CN112281128B - 一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法 - Google Patents

一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法 Download PDF

Info

Publication number
CN112281128B
CN112281128B CN202011195184.3A CN202011195184A CN112281128B CN 112281128 B CN112281128 B CN 112281128B CN 202011195184 A CN202011195184 A CN 202011195184A CN 112281128 B CN112281128 B CN 112281128B
Authority
CN
China
Prior art keywords
mixed powder
target material
magnetron sputtering
perovskite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202011195184.3A
Other languages
English (en)
Other versions
CN112281128A (zh
Inventor
付秋平
莫昌琍
严伟
罗军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guiyang University
Original Assignee
Guiyang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guiyang University filed Critical Guiyang University
Priority to CN202011195184.3A priority Critical patent/CN112281128B/zh
Publication of CN112281128A publication Critical patent/CN112281128A/zh
Application granted granted Critical
Publication of CN112281128B publication Critical patent/CN112281128B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及材料生产技术领域,具体涉及一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法;本发明在球磨过程中粘合剂的使用能有效地减小压片过程中所得压片出现开裂的几率,保证了所得压片的品质;再者,本发明中通过滚动造粒方式进行造粒,能有效地增强混合粉体的流动性,便于后续将混分粉体均匀且充实地填充在磨具中,从而有效地提高了靶材素坯的成型密度;另外,在造粒过程中,将混合粉体至于微波马弗炉中能对混合粉体进行充分的加热,有效地提高了脱胶的效率及效果,也消除了粘接剂对所制备的靶材质量及性能的影响;采用本发明制备的钙钛矿型铁酸钐靶材不仅致密度十分地优异,而且其还具有优良的抗弯强度。

