CN112264077B - 一种全光谱响应非金属改性氮化碳光催化剂制备方法 - Google Patents

一种全光谱响应非金属改性氮化碳光催化剂制备方法 Download PDF

Info

Publication number
CN112264077B
CN112264077B CN202011275345.XA CN202011275345A CN112264077B CN 112264077 B CN112264077 B CN 112264077B CN 202011275345 A CN202011275345 A CN 202011275345A CN 112264077 B CN112264077 B CN 112264077B
Authority
CN
China
Prior art keywords
carbon nitride
modified carbon
nitride photocatalyst
full
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011275345.XA
Other languages
English (en)
Other versions
CN112264077A (zh
Inventor
贾若琨
杨晓航
张玉琳
曹福乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202011275345.XA priority Critical patent/CN112264077B/zh
Publication of CN112264077A publication Critical patent/CN112264077A/zh
Application granted granted Critical
Publication of CN112264077B publication Critical patent/CN112264077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明是一种全光谱响应非金属改性氮化碳光催化剂制备方法,其特点是,包括采用采用一步热聚合方法,该方法是以氮化碳前驱体、乙酰丙酮钙为原料,在去离子水中物理混合干燥得到固体粉末;在空气气氛中,所述固体粉末热聚合,即得到共聚合改性氮化碳光催化剂。其方法科学环保,原料来源丰富,成本低,工艺简单且易于工业化生产及应用。特别适用于降解有机污染物,在污水处理方面具有潜在的应用价值和应用前景。

