2022-02-22 | 贵州嘉盈科技有限公司 | 一种锂离子电池电极材料及其制备方法、锂离子电池 |
CN111584252B (zh) * | 2020-05-08 | 2021-08-03 | 中南民族大学 | 一种多功能传感器与超级电容器集成一体的柔性器件的制备方法 |
CN111584252A (zh) * | 2020-05-08 | 2020-08-25 | 中南民族大学 | 一种多功能传感器与超级电容器集成一体的柔性器件的制备方法 |
CN112053859A (zh) * | 2020-08-29 | 2020-12-08 | 盐城工学院 | 一种基于织物的柔性平面微型超级电容器的制备方法 |
CN112053859B (zh) * | 2020-08-29 | 2021-12-03 | 盐城工学院 | 一种基于织物的柔性平面微型超级电容器的制备方法 |
CN112185711A (zh) * | 2020-10-13 | 2021-01-05 | 福州大学 | 一种聚3,4-乙撑二氧噻吩/二硫化钼/石墨烯复合材料的制备方法 |
CN112242547B (zh) * | 2020-10-19 | 2021-07-09 | 苏州科技大学 | 一种电子皮肤生物燃料电池的制备方法及生物燃料电池 |
CN112242547A (zh) * | 2020-10-19 | 2021-01-19 | 苏州科技大学 | 一种电子皮肤生物燃料电池的制备方法及生物燃料电池 |
CN112350611A (zh) * | 2020-11-06 | 2021-02-09 | 西安交通大学 | 一种仿生的水下电化学驱动器及其制备方法 |
CN112350611B (zh) * | 2020-11-06 | 2022-03-22 | 西安交通大学 | 一种仿生的水下电化学驱动器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109326458A (zh) | 一种柔性微型超级电容器的制备方法 | |
Luo et al. | Recent progress on integrated energy conversion and storage systems | |
Vijayakumar et al. | CuCo2O4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications | |
Shinde et al. | Strengths, weaknesses, opportunities, and threats (SWOT) analysis of supercapacitors: A review | |
Gao et al. | Flexible Zn‐ion batteries based on manganese oxides: progress and prospect | |
Zhang et al. | Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods | |
Iqbal et al. | Facile hydrothermal synthesis of high-performance binary silver-cobalt-sulfide for supercapattery devices | |
Luo et al. | High capacitive performance of nanostructured Mn–Ni–Co oxide composites for supercapacitor | |
Faisal et al. | Effect of polyaniline on the performance of zinc phosphate as a battery-grade material for supercapattery | |
Xu et al. | Design of the seamless integrated C@ NiMn-OH-Ni3S2/Ni foam advanced electrode for supercapacitors | |
RU2672675C2 (ru) | Материал на вольфрамовой основе, супераккумулятор и суперконденсатор | |
Azizi et al. | Fabrication of an asymmetric supercapacitor based on reduced graphene oxide/polyindole/γ− Al2O3 ternary nanocomposite with high-performance capacitive behavior | |
Yan et al. | Electroactive organic compounds as anode-active materials for solar rechargeable redox flow battery in dual-phase electrolytes | |
CN101857191A (zh) | 一种柔性换能/储能纳米器件及制备方法 | |
Asen et al. | Iron‑vanadium oxysulfide nanostructures as novel electrode materials for supercapacitor applications | |
CN108630449B (zh) | 具有超高能量密度的柔性非对称超级电容器及其制备方法 | |
Tang et al. | Polymethylene blue nanospheres supported honeycomb-like NiCo-LDH for high-performance supercapacitors | |
Ge et al. | Electrochemical performance of MoO3-RuO2/Ti in H2SO4 electrolyte as anodes for asymmetric supercapacitors | |
Ibrahim et al. | An overview of supercapacitors for integrated PV–energy storage panels | |
Bi et al. | In-plane micro-sized energy storage devices: From device fabrication to integration and intelligent designs | |
Yang et al. | Mixing solvothermal synthesis of surfactant free nanoflower-sphere-like nickel selenide for supercapacitor application | |
Wu et al. | The effect of polyaniline electrode doped with transition metal ions for supercapacitors | |
Mao et al. | Facile synthesis of nitrogen-doped porous carbon as robust electrode for supercapacitors | |
Haider et al. | Enhanced energy density of PANI/Co3O4/graphene ternary nanocomposite in a neutral aqueous electrolyte of Na2SO4 for supercapacitor applications | |
Qin et al. | Recent advances and key opportunities on in-plane micro-supercapacitors: From functional microdevices to smart integrated microsystems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190212 |