Description

一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法
技术领域
本发明涉及材料制备技术领域,具体涉及一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法。
背景技术
磁控溅射是物理气相沉积的一种。一般的溅射法可被用于制备金属、半导体、绝缘体等多材料,且具有设备简单、易于控制、镀膜面积大和附着力强等优点。上世纪70年代发展起来的磁控溅射法更是实现了高速、低温、低损伤。因为是在低气压下进行高速溅射,必须有效地提高气体的离化率。磁控溅射通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率。
氧化物陶瓷靶材属于陶瓷产品,由于对纯度、密度、尺寸、形状,以及成分、结构、均匀性等都有特殊要求,其制备难度较高。氧化物陶瓷靶材作为重要的关键基础材料,多年来一直被靶材研究人员关注。但是目前我国所制备的磁控溅射用靶材的致密度相对较差,而且还存在抗弯强度低,这严重影响了靶材的质量。因此,提供一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,成为本领域技术人员亟待解决的技术问题。
发明内容
针对背景技术中所提出的技术问题,本发明提供了一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,相比较于现有技术制备的磁控溅射用靶材,本发明制备的钙钛矿型铁酸钐靶材不仅致密度十分地优异,而且其还具有优良的抗弯强度。
技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,包括如下步骤:
S1、摩尔比1:1分别准确称取Fe2O3和Sm2O3粉末,然后将之转入高纯聚乙烯球磨瓶中,并向其中加入适量的磨球及去离子水,球磨40~50h后再向磨瓶中加入适量的粘合剂,球磨2~3h后将高纯聚乙烯球磨瓶中的混合组分保存,备用;
S2、将步骤S1中球磨完毕后所得的混合组分转入蒸发皿中,并将蒸发皿至于干燥箱中,在适当的温度下将混合粉体干燥处理20~25h后,再经玛瑙研钵研磨处理后过筛处理;然后将过筛后的混合粉体置于球磨瓶中,滚动造粒15~20min;
S3、将步骤S2中造粒过后最终所得的混合粉体微波马弗炉中,并以5℃/min的速率将炉温升至200~250℃,并在此温度下保温2~3h,然后再将温度升至400~450℃,在此温度下保温2~3h,最后在950~1050℃的条件下保温1~2h,然后将微波马弗炉内的混合粉体自然冷却至室温;
S4、将经S3处理后的混合粉体由微波马弗炉内取出,将之置于规格不同的模具中,并采用压片机在25~40MPa的压强下将混合粉体压制成不同规格的素坯,将所素坯得置于干燥的环境中保存,备用;
S5、将步骤S4中所得的素坯转入烧结炉内,然后以5℃/min的速率将炉温升至1100~1200℃,并在此温度下烧结8~12h,烧结完毕后所得即为磁控溅射用钙钛矿型铁酸钐靶材成品。
更进一步地,所述步骤S1中磨球选用ZrO2球,且Fe2O3和Sm2O3粉末组成的混合粉末的总质量与磨球、去离子水的质量比为2:0.6~1.2:0.8~1.3。
更进一步地,所述步骤S1中所用粘合剂选用聚乙烯醇,且聚乙烯醇的用量为Fe2O3和Sm2O3粉末组成的混合粉末质量的1~3%。
更进一步地,所述步骤S2中的干燥箱选用DHG-9145A型电热恒温鼓风干燥箱。
更进一步地,所述步骤S2中的干燥温度设置为75~85℃。
更进一步地,所述步骤S2中所用筛网的孔径为100~200目。
更进一步地,所述步骤S3中所用微波马弗炉的型号为RWG-08S。
更进一步地,所述步骤S4中所用的压片机为DBS-50四柱油压机。
更进一步地,所述步骤S5中所用烧结炉选用KSS-1400℃高温节能管式炉。
有益效果
采用本发明提供的技术方案,与已知的公有技术相比,具有如下有益效果:
本发明采用Fe2O3和Sm2O3粉末作为制备靶材的基材,其中,在制备靶材的过程中先通过球磨方法将Fe2O3和Sm2O3粉末研磨至合适的细度。在球磨过程中粘合剂的使用能有效地减小压片过程中所得压片出现开裂的几率,保证了所得压片的品质。再者,本发明中通过滚动造粒方式进行造粒,能有效地增强混合粉体的流动性,便于后续将混分粉体均匀且充实地填充在磨具中,从而有效地提高了靶材素坯的成型密度。另外,在造粒过程中,将混合粉体至于微波马弗炉中能对混合粉体进行充分的加热,有效地提高了脱胶的效率及效果,也消除了粘接剂对所制备的靶材质量及性能的影响。采用本发明制备的钙钛矿型铁酸钐靶材不仅致密度十分地优异,而且其还具有优良的抗弯强度。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合实施例对本发明作进一步的描述。
实施例1
一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,包括如下步骤:
S1、按摩尔比1:1分别准确称取Fe2O3和Sm2O3粉末,然后将之转入高纯聚乙烯球磨瓶中,并向其中加入适量的磨球及去离子水,球磨40h后再向磨瓶中加入适量的粘合剂,球磨2h后将高纯聚乙烯球磨瓶中的混合组分保存,备用;
S2、将步骤S1中球磨完毕后所得的混合组分转入蒸发皿中,并将蒸发皿至于干燥箱中,在适当的温度下将混合粉体干燥处理20h后,再经玛瑙研钵研磨处理后过筛处理;然后将过筛后的混合粉体置于球磨瓶中,滚动造粒15min;
S3、将步骤S2中造粒过后最终所得的混合粉体微波马弗炉中,并以5℃/min的速率将炉温升至200℃,并在此温度下保温2h,然后再将温度升至400℃,在此温度下保温2h,最后在950℃的条件下保温1h,然后将微波马弗炉内的混合粉体自然冷却至室温;
S4、将经S3处理后的混合粉体由微波马弗炉内取出,将之置于规格不同的模具中,并采用压片机在25MPa的压强下将混合粉体压制成不同规格的素坯,将所素坯得置于干燥的环境中保存,备用;
S5、将步骤S4中所得的素坯转入烧结炉内,然后以5℃/min的速率将炉温升至1000℃,并在此温度下烧结8h,烧结完毕后所得即为磁控溅射用钙钛矿型铁酸钐靶材成品。
步骤S1中磨球选用ZrO2球,且Fe2O3和Sm2O3粉末组成的混合粉末的总质量与磨球、去离子水的质量比为2:0.6:0.8。
步骤S1中所用粘合剂选用聚乙烯醇,且聚乙烯醇的用量为Fe2O3和Sm2O3粉末组成的混合粉末质量的1%。
步骤S2中的干燥温度设置为75℃。
步骤S2中所用筛网的孔径为100目。
实施例2
一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,包括如下步骤:
S1、按摩尔比1:1分别准确称取Fe2O3和Sm2O3粉末,然后将之转入高纯聚乙烯球磨瓶中,并向其中加入适量的磨球及去离子水,球磨45h后再向磨瓶中加入适量的粘合剂,球磨2h后将高纯聚乙烯球磨瓶中的混合组分保存,备用;
S2、将步骤S1中球磨完毕后所得的混合组分转入蒸发皿中,并将蒸发皿至于干燥箱中,在适当的温度下将混合粉体干燥处理23h后,再经玛瑙研钵研磨处理后过筛处理;然后将过筛后的混合粉体置于球磨瓶中,滚动造粒18min;
S3、将步骤S2中造粒过后最终所得的混合粉体微波马弗炉中,并以5℃/min的速率将炉温升至220℃,并在此温度下保温2h,然后再将温度升至430℃,在此温度下保温2h,最后在1000℃的条件下保温1h,然后将微波马弗炉内的混合粉体自然冷却至室温;
S4、将经S3处理后的混合粉体由微波马弗炉内取出,将之置于规格不同的模具中,并采用压片机在30MPa的压强下将混合粉体压制成不同规格的素坯,将所素坯得置于干燥的环境中保存,备用;
S5、将步骤S4中所得的素坯转入烧结炉内,然后以5℃/min的速率将炉温升至1200℃,并在此温度下烧结10h,烧结完毕后所得即为磁控溅射用钙钛矿型铁酸钐靶材成品。
步骤S1中磨球选用ZrO2球,且Fe2O3和Sm2O3粉末组成的混合粉末的总质量与磨球、去离子水的质量比为2:1:1。
步骤S1中所用粘合剂选用聚乙烯醇,且聚乙烯醇的用量为Fe2O3和Sm2O3粉末组成的混合粉末质量的2%。
步骤S2中的干燥温度设置为80℃。
步骤S2中所用筛网的孔径为150目。
实施例3
一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,包括如下步骤:
S1、按摩尔比1:1分别准确称取Fe2O3和Sm2O3粉末,然后将之转入高纯聚乙烯球磨瓶中,并向其中加入适量的磨球及去离子水,球磨50h后再向磨瓶中加入适量的粘合剂,球磨3h后将高纯聚乙烯球磨瓶中的混合组分保存,备用;
S2、将步骤S1中球磨完毕后所得的混合组分转入蒸发皿中,并将蒸发皿至于干燥箱中,在适当的温度下将混合粉体干燥处理25h后,再经玛瑙研钵研磨处理后过筛处理;然后将过筛后的混合粉体置于球磨瓶中,滚动造粒20min;
S3、将步骤S2中造粒过后最终所得的混合粉体微波马弗炉中,并以5℃/min的速率将炉温升至250℃,并在此温度下保温3h,然后再将温度升至450℃,在此温度下保温3h,最后在1050℃的条件下保温2h,然后将微波马弗炉内的混合粉体自然冷却至室温;
S4、将经S3处理后的混合粉体由微波马弗炉内取出,将之置于规格不同的模具中,并采用压片机在40MPa的压强下将混合粉体压制成不同规格的素坯,将所素坯得置于干燥的环境中保存,备用;
S5、将步骤S4中所得的素坯转入烧结炉内,然后以5℃/min的速率将炉温升至1200℃,并在此温度下烧结12h,烧结完毕后所得即为磁控溅射用钙钛矿型铁酸钐靶材成品。
步骤S1中磨球选用ZrO2球,且Fe2O3和Sm2O3粉末组成的混合粉末的总质量与磨球、去离子水的质量比为2:1.2:1.3。
步骤S1中所用粘合剂选用聚乙烯醇,且聚乙烯醇的用量为Fe2O3和Sm2O3粉末组成的混合粉末质量的3%。
步骤S2中的干燥温度设置为85℃。
步骤S2中所用筛网的孔径为200目。
步骤S5中所用保护气选用氩气,且氩气的注入速率为60mL/min。
性能测试