Description

一种全光谱响应非金属改性氮化碳光催化剂制备方法
技术领域
本发明属于光催化技术领域,是一种全光谱响应非金属改性氮化碳光催化剂制备方法。
技术背景
进入21世纪以来,随着人类社会的快速发展和能源的快速消耗,全球的非可再生能源短缺和环境污染两大问题日益严峻。太阳能作为可再生能源,以其储量巨大、绿色环保且不受地理条件限制等优势而备受关注。光催化技术是一种利用光催化剂在光照射下驱动催化反应的技术,无需外加能源即能高效环保解决环境问题并将太阳能以化学能形式储存,成为当今能源和环境领域有着重要应用前景的绿色技术。但是现有技术存在着光催化材料光响应范围窄,太阳能利用率低的缺点,制约了光催化材料的大规模应用。因此,可见光响应型光催化材料的开发就显得尤为重要。
石墨相氮化碳(g-C3N4)是一种新型无金属有机聚合物半导体光催化材料,具有优异的物理化学稳定性以及较强的氧化还原能力,廉价易得、环保且制备简单。在可见光催化领域应用广泛,如光催化降解有机污染物、光解水制氢等。本体g-C3N4一般采用三聚氰胺或双氰胺等简单工业原料高温热聚合制备,带隙宽度约为2.7eV,只能利用可见光谱中小于460nm的可见光,同时由于自身低的介电性质,在光催化过程中电荷载流子复合率较高,导致其光催化活性较低。研究人员通过形貌调控获得不同尺寸的g-C3N4微观结构,扩展可见光相应范围,但微观形貌调控一般制备步骤复杂,合成催化剂产率低,难以实现大规模应用;异质元素掺杂通过不同前驱体的混合,可以在g-C3N4基质中实现金属或非金属元素掺杂,使得催化剂可见光响应吸收带边红移,但异质元素掺杂会在禁带中形成杂质能级,作为光生电荷载流子的复合中心,降低催化剂光催化活性;由于原料来源丰富、操作简单等优点,共聚合改性被认为是一种简单高效的分子掺杂改性方法。本发明分子掺杂的手段,简单有效改善g-C3N4基光催化剂可见光响应范围,通过不同前驱体热共聚,在g-C3N4的基本结构组成单元中接枝有机官能团,促进Π共轭体系的离域,得到全光谱相应的可见光催化剂。
发明内容
本发明要所要解决的技术问题是,克服背景技术存在的缺点和不足,提供一种科学合理,操作简便、催化效率高的全光谱响应非金属改性氮化碳光催化剂制备方法。
解决其技术问题采用的技术方案之一是,一种全光谱响应非金属改性氮化碳光催化剂制备方法,其特征是,它包括的内容有:
1)将重量份的300份氮化碳前驱体与2-4份的乙酰丙酮钙加入到研钵中,充分研磨1h,得到混合固体粉末;
2)将步骤1)所制备的混合固体粉末转移至带盖的坩埚中,然后将坩埚放置于马弗炉中,在空气气氛中以5℃/min的升温速率升温至520℃,保温2h后,在炉内自然冷却至室温,将块体取出用研钵研磨得到黄褐色粉末,即为共聚合改性氮化碳光催化剂中间产品;
3)将步骤2)所制备的共聚合改性氮化碳光催化剂中间产品转移至烧杯中,加入8000份去离子水,磁力搅拌1h后静置12h,除去上清液,将沉淀物放入烘箱中干燥4-8h,干燥温度40-45℃,制得共聚合改性氮化碳光催化剂成品。
解决其技术问题采用的技术方案之二是,一种全光谱响应非金属改性氮化碳光催化剂制备方法,其特征是,它包括的内容有:
1)将重量份2-4份的乙酰丙酮钙分散于200份的去离子水中,磁力搅拌1h配成分散液;再加入300份氮化碳前驱体继续搅拌4h,乙酰丙酮钙的掺杂浓度为10-20g/L,将充分搅拌后的混合物转移至瓷舟中,置于45℃烘箱至中充分干燥,得到固体混合物;
2)将步骤1)所制备的固体混合物放置于马弗炉中,在空气气氛中以5℃/min的升温速率升温至520℃,保温2h后在炉内自然冷却至室温,将块体取出用研钵研磨得到黄褐色粉末,即为共聚合改性氮化碳光催化剂中间产品;
3)将步骤2)所制备的共聚合改性氮化碳光催化剂中间产品转移至烧杯中,加入8000份去离子水,磁力搅拌1h,静置12h,除去上清液,将沉淀物放入烘箱中干燥4-8h,干燥温度40-45℃,制得共聚合改性氮化碳光催化剂成品。
进一步,所述的氮化碳前驱体为尿素,分子量60.06g/mol。
