CN109437883A - 一种铁酸钐陶瓷的制备方法 - Google Patents

一种铁酸钐陶瓷的制备方法 Download PDF

Info

Publication number
CN109437883A
CN109437883A CN201811631720.2A CN201811631720A CN109437883A CN 109437883 A CN109437883 A CN 109437883A CN 201811631720 A CN201811631720 A CN 201811631720A CN 109437883 A CN109437883 A CN 109437883A
Authority
CN
China
Prior art keywords
ceramics
ferrous acid
crystal grain
temperature
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811631720.2A
Other languages
English (en)
Inventor
李正法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201811631720.2A priority Critical patent/CN109437883A/zh
Publication of CN109437883A publication Critical patent/CN109437883A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种铁酸钐的制备方法,属于弱铁磁陶瓷晶粒调控领域。该铁酸钐陶瓷的化学式为SmFeO3(简称SF)。本发明采用球磨制得混合原料粉末,以合适的工艺制备出混合前驱体,通过适当的方法及工艺调控以固相反应法制备出由微米级晶粒大小均匀的弱铁磁陶瓷,而减小晶粒尺寸并没有大幅度降低该陶瓷弱铁磁性。本发明因在晶粒调控领域具有强烈的示范效应而具有光明的前景,同时,由本工艺方法以节能方式制备出的铁酸钐陶瓷在一些新型传感器、自旋器件与信息随机存储等电子元器件方面具有应用前景。

Description

一种铁酸钐陶瓷的制备方法
技术领域
本发明涉及一种具有微米晶粒形貌的铁酸钐陶瓷的制备方法,属于弱铁磁陶瓷晶粒调控领域。
背景技术
根据有关文献调研表明,无源元件与有源器件(新型传感器、自旋器件与信息随机存储、集成电路等半导体产品)共同构成电路的核心部分,是各类电子信息产品的基础。在新型电子产品中,集成电路和无源元件占全部电子元器件及零部件的生产总成本的46.1%和9.1%,而在总安装成本中却分别占12.7%和55.1%,甚至某些片式元件的管理和安装成本已经超过其价格。不难看出,无源电子元件已经成为制约整机进一步向小型化、集成化发展的瓶颈。因此,以铁磁铁电陶瓷材料等核心关键材料为突破口,以提升生产工艺技术为着眼点,将“材料研究-工艺开发-元件生产”相结合,这将是发展的总体思路。(“我国无源电子元件及其关键材料研究发展的若干战略思考”,电容器行业信息,2007年第1期)
因此,针对无源元件与有源器件及其集成向着微纳米尺度发展的小型化趋势,功能陶瓷的发展必然要求具有高性能、低尺度的特征。作为一类可广泛地应用于工业、民用产品和军事方面的电子元件及其组件制造业的重要的、不可替代的、国际竞争极为激烈的高技术材料,铁磁铁电陶瓷及其器件受到了众人的瞩目。当前,国内外对其研究主要集中于铁磁铁电性能的提高,而在陶瓷低尺度的发展方面却未受到应有的重视。
近几年,得益于世界各国对环境保护政策进行立法和执法的推动作用,铁磁铁电陶瓷得到了迅速发展。作为其中代表,铁酸铋铁磁铁电陶瓷系列因其具有高性能而发展尤其迅猛,被认为是最重要的可望实现集约化的候选材料之一。已有的研究结果表明,对铁酸盐铁磁铁电陶瓷进行A位、B位或(A、B)位同时调控,进而得到具有最佳性能的陶瓷配方。而弱铁磁铁电陶瓷晶粒很容易达到几十微米大小,但是几乎没有对钙钛矿铁磁铁电陶瓷晶粒进行低尺度调控的文献报道,而这是急需进行研究的关键技术之一。
加深对陶瓷晶粒生长的理解认识,进而找到有效控制陶瓷晶粒的工艺方法是当前的重要研究课题,在微纳米器件的研究和生产中具有十分广泛的应用前景。
发明内容
本发明以低温预合成混合粉料作为前驱体,通过大幅度改变样品烧结的思路,严格精确控制实验工艺参数,使得陶瓷晶粒大小降至理想尺度。这为三维空间微纳米尺度发展的小型化提供了可能性。本发明成功地解决了钙钛矿结构铁磁铁电陶瓷铁酸钐的晶粒控制问题。
本发明的目的可通过如下的技术方案实现:
以Sm2O3和Fe2O3为原料粉体,按照化学式SmFeO3进行配料,经球磨4-24小时后,于100-200℃温度的干燥箱中干燥10-20小时,粉碎过50-200目筛子,得到原料的混合粉末;
将所得混合粉末,经800-1000℃之间的低温长时间3-10小时预合成后,合成混合粉末前驱体;
将所合成的前驱体粉末中,添加占粉末料重8-25wt%的浓度为5wt%的PVA粘合剂混合并预压后粉碎研磨过50-200目筛造粒,以100-500MPa进行压片,于500-700℃排胶;
将所压得的圆片,经5-30℃/min的高升温速率快速升温至最高温度1420-1460℃后,立刻降至一定合适的低温1280-1320℃下10-20小时长时间保温烧结,即可得到所需的晶粒大小为微米级均匀的SmFeO3弱铁磁陶瓷。
采用本发明的技术可成功地制备出微米级晶粒大小均匀的SmFeO3弱铁磁陶瓷样品。样品的扫描电镜结果表明,所制得的陶瓷中各晶粒尺度为1-5μm,是普通烧结工艺制备样品晶粒的五分之一左右,晶粒尺寸降低程度显著。所得样品属于优异的铁磁铁电材料,是一些新型传感器、自旋器件与信息随机存储等电子元器件方面所用的潜力型材料。
前景与潜在应用:
与现有的传统陶瓷烧结制备技术相比,本发明具有以下特点和优点:
1、本发明选择了低温合成的混合粉末作为前驱体,其晶粒具有较强的活性和较大的表面积。
2、本发明所制备的SmFeO3弱铁磁陶瓷,其所含晶粒尺度为1-5μm量级,其尺寸适中,有利于其在后续应用中进行切割加工。
3、本发明所选原料价格低廉、制备方法简单,过程控制工艺稳定,易于推广。在晶粒调控领域具有强烈的示范效应而具有潜在的广泛应用价值。
附图说明
图1为本发明实施例1烧结程序示意图;
图2为本发明实施例1陶瓷的扫描电镜图;
图3为本发明实施例1陶瓷的XRD图谱;
图4为本发明的对比实施例2烧结程序示意图;
图5为本发明的对比实施例2陶瓷(1440℃,4h)场发射扫描电镜图。
具体实施方式
下面结合实施例对本发明作进一步描述。
本发明实施例中需要的原料情况如下:
高纯度三氧化二铁(Fe2O3,纯度99.8%)、氧化钐(Sm2O3,纯度99.0%)。
实施例1:
按照配方化学式为SmFeO3称取原料,分子量254.25,配料质量50.00克;称取所需的原料Fe2O3质量为15.734克、Sm2O3质量为34.324克。
制备方法为:
按照化学计量比称量好Fe2O3、Sm2O3各粉体原料后,放如球磨罐中,添加适量蒸馏水做溶剂,经行星式球磨16小时后,于100℃温度的干燥箱中干燥24小时,粉碎过80目筛子,得到原料的混合粉末;
将所得混合粉末,经900℃,6小时低温长时间预合成混合粉末前驱体;
将所合成的前驱体粉末中,添加占粉末料15wt%的浓度为5wt%的PVA粘合剂混合并预压后粉碎研磨过80目筛造粒,以440MPa进行压片,于650℃排胶;
将所压得的圆形片,按照附图1所示烧结升温速率快速升温至合适的温度1300℃下,保温16h烧结,即可得SmFeO3陶瓷。样品呈现晶粒大小为1-5微米,如图2所示。
所得陶瓷样品磁性能如表1所示。
作为对比,以传统烧结程序对同样的SmFeO3原料进行了烧结,烧结程序如附图4所示,所得对比样品的扫描电镜照片如附图5所示。
本发明实施例1的XRD图谱如图3所示,其相应的磁性能测试结果如表1:
表1:实施例1~实施例2以及相应的磁性能及晶粒尺寸

Claims (4)

1.一种铁酸钐(化学式SmFeO3)陶瓷,其特征在于,具有微米级大小均匀的晶粒形貌,其制备工艺方法包括以下步骤:
(1)以Sm2O3和Fe2O3为原料粉体,经球磨4-24小时后,于100-200℃温度的干燥箱中干燥10-20小时,粉碎过50-200目筛子,得到原料的混合粉末;
(2)步骤(1)中所得混合粉末,经800-1000℃之间的低温长时间3-10小时预合成后,合成前驱体粉末;
(3)以步骤(2)中所合成的前驱体粉末,添加占粉末料重8-25wt%的浓度为5wt%的PVA粘合剂混合并预压后粉碎研磨过50-200目筛造粒,以100-500MPa进行压片,在500-700℃排胶;
(4)以步骤(3)中所压得的定型片,经快速升至最高温度为1420-1460℃后,立刻降至一定合适的低温1280-1320℃下10-20小时长时间保温烧结,即可得到所需的晶粒形貌为微米级大小均匀的SmFeO3弱铁磁陶瓷。
2.按权利要求1所述的一种微米级晶粒大小均匀的SmFeO3弱铁磁陶瓷的制备方法,其特征在于,预合成时选择温度较低800-1000℃,时间长3-10小时。
3.按权利要求1所述的一种微米级晶粒大小均匀的铁酸钐陶瓷的制备方法,其特征在于,排胶温度500-700℃低于预合成温度。
4.按权利要求1所述的一种微米级晶粒大小均匀的铁酸钐陶瓷的制备方法,其特征在于,在烧结过程中采用5-30℃/min的高升温速率,在温度达到1420~1460℃未经保温立刻降至1280-1320℃长时间保温10~20h烧结,最终生成了微米级的晶粒大小均匀的SF弱铁磁陶瓷。
CN201811631720.2A 2018-12-29 2018-12-29 一种铁酸钐陶瓷的制备方法 Pending CN109437883A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811631720.2A CN109437883A (zh) 2018-12-29 2018-12-29 一种铁酸钐陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811631720.2A CN109437883A (zh) 2018-12-29 2018-12-29 一种铁酸钐陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN109437883A true CN109437883A (zh) 2019-03-08

Family

ID=65538861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811631720.2A Pending CN109437883A (zh) 2018-12-29 2018-12-29 一种铁酸钐陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN109437883A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112281128A (zh) * 2020-10-31 2021-01-29 贵阳学院 一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270379A (ja) * 2009-05-25 2010-12-02 Sumitomo Metal Mining Co Ltd 希土類−鉄−窒素系磁石粉末の製造方法
CN103575422A (zh) * 2013-11-13 2014-02-12 清华大学 一种基于三价稀土铁基氧化物作为温度传感材料的温度测量方法
CN105645958A (zh) * 2015-12-29 2016-06-08 中国计量学院 一种铌酸钠无铅反铁电压电陶瓷的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270379A (ja) * 2009-05-25 2010-12-02 Sumitomo Metal Mining Co Ltd 希土類−鉄−窒素系磁石粉末の製造方法
CN103575422A (zh) * 2013-11-13 2014-02-12 清华大学 一种基于三价稀土铁基氧化物作为温度传感材料的温度测量方法
CN105645958A (zh) * 2015-12-29 2016-06-08 中国计量学院 一种铌酸钠无铅反铁电压电陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张静等: "SmCoxFe1-xO3的制备及其电磁特性的研究", 《稀有金属》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112281128A (zh) * 2020-10-31 2021-01-29 贵阳学院 一种磁控溅射用钙钛矿型铁酸钐靶材的制备方法

Similar Documents

Publication Publication Date Title
Ahmad et al. Magnetic and microwave attenuation behavior of Al-substituted Co2W hexaferrites synthesized by sol-gel autocombustion process
CN105645958B (zh) 一种铌酸钠无铅铁电压电陶瓷的制备方法
Jayachandraiah et al. Influence of cerium dopant on magnetic and dielectric properties of ZnO nanoparticles
Yakout Influence of Na and Na/Fe doping on the dielectric constant, ferromagnetic and sunlight photocatalytic properties of BaTiO3 perovskite
Sadhana et al. Effect of Sm 3+ on dielectric and magnetic properties of Y 3 Fe 5 O 12 nanoparticles
US20110147643A1 (en) Method for producing nickel-manganese-cobalt spinel ferrite having low permeability loss and nickel-manganese-cobalt spinel ferrite produced thereby
Ogasawara et al. Microstructure and hysteresis curves of the barium hexaferrite from co-precipitation by organic agent
Shafie et al. Magnetic M–H loops family characteristics in the microstructure evolution of BaFe 12 O 19
Slimani et al. BaTiO3/(Co0. 8Ni0. 1Mn0. 1Fe1. 9Ce0. 1O4) x composites: analysis of the effect of Co0. 8Ni0. 1Mn0. 1Fe1. 9Ce0. 1O4 doping at different concentrations on the structural, morphological, optical, magnetic, and magnetoelectric coupling properties of BaTiO3
Somvanshi et al. Structure of nanocrystalline Nd0. 5R0. 5FeO3 (R= La, Pr, and Sm) intercorrelated with optical, magnetic and thermal properties
Praveena et al. Structural, magnetic, and electrical properties of microwave-sintered Cr 3+-doped Sr hexaferrites
Basith et al. Optical and magnetic properties of co-doped CuO flower/plates/particles-like nanostructures
Kumar et al. Investigation of structural, optical, and magnetic properties of Nd‐doped Sr2SnO4 Ruddlesden Popper oxide
CN105601265A (zh) 一种m型锶铁氧体磁性材料及其制备方法
Eikeland et al. Enhancement of magnetic properties by spark plasma sintering of hydrothermally synthesised SrFe 12 O 19
CN103214037B (zh) 一种自组装式棒状锰锌铁氧体磁性材料及其制备方法
Suresh et al. A comprative study of sol-gel and solid-state prepared La3+ doped multiferroic BiFeO3
Dang et al. Magnetic and optical properties of new (1− x) Bi0. 5Na0. 5TiO3+ x BaMnO3− δ solid solution materials
Pérez-Juache et al. Analysis of the structure and Mössbauer study of the neodymium substitution in the Sr-hexaferrite
Almessiere et al. Sm–Dy co-substituted Sr hexaferrite microspheres: an investigation on their structural, magnetic, optical, and porosity characteristics
US20240096532A1 (en) Magnetoelectronic device comprising ferrite-based nanocomposite
CN109437883A (zh) 一种铁酸钐陶瓷的制备方法
CN107673321B (zh) 一种磷酸镉锂材料及其合成方法
CN104211124A (zh) 一种La1-xCaxMnO3纳米粉体的低温合成方法
Shelar et al. Chemical synthesis and studies on structural and magnetic properties of fine grained nickel cadmium ferrites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190308

WD01 Invention patent application deemed withdrawn after publication