对比例:广东省广州市某新材料有限公司生产的磁控溅射用靶材;
分别将实施例1~3制备的磁控溅射用钙钛矿型铁酸钐靶材(记作实施例1~3)产品进行性能检测,所得检测结果记录于下表:
Figure BDA0002753819500000071
Figure BDA0002753819500000081
由上述表格中的相关数据可知,相比较于对比例提供的磁控溅射用靶材,本发明制备的磁控溅射用钙钛矿型铁酸钐靶材不仅致密度十分地优异,而且其还具有优良的抗弯强度。表明本发明制备的磁控溅射用钙钛矿型铁酸钐靶材具有更广阔的市场前景,更适宜推广。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不会使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,其特征在于,包括如下步骤:
S1、按摩尔比1:1分别准确称取Fe2O3和Sm2O3粉末,然后将之转入高纯聚乙烯球磨瓶中,并向其中加入适量的磨球及去离子水,球磨40~50 h后再向磨瓶中加入适量的粘合剂,球磨2~3 h后将高纯聚乙烯球磨瓶中的混合组分保存,备用;
S2、将步骤S1中球磨完毕后所得的混合组分转入蒸发皿中,并将蒸发皿至于干燥箱中,在适当的温度下将混合粉体干燥处理20~25 h后,再经玛瑙研钵研磨处理后过筛处理;然后将过筛后的混合粉体置于球磨瓶中,滚动造粒15~20 min;
S3、将步骤S2中造粒过后最终所得的混合粉体微波马弗炉中,并以5 ℃/min的速率将炉温升至200~250 ℃,并在此温度下保温2~3 h,然后再将温度升至400~450 ℃,在此温度下保温2~3 h,最后在950~1050 ℃的条件下保温1~2 h,然后将微波马弗炉内的混合粉体自然冷却至室温;
S4、将经S3处理后的混合粉体由微波马弗炉内取出,将之置于规格不同的模具中,并采用压片机在20~40 MPa的压强下将混合粉体压制成不同规格的素坯,将所得素坯置于干燥的环境中保存,备用;
S5、将步骤S4中所得的素坯转入烧结炉内,然后以5 ℃/min的速率将炉温升至1100~1200 ℃,并在此温度下烧结8~12 h,烧结完毕后所得即为磁控溅射用钙钛矿型铁酸钐靶材成品;
所述步骤S1中磨球选用ZrO2球,且Fe2O3和Sm2O3粉末组成的混合粉末的总质量与磨球、去离子水的质量比为2:0.6~1.2:0.8~1.3。
2.根据权利要求1所述的一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,其特征在于:所述步骤S1中所用粘合剂选用聚乙烯醇,且聚乙烯醇的用量为Fe2O3和Sm2O3粉末组成的混合粉末质量的1~3%。
3.根据权利要求1所述的一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,其特征在于:所述步骤S2中的干燥箱选用DHG-9145A型电热恒温鼓风干燥箱。
4.根据权利要求1所述的一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,其特征在于:所述步骤S2中的干燥温度设置为75~85 ℃。
5.根据权利要求1所述的一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,其特征在于:所述步骤S2中所用筛网的孔径为100~200目。
6.根据权利要求1所述的一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,其特征在于:所述步骤S3中所用微波马弗炉的型号为RWG-08S。
7.根据权利要求1所述的一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,其特征在于:所述步骤S4中所用的压片机为DBS-50四柱油压机。
8.根据权利要求1所述的一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法,其特征在于:所述步骤S5中所用烧结炉选用KSS-1400℃高温节能管式炉。
CN202011195184.3A 2020-10-31 2020-10-31 一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法 Expired - Fee Related CN112281128B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011195184.3A CN112281128B (zh) 2020-10-31 2020-10-31 一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011195184.3A CN112281128B (zh) 2020-10-31 2020-10-31 一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法