进一步,所述的乙酰丙酮钙分子量238.29g/mol。
本发明的全光谱响应非金属改性氮化碳光催化剂制备方法有益效果为:
1、由于以廉价无毒的尿素和乙酰丙酮钙为原料,采用一步热聚合法制备了改性氮化碳,与现有技术相比,能显著降低生产成本;
2、由于改性氮化碳光催化剂制备方法简单,在常压下进行,无需使用复杂的设备,易于工业化生产;煅烧后无需后处理,不仅简化了生产工艺,而且降低了对环境的污染;
3、由于可通过改变乙酰丙酮钙的浓度来提高催化剂的可见光响应能力,获得增强的可见光催化活性,显然能满足更广泛的应用需求;
4、其方法科学合理,催化效率高,效果佳,应该广泛,特别适用于降解有机污染物,在污水处理方面具有潜在的应用价值和应用前景。
附图说明
图1是本发明实施例中不同乙酰丙酮钙的掺杂浓度制得的全光谱响应非金属改性氮化碳光催化剂傅里叶变换红外光谱图;
图2是本发明实施例中不同乙酰丙酮钙的掺杂浓度制得的全光谱响应非金属改性氮化碳光催化剂X射线衍射谱图;
图3(a)氮化碳光催化剂的SEM图像;图3(b)改性氮化碳光催化剂SEM图像;
图4是实施例中不同乙酰丙酮钙的掺杂浓度制得的全光谱响应非金属改性氮化碳光催化剂固体紫外-可见漫反射光谱图;
图5是本发明实施例中不同乙酰丙酮钙的掺杂浓度制得的全光谱响应非金属改性氮化碳光催化剂降解甲基橙性能曲线图。
具体实施方式
以下是本发明的实施例用到的基础条件,但本发明能实施的范围并不限于这些条件,也不限于实施例1-6:
制备过程的环境温度(室温)25℃,1个大气压;
制备所用原料:尿素(CH4N2O),分子量60.06g/mol,乙酰丙酮钙(CAA,C10H14CaO4),分子量238.29g/mol,去离子水均采用市售产品。
实施例1:实施例1的全光谱响应非金属改性氮化碳光催化剂制备方法的具体内容为:
1)将重量3g尿素与20mg的CAA加入到研钵中,充分研磨1h,得到混合固体粉末;
2)将步骤1)所制备的混合固体粉末转移至带盖的坩埚中,然后将坩埚放置于马弗炉中,在空气气氛中以5℃/min的升温速率升温至520℃,保温2h后,在炉内自然冷却至室温,将块体取出用研钵研磨得到黄褐色粉末,即为共聚合改性的氮化碳光催化材料;
3)将步骤2)所制备的黄褐色粉末转移至烧杯中,加去离子水80mL,磁力搅拌1h后静置12h,除去上清液,将沉淀物放入烘箱中干燥4-8h,干燥温度40-45℃,制得共聚合改性的氮化碳光催化剂样品,转移至样品瓶待进行性能测试。
实施例2:实施例2的全光谱响应非金属改性氮化碳光催化剂制备方法的具体内容为:
1)将重量3g尿素与30mg的CAA加入到研钵中,充分研磨1h,得到混合固体粉末;
2)将步骤1)所制备的混合固体粉末转移至带盖的坩埚中,然后将坩埚放置于马弗炉中,在空气气氛中以5℃/min的升温速率升温至520℃,保温2h后在炉内自然冷却至室温,将块体取出用研钵研磨得到黄褐色粉末,即为共聚合改性的氮化碳光催化材料;
3)将步骤2)所制备的黄褐色粉末转移至烧杯加去离子水80mL,磁力搅拌1h后静置12h,除去上清液,将沉淀物放入烘箱中干燥4-8h,干燥温度40-45℃,制得共聚合改性的氮化碳光催化剂样品,转移至样品瓶待进行性能测试。
实施例3:实施例3的全光谱响应非金属改性氮化碳光催化剂制备方法的具体内容为:
1)将重量3g尿素与40mg的CAA加入到研钵中,充分研磨1h,得到混合固体粉末;
2)将步骤1)所制备的混合固体粉末转移至带盖的坩埚中,然后将坩埚放置于马弗炉中,在空气气氛中以5℃/min的升温速率升温至520℃,保温2h后在炉内自然冷却至室温,将块体取出用研钵研磨得到黄褐色粉末,即为共聚合改性的氮化碳光催化材料;
3)将步骤2)所制备的黄褐色粉末转移至烧杯加去离子水80mL,磁力搅拌1h后静置12h,除去上清液,将沉淀物放入烘箱中干燥4-8h,干燥温度40-45℃,制得共聚合改性的氮化碳光催化剂样品,转移至样品瓶待进行性能测试。
实施例4:实施例4的全光谱响应非金属改性氮化碳光催化剂制备方法的具体内容为:
1)将重量20mg CAA分散于2mL去离子水中,磁力搅拌1h配成分散液;再加入3g尿素继续搅拌4h(CAA掺杂浓度为10g/L),将充分搅拌后的混合物转移至瓷舟中,置于45℃烘箱至样品充分干燥,得到混合白色固体;
2)将步骤1)所制备的混合固体放置于马弗炉中,在空气气氛中以5℃/min的升温速率升温至520℃,保温2h后在炉内自然冷却至室温,将块体取出用研钵研磨得到黄褐色粉末,即为共聚合改性的氮化碳光催化材料;
3)将步骤2)所制备的黄褐色粉末转移至烧杯加去离子水80ml,磁力搅拌1h,静置12h,除去上清液,将沉淀物放入烘箱中干燥4-8h,干燥温度40-45℃,最终样品表示为CN/CAA-10,转移至样品瓶待进行性能测试。
实施例5:实施例5的全光谱响应非金属改性氮化碳光催化剂制备方法的具体内容为:
1)将重量30mg CAA分散于2mL去离子水中,磁力搅拌1h配成分散液;再加入3g尿素继续搅拌4h(CAA掺杂浓度为15g/L),将充分搅拌后的混合物转移至瓷舟中,置于45℃烘箱至样品充分干燥,得到混合白色固体;
2)将步骤1)所制备的混合固体放置于马弗炉中,在空气气氛中以5℃/min的升温速率升温至520℃,保温2h后在炉内自然冷却至室温,将块体取出用研钵研磨得到黄褐色粉末,即为共聚合改性的氮化碳光催化材料;
3)将步骤2)所制备的黄褐色粉末转移至烧杯加去离子水80ml,磁力搅拌1h,静置12h,除去上清液,将沉淀物放入烘箱中干燥4-8h,干燥温度40-45℃,最终样品表示为CN/CAA-15,转移至样品瓶待进行性能测试。
实施例6:实施例6的全光谱响应非金属改性氮化碳光催化剂制备方法的具体内容为:
1)将重量40mg CAA分散于2mL去离子水中,磁力搅拌1h配成分散液;再加入3g尿素继续搅拌4h(CAA掺杂浓度为20g/L),将充分搅拌后的混合物转移至瓷舟中,置于45℃烘箱至样品充分干燥,得到混合白色固体;
2)将步骤1)所制备的混合固体放置于马弗炉中,在空气气氛中以5℃/min的升温速率升温至520℃,保温2h后在炉内自然冷却至室温,将块体取出用研钵研磨得到黄褐色粉末,即为共聚合改性的氮化碳光催化材料;
3)将步骤2)所制备的黄褐色粉末转移至烧杯加去离子水80ml,磁力搅拌1h,静置12h,除去上清液,将沉淀物放入烘箱中干燥4-8h,干燥温度40-45℃,最终样品表示为CN/CAA-20,转移至样品瓶待进行性能测试。
参照图1,由不同乙酰丙酮钙的掺杂浓度制得的全光谱响应非金属改性氮化碳光催化剂傅里叶变换红外光谱图可以看出波数在1200-1650cm–1和804cm–1处的振动峰,分别对应g-C3N4芳香族杂环和三嗪七嗪环的特征振动峰,波数3000-3300cm–1之间的振动峰对应N-H键的伸缩振动和O-H键的伸缩振动,证明制得的催化剂样品成分为g-C3N4
参照图2,由不同乙酰丙酮钙的掺杂浓度制得的全光谱响应非金属改性氮化碳光催化剂X射线衍射谱图可以看出在2θ=13.0°和2θ=27.39°左右出现了两个明显的衍射峰,分别对应着二维平面内重复的七嗪结构单元的(100)晶面和层状堆叠的共轭芳香结构的(002)晶面(JCPDS编号为87-1526)。
参照图3(a)氮化碳光催化剂的SEM图像和图3(b)改性氮化碳光催化剂SEM图像;可以看出制备的催化剂为典型的层状堆叠结构,乙酰丙酮钙的掺杂并未改变催化剂的微观形貌。
参照图4,由不同乙酰丙酮钙的掺杂浓度制得的全光谱响应非金属改性氮化碳光催化剂固体紫外-可见漫反射光谱图可以看出随乙酰丙酮钙的掺杂浓度增加,催化剂的可见光响应范围逐渐红移,可见光谱范围吸收能力增强。
参照图5,由不同乙酰丙酮钙的掺杂浓度制得的全光谱响应非金属改性氮化碳光催化剂降解甲基橙性能曲线图可以看出一定浓度范围内(0-15g/L),随着乙酰丙酮钙掺杂浓度增加,催化剂光催化降解有机污染物活性增强;继续增加乙酰丙酮钙掺杂浓度,催化剂可见光催化活性下降。说明以乙酰丙酮钙掺杂氮化碳制备改性的可见光催化剂,最适的掺杂浓度为15g/L。