Publications (2)

Publication Number Publication Date
CN112281128A CN112281128A (zh) 2021-01-29
CN112281128B true CN112281128B (zh) 2022-09-16

Family

ID=74353928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011195184.3A Expired - Fee Related CN112281128B (zh) 2020-10-31 2020-10-31 一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法

Country Status (1)

Country Link
CN (1) CN112281128B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192826A (ja) * 1992-12-28 1994-07-12 Canon Inc 堆積膜及びその形成方法
US8179025B1 (en) * 2008-02-29 2012-05-15 University Of Maryland College Park Lead-free piezoceramic materials
CN102424572B (zh) * 2011-09-02 2013-07-10 西安交通大学 高电阻率铁酸铋-钛酸钡固溶体磁电陶瓷材料的制备方法
CN103664171A (zh) * 2013-11-18 2014-03-26 华东师范大学 铁酸镥陶瓷材料及其制备方法和应用
CN109437883A (zh) * 2018-12-29 2019-03-08 中国计量大学 一种铁酸钐陶瓷的制备方法
CN209903507U (zh) * 2019-03-10 2020-01-07 贵阳学院 一种陶瓷靶材模具

Also Published As

Publication number Publication date
CN112281128A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN102910900A (zh) 一种铟锡氧化物靶材的制备方法
CN102212781A (zh) 一种高密度低成本氧化锌铝溅射靶材的制造方法
CN107522483A (zh) 一种azo靶材的制备方法
CN106966700A (zh) 一种氧化铟锡烧结体的短流程制备工艺
CN104073771B (zh) 一种钼掺钠溅射靶材的制备方法
CN115353373A (zh) 一种氧化铝靶材及其制备方法与应用
CN104961463A (zh) 一种氧化铌旋转靶材及其制备方法
CN102134702B (zh) 一种以喷雾干燥工艺制备azo粉末及平面和旋转靶材的方法
CN103011781B (zh) 一种电真空器件用陶瓷及其制备方法
CN108002428B (zh) 一种蒸镀用ito颗粒的制备方法及由该方法制备的ito颗粒
CN109534806A (zh) 一种Li系微波介电陶瓷材料及其制备方法和用途
CN108546109B (zh) 氧空位可控的大尺寸azo磁控溅射靶材制备方法
CN115536390B (zh) 一种透明介质储能陶瓷材料及制备方法与应用
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN105294073B (zh) 一种烧结ito低密度圆柱颗粒的制备方法
CN103864426A (zh) 一种中温烧结温度稳定型微波介质陶瓷材料
CN102180653A (zh) 一种高密度氧化铟锡靶材的制备方法
CN112281128B (zh) 一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法
CN114031402A (zh) 一种低温烧结微波介质材料MgZrNb2O8及其制备方法
CN109251028A (zh) 一种低介高q锂镁铌系微波介质陶瓷及其制备方法
CN101817686B (zh) 一种掺杂改性的钛酸钡复合粒子及其制备方法
CN105884352A (zh) 一种新型陶瓷电容器材料Ba4RFe0.5Nb9.5O30(R=La,Eu,Gd)及其制备方法
CN115572162B (zh) 一种堆用中子控制用稀土中高熵铪酸盐陶瓷材料
CN109734436A (zh) 一种锡酸镁系低介微波介质陶瓷材料及其制备方法
CN112898022B (zh) 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220916