Claims (4)

1.一种全光谱响应非金属改性氮化碳光催化剂制备方法,其特征是,它包括的内容有:
1)将重量份的300份氮化碳前驱体与2-4份的乙酰丙酮钙加入到研钵中,充分研磨1h,得到混合固体粉末;
2)将步骤1)所制备的混合固体粉末转移至带盖的坩埚中,然后将坩埚放置于马弗炉中,在空气气氛中以5℃/min的升温速率升温至520℃,保温2h后,在炉内自然冷却至室温,将块体取出用研钵研磨得到黄褐色粉末,即为共聚合改性氮化碳光催化剂中间产品;
3)将步骤2)所制备的共聚合改性氮化碳光催化剂中间产品转移至烧杯中,加入8000份去离子水,磁力搅拌1h后静置12h,除去上清液,将沉淀物放入烘箱中干燥4-8h,干燥温度40-45℃,制得共聚合改性氮化碳光催化剂成品。
2.一种全光谱响应非金属改性氮化碳光催化剂制备方法,其特征是,它包括的内容有:
1)将重量份2-4份的乙酰丙酮钙分散于200份的去离子水中,磁力搅拌1h配成分散液;再加入300份氮化碳前驱体继续搅拌4h,乙酰丙酮钙的掺杂浓度为10-20g/L,将充分搅拌后的混合物转移至瓷舟中,置于45℃烘箱至中充分干燥,得到固体混合物;
2)将步骤1)所制备的固体混合物放置于马弗炉中,在空气气氛中以5℃/min的升温速率升温至520℃,保温2h后在炉内自然冷却至室温,将块体取出用研钵研磨得到黄褐色粉末,即为共聚合改性氮化碳光催化剂中间产品;
3)将步骤2)所制备的共聚合改性氮化碳光催化剂中间产品转移至烧杯中,加入8000份去离子水,磁力搅拌1h,静置12h,除去上清液,将沉淀物放入烘箱中干燥4-8h,干燥温度40-45℃,制得共聚合改性氮化碳光催化剂成品。
3.根据权利要求1或2所述的全光谱响应非金属改性氮化碳光催化剂制备方法,其特征是,所述氮化碳前驱体为尿素,分子量60.06g/mol。
4.根据权利要求1或2所述的全光谱响应非金属改性氮化碳光催化剂制备方法,其特征是,所述的乙酰丙酮钙分子量238.29g/mol。
CN202011275345.XA 2020-11-16 2020-11-16 一种全光谱响应非金属改性氮化碳光催化剂制备方法 Active CN112264077B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011275345.XA CN112264077B (zh) 2020-11-16 2020-11-16 一种全光谱响应非金属改性氮化碳光催化剂制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011275345.XA CN112264077B (zh) 2020-11-16 2020-11-16 一种全光谱响应非金属改性氮化碳光催化剂制备方法

Publications (2)

Publication Number Publication Date
CN112264077A CN112264077A (zh) 2021-01-26
CN112264077B true CN112264077B (zh) 2022-08-09

Family

ID=74340666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011275345.XA Active CN112264077B (zh) 2020-11-16 2020-11-16 一种全光谱响应非金属改性氮化碳光催化剂制备方法

Country Status (1)

Country Link
CN (1) CN112264077B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289616A (zh) * 2008-05-30 2008-10-22 东北电力大学 以丙三醇为溶剂制备水溶性上转换NaYF4:Er3+,Yb3+纳米晶的方法
WO2011049085A1 (ja) * 2009-10-20 2011-04-28 独立行政法人産業技術総合研究所 窒化炭素を含む光触媒及びその製造方法並びに該光触媒を用いた空気浄化方法
US9428985B2 (en) * 2013-12-24 2016-08-30 Baker Hughes Incorporated Swellable downhole structures including carbon nitride materials, and methods of forming such structures
US9963403B2 (en) * 2014-10-27 2018-05-08 Exxonmobil Chemical Patents Inc. Process and apparatus for the conversion of hydrocarbons
CN105214709B (zh) * 2015-10-19 2018-06-26 天津大学 层间双金属离子掺杂氮化碳光催化材料及其制备和应用
CN108816262A (zh) * 2018-04-25 2018-11-16 西安交通大学 一种氧化镍-氮化碳复合光催化剂的制备方法
CN108927198B (zh) * 2018-07-09 2020-09-22 华南理工大学 一种改性氮化碳光催化剂及其制备与光催化氧化木糖合成木糖酸的方法
CN110743604B (zh) * 2019-11-21 2022-07-08 佛山科学技术学院 一种有机污水高效光降解催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
High efficiency photocatalytic CO2 reduction realized by Ca2+ and HDMP group Co-modified graphitic carbon nitride;Ruokun Jia等;《International Journal of Hydrogen Energy》;20210814;第46卷;第32893-32903页 *

Also Published As

Publication number Publication date
CN112264077A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
CN108906111B (zh) 自组装共聚氮化碳光催化复合材料及其制备方法和应用
CN107098323A (zh) 一种g‑C3N4纳米片及其制备方法与应用
CN110342477B (zh) 一种氧掺杂多孔氮化碳纳米片及其制备方法
CN114367299B (zh) 光催化产氢用石墨相氮化碳光催化剂及其制备方法
CN109046425A (zh) 一种MOF基衍生的复合光催化剂TiO2/g-C3N4的制备方法
CN106732715B (zh) 一种BiOCl/g-C3N4/Bi2O3复合粉体及其制备方法和应用
CN109999874A (zh) 一种富氮氮化碳纳米管光催化剂及制备方法和应用
CN109622003B (zh) 一种g-C3N4@g-C4N3复合光催化剂及其制备方法和应用
CN108325555A (zh) 氮自掺杂石墨化氮化碳纳米片光催化剂及其制备方法和应用
CN113086955A (zh) 光催化固氮的碳缺陷型氮化碳材料的制备方法
CN111792629A (zh) 一种制备红色晶化氮化碳的方法、红色晶化氮化碳及应用
CN112023974B (zh) 一种P-CeO2/g-C3N4异质结材料及其制备方法和应用
CN111298824B (zh) 一种类石墨氮化碳基光催化复合材料及其制备方法和应用
CN113942983A (zh) 一种共聚合和热诱导相结合的新型氮化碳基材料的制备方法
CN115007194B (zh) 一种非晶硼掺杂氮化碳的制备方法及应用
CN112316970A (zh) 一种多缺陷石墨相氮化碳光催化剂的制备方法和应用
CN107983386B (zh) 一种超薄BiOCl/氮掺杂石墨烯量子点复合光催化剂及制备方法
CN112495412A (zh) 一种多孔薄层石墨相氮化碳及制备方法和应用
CN105195203B (zh) 一种可见光响应Nb2O5/g‑C3N4异质结材料的制备方法和用途
CN112264077B (zh) 一种全光谱响应非金属改性氮化碳光催化剂制备方法
CN112958141A (zh) 一种含氧g-C3N4纳米片光催化剂的制备方法和应用
CN112495402A (zh) 一种二硫化钼负载钴掺杂氧化锌光催化降解材料及制法
CN110152706B (zh) 一种以共晶前驱体制备富碳氮化碳可见光催化剂的方法
CN110227530B (zh) 一种碳/硫共掺杂介孔g-C3N4复合光催化材料的制备方法
CN116689006A (zh) 一种氮化碳纳米片复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant