CN112255892A - 对量测数据的贡献的分离 - Google Patents

对量测数据的贡献的分离 Download PDF

Info

Publication number
CN112255892A
CN112255892A CN202011207943.3A CN202011207943A CN112255892A CN 112255892 A CN112255892 A CN 112255892A CN 202011207943 A CN202011207943 A CN 202011207943A CN 112255892 A CN112255892 A CN 112255892A
Authority
CN
China
Prior art keywords
contribution
pattern
substrate
variable
variables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011207943.3A
Other languages
English (en)
Other versions
CN112255892B (zh
Inventor
W·T·特尔
F·斯塔尔斯
M·J·马斯洛
R·阿努西亚多
M·乔彻姆森
H·A·J·克拉默
T·希尤维斯
P·C·欣南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of CN112255892A publication Critical patent/CN112255892A/zh
Application granted granted Critical
Publication of CN112255892B publication Critical patent/CN112255892B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及对量测数据的贡献的分离。一种方法,包括:通过组合由图案化工艺处理的衬底上的第一变量的指纹和第一变量的特定值,来计算衬底的图案的或针对衬底的图案的第一变量的值;以及至少部分基于第一变量的所计算的值来确定图案的第二变量的值。

Description

对量测数据的贡献的分离
本申请是于2017年2月17日提交的、申请号为201780012362.4、发明名称为“对量测数据的贡献的分离”的中国发明专利申请的分案申请。
相关申请的交叉引用
本申请要求于2016年2月22日提交的美国申请62/298,367和于2016年9月1日提交的美国申请62/382,764以及于2017年2月15日提交的美国申请62/459,327的优先权,这些申请通过引用整体并入本文。
技术领域
本公开涉及一种改善器件制造工艺的性能的方法。该方法可以与光刻设备或量测设备结合使用。
背景技术
光刻设备是一种将期望图案施加到衬底的目标部分上的机器。光刻设备可以用于例如集成电路(IC)的制造。在这种情况下,可以使用备选地称为掩模或掩模版的图案形成装置来生成与IC的单个层相对应的电路图案,并且该图案可以被成像到具有一层辐射敏感材料(抗蚀剂)的衬底(例如,硅晶片)上的目标部分上(例如,包括部分、一个或若干裸片)。通常,单个衬底将包含相继曝光的相邻目标部分的网络。已知的光刻设备包括所谓的步进器和所谓的扫描仪,在所谓的步进器中,通过将整个图案一次曝光到目标部分上来照射每个目标部分,在所谓的扫描仪中,通过在给定方向(“扫描”方向)上使用辐射束扫描图案同时在平行或反平行于该方向的方向上扫描衬底来照射每个目标部分。
在将电路图案从图案形成装置转移到衬底之前,衬底可以经历各种过程,诸如底涂、抗蚀剂涂覆和软烘烤。在曝光之后,可以对衬底进行其他过程,诸如曝光后烘烤(PEB)、显影、硬烘烤和转移的电路图案的测量/检查。该批过程用作制作器件的单个层(例如,IC)的基础。然后,衬底可以经历各种工艺,诸如蚀刻、离子注入(掺杂)、金属化、氧化、化学机械抛光等,所有这些都旨在完成器件的单个层。如果器件中需要多个层,则针对每个层重复整个过程或其变体。最终,器件将存在于衬底上的每个目标部分中。然后通过诸如切割或锯切等技术将这些器件彼此分开,从而可以将各个器件安装在载体上,连接到引脚,等等。
因此,诸如半导体器件等制造器件通常涉及使用多种制造工艺来处理衬底(例如,半导体晶片),以形成器件的各种特征和多个层。这样的层和特征通常使用例如沉积、光刻、蚀刻、化学机械抛光和离子注入来制造和处理。可以在衬底上的多个裸片上制造多个器件,并且然后将其分成单独的器件。这个器件制造工艺可以被认为是图案化工艺。图案化工艺涉及诸如使用光刻设备中的图案形成装置的光学和/或纳米压印光刻等用于将图案形成装置上的图案转移到衬底的图案化步骤,并且通常但是可选地涉及一个或多个相关的图案处理步骤,诸如通过显影设备进行抗蚀剂显影,使用烘焙工具烘焙衬底,使用蚀刻设备使用图案进行蚀刻,等等。
发明内容
本文中公开了一种方法,其包括:获得可建模的处理变量对衬底上的图案的量测数据的第一贡献;获得未建模的处理变量对图案的量测数据的第二贡献;以及由硬件计算机通过组合第一贡献和第二贡献来获得量测数据。
根据一个实施例,量测数据包括选自临界尺寸(CD)、临界尺寸均匀性(CDU)、侧壁角度、边缘位置、套刻精度、焦点和/或图案偏移中的一项或多项。
根据一个实施例,量测数据包括一组图案的统计量。
根据一个实施例,未建模的处理变量是衬底的曝光的下游的工艺的特性。
根据一个实施例,该工艺是衬底上的抗蚀剂层的显影。
根据一个实施例,该工艺是衬底的蚀刻。
根据一个实施例,未建模的处理变量是衬底的特性。
根据一个实施例,未建模的处理变量是衬底上的抗蚀剂层的特性。
根据一个实施例,未建模的处理变量的值是未知的。
根据一个实施例,组合第一贡献和第二贡献包括将第一贡献和第二贡献相加,或者将第一贡献和第二贡献卷积。
本文中公开了一种方法,其包括:通过由硬件计算机去除第一处理变量对衬底上的图案的量测数据的贡献来获得第二处理变量对量测数据的贡献。
根据一个实施例,第一处理变量是可建模的。
根据一个实施例,获得第一处理变量的贡献通过建模来进行。
根据一个实施例,第一处理变量的贡献是第二处理变量的非线性函数。
根据一个实施例,第一处理变量未被建模。
根据一个实施例,第一处理变量的贡献通过实验或经验来确定。
本文中公开了一种方法,其包括:通过从衬底上的第一图案的量测数据中去除第一组一个或多个处理变量的变化对量测数据的贡献,来获得第二组一个或多个处理变量的变化对量测数据的贡献;以及由硬件计算机基于第二组一个或多个处理变量的变化对第一图案的量测数据的贡献,来获得第二组一个或多个处理变量的变化对衬底上的第二图案的量测数据的贡献。
根据一个实施例,该方法还包括:通过基于第二组一个或多个处理变量的变化对第二图案的量测数据的贡献来调节第一组一个或多个处理变量,来降低第二图案处的缺陷的概率。
根据一个实施例,在不获得第二图案的量测数据的情况下,获得第二组一个或多个处理变量的变化对第二图案的量测数据的贡献。
根据一个实施例,在不对第二图案执行量测的情况下,降低第二图案处的缺陷的概率。
根据一个实施例,该方法还包括:通过从第二图案的量测数据中去除第二组一个或多个处理变量的变化对第二图案的量测数据的贡献,来获得第一组一个或多个处理变量的变化对第二图案的量测数据的贡献。
根据一个实施例,在不获得第二图案处的第一组一个或多个处理变量的值的情况下,获得第一组一个或多个处理变量的变化对第二图案的量测数据的贡献。
根据一个实施例,该方法还包括通过基于以下各项调节第一组一个或多个处理变量中的一个或多个处理变量来降低第二图案处的缺陷的概率:第一组一个或多个处理变量的变化对第二图案的量测数据的贡献、第二组一个或多个处理变量的变化对第二图案的量测数据的贡献、或以上两者。
本文中公开了一种方法,其包括:通过去除第一组处理变量的变化对第一图案的量测数据的贡献,来获得第二组一个或多个处理变量的变化对第一图案的量测数据的贡献;基于第二组一个或多个处理变量的变化对第一图案的量测数据的贡献来获得第二组一个或多个处理变量的变化对衬底上的第二图案的量测数据的贡献;由硬件计算机基于第二组一个或多个处理变量的变化对第二图案的量测数据的贡献来获得针对第二图案的由第一组处理变量跨越的子工艺窗口(子PW)。
根据一个实施例,第一组包括所有可建模的处理变量,并且第二组包括所有未建模的处理变量。
根据一个实施例,该方法还包括通过基于子PW调节第一组处理变量中的一个或多个处理变量的值来降低第二图案处的缺陷的概率。
本文中公开了一种方法,其包括:通过组合可建模的第一组一个或多个处理变量的变化对热斑的量测数据的贡献和未建模的第二组一个或多个处理变量的变化对量测数据的贡献,来获得量测数据的估计;以及由硬件计算机基于量测数据的估计来确定热斑处是否存在缺陷。
根据一个实施例,在不对热斑执行量测的情况下获得估计。
本文中公开了一种方法,其包括:通过从图案的量测数据中去除第一组一个或多个处理变量的变化的贡献,来获得第二组一个或多个处理变量的变化对量测数据的贡献;通过由硬件计算机对照第二组一个或多个处理变量的变化对图案的量测数据的贡献拟合模型的参数来获得参数的值,所述模型用于确定第二组一个或多个处理变量的变化对量测数据的贡献。
根据一个实施例,第一组一个或多个处理变量包括所有未建模的处理变量。
根据一个实施例,第二组一个或多个处理变量中的所有处理变量是可建模的。
本文中公开了一种方法,其包括:通过组合所有可建模的处理变量的变化对衬底上的图案的量测数据的贡献和所有未建模的处理变量的变化对量测数据的贡献,来获得量测数据的估计;确定量测数据的估计是否符合标准;以及如果估计不符合标准,则由硬件计算机调节未建模的处理变量与所有未建模的处理变量的变化对量测数据的贡献之间的关系。
根据一个实施例,调节该关系包括改变衬底上的抗蚀剂的化学成分。
根据一个实施例,调节该关系包括改变在显影衬底上的抗蚀剂时使用的化学物质。
根据一个实施例,调节该关系包括改变用于蚀刻衬底的蚀刻设备。
本文中公开了一种方法,其包括:通过组合由图案化工艺处理的衬底上的第一变量的指纹和第一变量的特定值,来计算衬底的图案的或针对衬底的图案的第一变量的值;以及至少部分基于第一变量的所计算的值来确定图案的第二变量的值。
根据一个实施例,确定图案的第二变量的值包括:由硬件计算机调节第二变量,直到至少部分基于第一变量的所计算的值和第二变量的重建或模拟结果满足准则。
根据实施例,该准则指示衬底上的图案的测量结果与重建/模拟结果之间的差异越过或满足阈值。
根据一个实施例,重建/模拟结果是计算的辐射分布,并且测量结果是测量的辐射分布。
根据一个实施例,与第二变量的变化相比,第一变量的相同变化导致重建或模拟结果的更大差异。
根据一个实施例,第一变量与衬底上的量测目标相关。
根据一个实施例,第一变量是衬底上的量测目标的图案的临界尺寸。
根据一个实施例,第二变量与衬底上的量测目标相关。
根据实施例,第二变量包括选自以下中的一项或多项:量测目标的图案的侧壁角度、量测目标的图案的高度、量测目标的层的厚度、在显影期间的量测目标的图案中的抗蚀剂损失、量测目标的基础(footing)、量测目标的层的折射率、量测目标的层的吸收率、和/或量测目标的层的消光系数。
根据一个实施例,该方法还包括:基于图案的第二变量来预测在图案到衬底上的转移的下游的工艺之后是否存在缺陷。
根据一个实施例,响应于在图案到衬底上的转移的下游的工艺之后的在图案处的缺陷的预测,调节针对衬底或另一衬底的图案化工艺的变量。
根据一个实施例,该工艺包括衬底上的抗蚀剂层的显影。
根据一个实施例,该工艺包括衬底的蚀刻。
根据一个实施例,该方法还包括通过组合以下各项来获得所述第一变量的指纹:来自与图案化工艺的光刻设备相关的第一组一个或多个变量的第一贡献、来自与在图案在光刻设备中的转移之前或之后的一个或多个制造工艺相关的第二组一个或多个变量的第二贡献、以及来自与在图案的转移中使用的图案形成装置相关的第三组一个或多个变量的第三贡献。
根据实施例,第一组变量包括以下中的一个或多个变量:光刻设备的照射、光刻设备的投影系统、光刻设备的衬底台的移动的移动标准偏差、衬底台的移动的移动平均值、焦点、剂量、带宽、曝光持续时间、高频激光带宽变化、高频激光波长变化、和/或衬底的平坦度。
根据一个实施例,第二组变量包括以下中的一个或多个变量:旋涂、曝光后烘烤、显影、蚀刻、沉积、掺杂和/或封装。
根据一个实施例,第三组变量包括以下中的一个或多个变量:掩模CD、辅助图案的形状和/或位置、和/或通过分辨率增强技术而施加的调节。
根据一个实施例,组合第一变量的指纹和第一变量的特定值包括将第一变量的指纹和第一变量的特定值相加。
根据一个实施例,第一变量的特定值通过对衬底上的第一变量的一组测量值求平均来获得。
根据实施例,第一变量的特定值是第一变量的设计值。
根据一个实施例,在确定第二变量的值期间使用的第一变量具有被限制在第一变量的所计算的值附近的特定范围内的值。
本文中公开了一种方法,其包括:获得与由图案化工艺产生的图案相关联的变量的跨衬底指纹;以及由硬件计算机系统基于从指纹内的衬底位置选择的变量的值来预测图案的特征的轮廓。
根据一个实施例,预测包括使用变量的值来为特征选择特定形状的标称轮廓。
根据一个实施例,标称轮廓通过使用模拟或数学模型进行计算来获得。
根据一个实施例,标称轮廓是抗蚀剂中期望的轮廓。
根据一个实施例,预测包括针对特征改变标称轮廓的大小。
根据一个实施例,改变大小是基于与图案相关联的另外的变量的值的,该值是在相同的衬底位置处从另外的变量的跨衬底指纹来选择的。
根据一个实施例,另外的变量的跨衬底指纹对应于蚀刻后的情况。
根据一个实施例,另外的变量包括临界尺寸。
根据一个实施例,该变量包括焦点。
根据一个实施例,该特征是确定的热斑。
根据一个实施例,该方法还包括使用所预测的轮廓来确定边缘放置位置或误差。
根据一个实施例,该方法还包括使用对照所预测的轮廓的检查来确定特征或另一特征是否可能是有缺陷的。
根据一个实施例,该方法还包括使用所预测的轮廓来校准数学模型。
根据一个实施例,数学模型包括光学邻近校正模型。
本文中公开了一种计算机程序产品,包括其上记录有指令的非瞬态计算机可读介质,这些指令在由计算机执行时实现本文中的任何方法。
附图说明
图1示意性地描绘了根据一个实施例的光刻设备。
图2示出了处理变量的示例类别。
图3A示意性地示出了可建模的处理变量的变化和未建模的处理变量的变化都可以对量测数据有贡献。
图3B示意性地示出了对衬底上的CD的组合贡献进行建模的示例,该贡献是多个可建模的处理变量的变化。
图4A示意性地示出了具有两个贡献的量测数据,其中一个贡献来自一个或多个可建模的处理变量的变化,另一贡献来自一个或多个其他处理变量的变化,其他处理变量可以是未建模的、可建模的、或其混合。
图4B示意性地示出了具有两个贡献的量测数据,其中一个贡献来自一个或多个未建模的处理变量的变化,另一贡献来自一个或多个其他处理变量的变化,其他处理变量可以是未建模的、可建模的、或其混合。
图5示意性地示出了根据一个实施例的方法的流程。
图6示意性地示出了根据一个实施例的方法的流程。
图7A和图7B示意性地示出了未建模的处理变量对子PW的影响。
图8示意性地示出了根据一个实施例的方法的流程。
图9示意性地示出了根据一个实施例的方法的流程。
图10示意性地示出了根据一个实施例的方法的流程。
图11示意性地示出了根据一个实施例的方法的流程。
图12示意性地描绘了示例检查设备和量测技术。
图13示意性地描绘了示例检查设备。
图14示出了检查设备的照射斑点与量测目标之间的关系。
图15示意性地描绘了基于测量数据来导出多个感兴趣变量的过程。
图16示意性地示出了根据一个实施例的方法的流程。
图17示意性地示出了根据一个实施例的方法的流程。
图18示意性地描绘了示例贡献/指纹和轮廓的选择的实施例。
图19示意性地描绘了示例贡献/指纹和轮廓的修改的实施例。
图20A、20B和20C示意性地描绘了缺陷分析过程的实施例。
图21A、21B和21C示意性地描绘了缺陷分析过程的实施例。
图22是示例计算机系统的框图。
具体实施方式
尽管在本文本中可以具体参考光刻设备在IC的制造中的使用,但是应当理解,本文中描述的光刻设备可以具有其他应用,诸如集成光学系统的制造、用于磁畴存储器的引导和检测图案、液晶显示器(LCD)、薄膜磁头等。本领域技术人员将理解,在这样的备选应用的上下文中,本文中的术语“晶片”或“裸片”的任何使用可以被认为分别与更一般的术语“衬底”或“目标部分”同义。本文中提到的衬底可以在曝光之前或之后在例如轨道(通常将抗蚀剂层施加到衬底并且使曝光的抗蚀剂显影的工具)或量测或检查工具上进行处理。在适用的情况下,本文中的公开内容可以应用于这样的和其他的衬底处理工具。此外,衬底可以被处理一次以上,例如以便产生多层IC,使得本文中使用的术语衬底也可以指代已经包含多个处理层的衬底。
本文中使用的术语“辐射”和“光束”包括所有类型的电磁辐射,包括紫外(UV)辐射(例如,波长为365、248、193、157或126nm)和极紫外(EUV)辐射(例如,波长在5到20nm的范围内)、以及粒子束,诸如离子束或电子束。
本文中使用的术语“图案形成装置”应当广义地解释为指代可以用于在辐射束的截面中赋予辐射束图案以在衬底的目标部分中产生图案的设备。应当注意,被赋予辐射束的图案可能不完全对应于衬底的目标部分中的期望图案。通常,被赋予辐射束的图案将对应于诸如集成电路等在目标部分中产生的器件中的特定功能层。
图案形成装置可以是透射的或反射的。图案形成装置的示例包括掩模、可编程镜阵列和可编程LCD面板。掩模在光刻中是公知的,并且包括诸如二进制、交替相移和衰减相移等掩模类型、以及各种混合掩模类型。可编程反射镜阵列的一个示例采用小反射镜的矩阵排列,每个小反射镜可以单独倾斜,以便在不同方向上对入射的辐射束进行反射。以这种方式,反射光束被图案化。
支撑结构保持图案形成装置。它以取决于图案形成装置的取向、光刻设备的设计和诸如例如图案形成装置是否被保持在真空环境中等其他条件的方式来保持图案形成装置。支撑可以使用机械夹持、真空或其他夹持技术,例如在真空条件下的静电夹持。支撑结构可以是例如框架或台,其可以根据需要是固定的或可移动的,并且可以确保图案形成装置处于期望的位置,例如相对于投影系统。本文中对术语“掩模版”或“掩模”的任何使用可以被认为与更通用的术语“图案形成装置”同义。
本文中使用的术语“投影系统”应当广义地解释为包括各种类型的投影系统,包括折射光学系统、反射光学系统和反射折射光学系统,例如适用于所使用的曝光辐射,或者适用于其他因素,诸如浸没液的使用或真空的使用。本文中对术语“投影透镜”的任何使用可以被认为与更通用的术语“投影系统”同义。
照射系统还可以包括各种类型的光学部件,包括用于引导、成形或控制辐射束的折射、反射和反射折射光学部件,并且这样的部件在下面也可以统称或单独称为为“透镜”。
图1示意性地描绘了根据一个实施例的光刻设备。该设备包括:
-照射系统(照射器)IL,用于调节辐射束PB(例如,UV辐射或DUV辐射)。
-支撑结构MT,用于支撑图案形成装置(例如,掩模)MA并且连接到第一定位设备PM,以相对于物品PS准确地定位图案形成装置;
-衬底台(例如,晶片台)WT,用于保持衬底(例如,涂覆有抗蚀剂的晶片)W并且连接到第二定位设备PW,以相对于物品PS准确地定位衬底;以及
-投影系统(例如,折射投影透镜)PS,被配置为通过图案形成装置MA将被赋予辐射束PB的图案成像到衬底W的目标部分C(例如,包括一个或多个裸片)上。
如这里所描绘的,该设备是透射型的(例如,采用透射掩模)。备选地,该设备可以是反射型的(例如,采用如上所述类型的可编程反射镜阵列)。
照射器IL从辐射源SO接收辐射束。光源和光刻设备可以是单独的实体,例如当光源是准分子激光器时。在这种情况下,光源不被认为形成光刻设备的一部分,并且辐射束借助于包括例如合适的定向反射镜和/或光束扩展器的光束传输系统BD从光源SO传递到照射器IL。在其他情况下,光源可以是该设备的组成部分,例如当光源是汞灯时。光源SO和照射器IL以及光束传输系统BD(如果需要)可以被称为辐射系统。
照射器IL可以改变光束的强度分布。照射器可以被布置为限制辐射束的径向范围,使得强度分布在照射器IL的光瞳平面中的环形区域内是非零的。另外地或备选地,照射器IL可以可操作以限制光束在光瞳平面中的分布,使得在光瞳平面中的多个等间隔扇区中的强度分布是非零的。辐射束在照射器IL的光瞳平面中的强度分布可以被称为照射模式。
照射器IL可以包括被配置为调节光束的强度分布的调节器AM。通常,可以调节照射器的光瞳平面中的强度分布的至少外径向范围和/或内径向范围(通常分别称为σ外和σ内)。照射器IL可以可操作以改变光束的角度分布。例如,照射器可以可操作以改变光瞳平面中强度分布为非零的扇区的数目和角度范围。通过调节照射器的光瞳平面中的光束的强度分布,可以实现不同的照射模式。例如,通过限制照射器IL的光瞳平面中的强度分布的径向和角度范围,强度分布可以具有多极分布,诸如例如偶极、四极或六极分布。例如,通过将提供该照射模式的光学元件插入照射器IL中或使用空间光调制器,可以获得期望的照射模式。
照射器IL可以可操作以改变光束的偏振,并且可以可操作以使用调节器AM调节偏振。跨越照射器IL的光瞳平面的辐射束的偏振状态可以被称为偏振模式。使用不同的偏振模式可以允许在形成在衬底W上的图像中实现更大的对比度。辐射束可以是非偏振的。备选地,照射器可以被布置为使辐射束线性偏振。辐射束的偏振方向可以跨照射器IL的光瞳平面变化。辐射的偏振方向可以在照射器IL的光瞳平面中的不同区域中不同。辐射的偏振状态可以根据照射模式来选择。对于多极照射模式,辐射束的每个极的偏振通常可以垂直于该极在照射器IL的光瞳平面中的位置向量。例如,对于偶极照射模式,辐射可以在基本上垂直于将偶极的两个相对扇区二等分的线的方向上被线性偏振。辐射束可以在两个不同的正交方向之一上被偏振,这可以被称为X偏振和Y偏振状态。对于四极照射模式,每个极的扇区中的辐射可以在基本垂直于将该扇区二等分的线的方向上被线性偏振。该偏振模式可以称为XY偏振。类似地,对于六极照射模式,每个极的扇区中的辐射可以在基本垂直于将该扇区二等分的线的方向上被线性偏振。该偏振模式可以称为TE偏振。
另外,照射器IL通常包括各种其他部件,诸如积分器IN和聚光器CO。照射器提供经调节的辐射束PB,其截面中具有期望的均匀性和强度分布。
辐射束PB入射在图案形成装置(例如,掩模)MA上,图案形成装置MA被保持在支撑结构MT上。在穿过图案形成装置MA之后,光束PB穿过投影系统PS,投影系统PS将光束聚焦到衬底W的目标部分C上。借助于第二定位设备PW和位置传感器IF(例如,干涉测量设备),衬底台WT可以准确地移动,例如,以便将不同的目标部分C定位在光束PB的路径中。类似地,第一定位设备PM和另一位置传感器(其在图1中未明确示出)可以用于相对于光束PB的路径准确地定位图案形成装置MA,例如,在从掩模库中进行机械检索之后,或在扫描期间。通常,载物台MT和WT的移动将借助于形成定位设备PM和PW的一部分的长行程模块(粗略定位)和短行程模块(精细定位)来实现。然而,在步进器的情况下(与扫描器相反),支撑结构MT可以仅连接到短行程致动器,或者可以是固定的。图案形成装置MA和衬底W可以使用图案形成装置对准标记M1、M2和衬底对准标记P1、P2来对准。
投影系统PS具有可以是不均匀的光学传递函数,其可以影响在衬底W上成像的图案。对于非偏振辐射,这种效果可以通过两个标量图来很好地描述,这两个标量图将离开投影系统PS的辐射的传递(变迹)和相对相位(像差)描述为其在光瞳平面中的位置的函数。可以被称为传递图和相对相位图的这些标量图可以被表示为一组完整的基函数的线性组合。一个特别方便的集合是Zernike多项式,它形成被定义在单位圆上的一组正交多项式。每个标量图的确定可以涉及确定这样的展开式的系数。由于Zernike多项式在单位圆上是正交的,因此Zernike系数可以通过依次计算每个Zernike多项式的测量标量图的内积并且将其除以该Zernike多项式的范数的平方来确定。
传递图和相对相位图是与场和系统相关的。也就是说,通常,每个投影系统PS对于每个场点(即,对于其图像平面中的每个空间位置)将具有不同的Zernike展开式。投影系统PL在其光瞳平面中的相对相位可以通过投影辐射来确定,例如从投影系统PS的物平面(即,图案形成装置MA的平面)中的点状源投影,穿过投影系统PS,以及使用剪切干涉仪来测量波前(即,具有相同相位的点的轨迹)。剪切干涉仪是公共路径干涉仪,并且因此有利地,不需要辅助参考光束来测量波前。剪切干涉仪可以包括在投影系统的图像平面(即,衬底台WT)中的衍射光栅(例如,二维网格)以及被布置为检测与投影系统PS的光瞳平面共轭的平面中的干涉图案的检测器。干涉图案与辐射相位相对于剪切方向上光瞳平面中的坐标的导数有关。检测器可以包括诸如例如电荷耦合器件(CCD)等感测元件的阵列。
衍射光栅可以在两个垂直方向上顺序扫描,这两个垂直方向可以与投影系统PS的坐标系的轴(x和y)重合,或者可以与这些轴成45度角。扫描可以在整数个光栅周期上执行,例如一个光栅周期。扫描对一个方向上的相位变化求平均,以允许重建另一方向上的相位变化。这允许波前被确定为两个方向的函数。
投影系统PS在其光瞳平面中的传递(变迹)可以通过投影辐射来确定,例如从投影系统PS的物平面中的点状源(即,图案形成装置MA的平面),穿过投影系统PS,以及使用检测器测量与投影系统PS的光瞳平面共轭的平面中的辐射强度。可以使用与用于测量波前以确定像差的相同的检测器。投影系统PS可以包括多个光学(例如,透镜)元件,并且还可以包括被配置为调节一个或多个光学元件以校正像差(整个场中光瞳平面上的相位变化)的调节机构PA。为实现此目的,调节机构PA可以可操作以便以一种或多种不同方式操纵投影系统PS内的一个或多个光学(例如,透镜)元件。投影系统可以具有坐标系统,其中其光轴在z方向上延伸。调节机构PA可以可操作以进行以下各项的任何组合:使一个或多个光学元件位移;使一个或多个光学元件倾斜;和/或使一个或多个光学元件变形。光学元件的位移可以在任何方向(x、y、z或其组合)上。通过在x或y方向上围绕轴旋转,光学元件的倾斜通常在垂直于光轴的平面之外,但是围绕z轴的旋转可以用于非旋转对称的非球面光学元件。光学元件的变形可以包括低频形状(例如,像散)和高频形状(例如,自由形式的非球面)。光学元件的变形可以例如通过使用一个或多个致动器在光学元件的一个或多个侧面上施加力和/或通过使用一个或多个加热元件来加热光学元件的一个或多个选定区域来执行。通常,可能无法调节投影系统PS以校正变迹(光瞳平面上的传递变化)。当设计用于光刻设备LA的图案形成装置(例如,掩模)MA时,可以使用投影系统PS的传递图。使用计算光刻技术,图案形成装置MA可以被设计为至少部分校正变迹。
图案化工艺的变量被称为“处理变量”。图案化工艺可以包括在光刻设备中的图案的实际转移的上游和下游的工艺。图2示出了处理变量370的示例类别。第一类别可以是光刻设备或光刻工艺中使用的任何其他设备的变量310。该类别的示例包括光刻设备的照射、投影系统、衬底台等变量。第二类别可以是在图案化工艺中执行的一个或多个过程的变量320。这种类别的示例包括焦点控制或焦点测量、剂量控制或剂量测量、带宽、曝光持续时间、显影温度、显影中使用的化学成分等。第三类别可以是设计布局的变量330及其在图案形成装置中的实现或使用图案形成装置。这种类别的示例可以包括辅助特征的形状和/或位置、通过分辨率增强技术(RET)施加的调节、掩模特征的CD等。第四类别可以是衬底的变量340。示例包括抗蚀剂层下面的结构的特性、抗蚀剂层的化学成分和/或物理尺寸等。第五类别可以是图案化工艺的一个或多个变量的时间变化的特性350。这种类别的示例包括高频台移动(例如,频率、幅度等)、高频激光带宽变化(例如,频率、幅度等)和/或高频激光波长变化的特性。这些高频变化或移动是高于调节基础变量(例如,台位置、激光强度)的机制的响应时间的那些变化或移动。第六类别可以是光刻设备中的图案转移的上游或下游的工艺的特性360,诸如旋涂、曝光后烘烤(PEB)、显影、蚀刻、沉积、掺杂和/或封装。
一些或所有处理变量的值可以通过合适的方法来确定。例如,这些值可以根据利用各种量测工具(例如,衬底量测工具)获得的数据来确定。这些值可以从图案化工艺中的设备的各种传感器或系统来获得(例如,光刻设备的传感器(诸如水平传感器或对准传感器)、光刻设备的控制系统(例如,衬底或图案形成装置台控制系统)、轨道工具中的传感器等)。这些值可以来自图案化工艺的操作者。
处理变量可以是“可建模的”或“未建模的”。处理变量可建模表示处理变量(例如,焦点、剂量等)的变化对量测数据的贡献可以通过计算模型来确定,或通过计算模型来确定。一个简单的示例是,可建模的处理变量的变化的贡献是量测数据相对于可建模的处理变量的变化和灵敏度的乘积。量测数据的非限制性示例可以包括临界尺寸(CD)、临界尺寸均匀性(CDU)、侧壁角度、边缘位置、套刻精度、焦点、图案偏移等。量测数据可以是各个图案的特性的值或一组图案的特性的统计量(例如,均值)。处理变量是未建模的表示处理变量(例如,显影、蚀刻等)的变化对量测数据的贡献不是在适当的时间通过计算来建模的,或者因为它不能通过或不能准确地通过计算模型来确定。处理变量可能因为缺乏关于它如何影响量测数据的知识而未建模。例如,第四类别中的一些处理变量(例如,抗蚀剂层的组成)和第六类别中的一些处理变量(例如,PEB、显影、蚀刻、沉积或掺杂的特性)可能与量测数据不具有完全理解的关系,并且因此它们的变化对量测数据的贡献不容易通过计算建模来确定。处理变量可能因为其值是未知的而是未建模的。处理变量是未建模的不一定表示对处理变量的计算建模是不可能的。处理变量可能因为处理变量与量测数据之间的关系尚未被理解而是未建模的。
图3A示意性地示出,可建模的处理变量311的变化可以对衬底上的图案的量测数据352具有贡献312(例如,量测数据可以确定CD、套刻精度误差、焦点、剂量等),并且未建模的处理变量321的变化可以对量测数据352具有贡献322。即,量测数据352可以具有可建模的处理变量和未建模的处理变量两者的变化的组合贡献。这些贡献312和322可以简单地相加(其可以包括加权加法)或者通过其他函数(例如,卷积)来组合。量测数据352可以具有其他变量的变化的贡献,这些其他变量可以是可建模的或未建模的。例如,可建模的处理变量311可以在图案的曝光中被聚焦使用。焦点变化对图案以及因此对图案的量测数据的影响通常是已知的,并且可以通过建模来预测。未建模的处理变量321可以是用于蚀刻衬底以形成图案的蚀刻室中的设置(例如,加热器设定点)。蚀刻设置的变化对图案以及因此对图案的量测数据的影响可能尚未完全知晓,并且影响可能无法通过建模来确定。
图3B示意性地示出了对衬底上的CD的组合贡献进行建模的示例,该贡献是多个可建模的处理变量的变化(例如,误差),多个可建模的处理变量诸如焦点(F)400、衬底在衬底的法线方向上的移动的移动标准偏差(MSDz)410、以及衬底在平行于衬底的方向上的移动的移动标准偏差(MSDx)420。因此,在这个示例中,焦点(F)400对CD的贡献的示例被示出为贡献430,移动标准偏差(MSDz)410对CD的贡献的示例被示出为贡献440,并且移动标准偏差(MSDx)420对CD的贡献的示例被示出为贡献440。然后将这些贡献中的每个组合在一起460。虽然元素460(和图中的其他元素)示出加号,但460处的操作不需要是相加,例如,它可以是乘法、卷积等。在一个示例中,组合贡献表示为
CD(x,y)=a1*CD(F)2(x,y)+b1*CD(MSDx)(x,y)+c1*CD(MSDz)(x,y)+…。在一个实施例中,贡献430、440、450可以分别是焦点(F)400、移动标准偏差(MSDz)410和移动标准偏差(MSDx)420的分布,在这种情况下,CD模型将用于将它们组合成CD分布。此外,可能存在未在这里示出的交叉项(诸如作为F乘以MSD的函数的CD等)。为了获得CD的绝对值,CD的标称值或模拟值可以与贡献组合。诸如a1、b1、c1等系数是量测数据CD关于可建模的处理变量或其功能的灵敏度。MSD是在光刻设备中的图案转移期间衬底的定位误差的移动标准偏差(MSD),并且因此表示定位误差的高频部分。在这个示例中,贡献是跨整个衬底的,但是在一个实施例中,一个或多个贡献可以是每个裸片/场的(其然后可以跨整个衬底重复,这取决于例如每个实例的适用条件)。贡献(或其到绝对值的转换)可以表征为指纹,因为它可以跨整个衬底/裸片/场在空间上被限定。
图4A示意性地示出了量测数据550具有两个贡献512和522。贡献512来自一个或多个可建模的处理变量511的变化。贡献522来自一个或多个其他处理变量的变化,这些其他处理变量可以是未建模的、可建模的或其混合。贡献522可以通过从量测数据550中去除贡献512来获得。根据定义,贡献512可以通过对一个或多个可建模的处理变量511进行建模来确定。贡献512可以表示为一个或多个可建模的处理变量511的函数。该函数可以是线性的或非线性的。
图4B示意性地示出了具有两个贡献542和532的量测数据570。贡献542来自一个或多个未建模的处理变量541的变化。贡献532来自一个或多个其他处理变量的变化,这些其他处理变量可以是未建模的、可建模的或其混合。贡献532可以通过从量测数据570中去除贡献542来获得。尽管一个或多个处理变量541是不可建模的,但是贡献542可以通过实验或经验来确定。
一个或多个可建模变量的贡献可以是光刻设备特定的;也就是说,一个或多个可建模变量的贡献是特定于某个实际的光刻设备的。在一个实施例中,一个或多个可建模变量的贡献不是特定于特定衬底的(并且因此可以跨衬底使用)。因此,一个或多个可建模变量的贡献可以被预先表征并且稍后从数据库中获得用于各种组合工艺。一个或多个可建模变量的这种贡献可以通过将其与特定衬底的一个或多个变量的数据和灵敏度关系相结合来应用于特定衬底。一个或多个可建模变量的贡献可以是衬底特定的。例如,可以针对每个衬底或特定的一组衬底确定贡献。这样的变量的示例可以包括但不限于以下变量:照射、投影系统、焦点、剂量、带宽、曝光持续时间、高频台移动的特性(例如,衬底台的移动的移动标准偏差(MSD)、衬底台的移动的移动平均值等)、高频激光带宽变化(例如,频率、幅度等)、高频激光波长变化和/或衬底的平坦度。
一个或多个可建模变量的贡献可以是图案或图案形成装置特定的;也就是说,贡献特定于某个实际图案形成装置或要由图案形成装置提供的特定图案。该贡献还可以与衬底无关。因此,图案或图案形成装置特定的贡献可以被预先表征并且稍后从数据库中获得用于各种组合工艺。这样的变量的示例可以包括但不限于掩模CD、辅助特征的形状和/或位置、通过分辨率增强技术(RET)施加的调节等。
一个或多个未建模变量的贡献可以是与衬底无关的或与衬底相关的。在一个实施例中,一个或多个未建模变量的贡献可以跨每个衬底重复使用。因此,一个或多个未建模变量的贡献可以预先表征并且从数据库中获得用于各种组合工艺。一个或多个未建模变量的贡献可以是设备特定的(作为设备的整体或特定部分(例如,蚀刻室))。这样的变量的示例可以包括但不限于光刻设备中的图案转移的上游或下游的工艺的各种特性,诸如旋涂、PEB、显影、蚀刻、沉积、掺杂和/或封装。
不同处理变量的变化的贡献可以跨整个衬底具有不同的空间均匀性。例如,一个或多个未建模的处理变量的变化的贡献可以跨整个衬底基本上是均匀的,而一个或多个可建模的处理变量的变化的贡献跨整个衬底可能不是那么均匀。这种差异可能归因于处理变量的不同性质。例如,与抗蚀剂层、抗蚀剂层的显影和/或衬底的蚀刻相关联的一个或多个处理变量的变化的贡献倾向于基本上是均匀的,因为整个衬底通常涂覆有抗蚀剂层,或者在相同的条件下同时显影或蚀刻,或者由于在很多这些工艺中衬底的旋转而倾向于旋转对称。例如,与曝光或光刻设备相关联的一个或多个处理变量的变化的贡献倾向于不太均匀,因为曝光倾向于逐个裸片进行并且一个或多个处理变量可以在裸片的曝光与另一裸片的曝光之间改变。因此,如果可以从图案的量测数据中去除衬底上的基本上不均匀的贡献,则可以从该图案的量测数据和衬底上其他位置处的图案来获得跨衬底的基本上均匀的贡献。
因此,在特定示例中,可以针对在晶片上曝光的每个点从光刻设备收集数据,诸如调平信息、衬底的移动的移动平均值(MA)、MSDxyz、剂量、激光带宽、光瞳形状等。该数据通常已经在光刻设备中可用,例如在诊断文件中。根据该数据,可以使用感兴趣特征的CD模型和CDU灵敏度(其中CD是需要评估的量测变量)来生成上述贡献(其也可以被描述为虚设衬底或衬底指纹,其中贡献在空间上跨衬底分布)。灵敏度可以从模拟或实验中获得。假定轨道和抗蚀剂模型校准完美,以这种方式生成的贡献是在抗蚀剂显影之后的测量期间预期会看到的。一旦测量了衬底,例如在显影之后或在蚀刻之后,从可比较的测量值(例如,CDU测量值)中去除贡献(例如,虚设衬底或虚设指纹)。剩余的贡献(例如,指纹)现在是前或后图案转移工艺(例如,通过轨道和/或蚀刻设备,其通常是场间)和图案形成装置(场内)的贡献。将根据测量数据校正光刻设备误差。类似地,可以测量图案形成装置的贡献并且去除其贡献,以通过前或后图案转移工艺来留下贡献。
因此,可以每个工艺流程(例如,图案化参数和/或所用设备的组合)或每个特定设备或其部分(例如,蚀刻设备或蚀刻室)来去除贡献。对于场内指纹,当从光刻设备干扰和/或其贡献中表示的系统中清除时,应当可以获得图案形成装置与衬底测量值的更好的相关性。
此外,例如光刻设备贡献的去除可能导致特征到特征δ(德尔塔)指纹显著减少。当在一个特征上测量的指纹用于另一特征的缺陷预测时,这可能是有用的(例如,这在测量目标特征(例如,光栅)而不是功能器件特征的情况下将是有用的,使得这样的测量值可以用于预测图案特征的缺陷,其中图案特征本身未被测量或可以不被测量)。
因此,去除例如光刻设备的贡献可以使测量结果噪声更少(因为光刻设备变化被校正),使得非光刻设备指纹的测量值更准确,和/或使测量值更适合于对光刻设备指纹进行原因未知的故障排除。
图5示意性地示出了根据一个实施例的方法的流程。从衬底上的第一图案的量测数据650中去除第一组一个或多个处理变量的变化的贡献612,从而获得第二组一个或多个处理变量的变化对量测数据650的贡献622,其中例如,贡献622具有比贡献612更高的空间均匀性。第二组一个或多个处理变量的变化对相同或不同衬底上的第二图案的量测数据的贡献642可以基于贡献622来获得,而不需要从第二图案实际获得量测数据。例如,贡献642可以被估计为与贡献622相同,因为第二组一个或多个处理变量的变化导致对量测数据的具有高空间均匀性的贡献。在可选的过程660中,可以通过基于贡献642调节第一组一个或多个处理变量中的一个或多个处理变量来降低第二图案处的缺陷的概率,而不对第二图案执行量测。在一个示例中,第一图案可以是用于测试目的的图案(即,目标),并且对第一图案执行量测不会影响衬底上的功能图案;第二图案是一个或多个功能图案,并且对第二图案执行量测因此可能对其产生负面影响并且应当被避免。图5中的该流程提供了一种方法,其用于至少获得一些处理变量(即,这里的第二组)对第二图案的影响,而不对第二图案执行量测。在一个示例中,第一组一个或多个处理变量可以包括在衬底的曝光期间光刻设备的焦点、剂量、衬底定位和/或其他变量。因为第一图案和第二图案可以不同时曝光,所以这些变量(例如,它们的值)对于第一图案和第二图案可以是不同的。第二组一个或多个处理变量可以包括PEB温度和/或持续时间、显影剂浓度和/或持续时间、蚀刻速率等,这些变量跨整个衬底基本上是均匀的。因为第二组一个或多个处理变量被施加到整个衬底上(例如,整个衬底经受相同的烘焙和显影条件),所以它们对第一图案和第二图案的影响趋于相似。
图6示意性地示出了根据一个实施例的方法的流程。从衬底上的第一图案的量测数据650中去除第一组一个或多个处理变量的变化的贡献612,从而获得第二组一个或多个处理变量的变化对量测数据650的贡献622,其中贡献622具有例如比贡献612更高的空间均匀性。第二组一个或多个处理变量的变化对衬底上的第二图案的量测数据655的贡献642可以基于贡献622来获得。例如,贡献642可以被估计为与贡献622相同,因为第二组一个或多个处理变量的变化导致对量测数据的具有高空间均匀性的贡献。然后可以从量测数据655(例如,在涉及第一和第二组处理变量的处理之后的第二图案的实际测量数据)中去除第二组一个或多个处理变量的变化的贡献642,从而获得第一组一个或多个处理变量的变化对量测数据655的贡献632,而不实际获得第二图案处的第一组一个或多个处理变量的值。在过程670中,可以通过基于贡献632、贡献642或其组合调节第一组一个或多个处理变量中的一个或多个变量来降低第二图案处的缺陷的概率。图6中的该流程是当关于第二图案的量测数据可用时的贡献642的估计的另一种用途。在一个示例中,第一组一个或多个处理变量可以包括在衬底的曝光期间光刻设备的焦点、剂量、衬底定位和/或其他变量;第二组一个或多个处理变量可以包括PEB温度和/或持续时间、显影剂浓度和/或持续时间、蚀刻速率等,这些例如跨整个衬底基本上是均匀的。
图案形成装置上或由图案形成装置提供的各种图案可以具有不同的工艺窗口,即,将在其下在规范内产生图案的处理变量的空间。与潜在系统缺陷相关的图案规范的示例包括颈缩、线拉回、线细化、CD、边缘放置、重叠、抗蚀剂顶部损失、抗蚀剂底切和/或桥接的检查。可以通过合并(例如,重叠)每个单独图案的工艺窗口来获得图案形成装置或其区域上的所有图案的工艺窗口。所有图案的工艺窗口的边界包含一些单独图案的工艺窗口的边界。换言之,这些单独的图案限制了所有图案的工艺窗口。这些图案可以称为“热斑”或“工艺窗口限制图案(PWLP)”,其在本文中可互换地使用。当控制图案化工艺时,关注热斑是可能且经济的。当热斑没有缺陷时,很可能所有图案都没有缺陷。
从数学观点来看,工艺窗口是由所有处理变量跨越的向量空间中的区域。在给定的图案化工艺中,图案的工艺窗口仅由图案的规范和图案化工艺中涉及的物理性质决定。即,如果规范和物理性质在图案化工艺中没有改变,则工艺窗口不会改变。
然而,一些处理变量可以是未建模的,并且因此一个或多个图案的规范所指示的这些未建模的处理变量的值的边界可以不通过建模来获得。因此,使用由所有处理变量跨越的向量空间中的区域作为工艺窗口可能不方便。可以使用子空间的区域(即,由少于所有处理变量跨越的空间)(“子PW”)代替由所有处理变量跨越的区域(“整个PW”)。例如,在具有很多处理变量的图案化工艺中,由焦点和剂量跨越的子空间的区域可以用作子PW。跨越子空间的处理变量可以全部是可建模的。当不跨越子PW的那些处理变量包括一个或多个未建模的处理变量时,子PW可能变得更小,因为跨越子PW的处理变量的值必须是使图案在一个或多个未建模的处理变量的任何可能值处在规范内的那些值。在一个示例中,不跨越子PW的处理变量可以包括一个或多个未建模的处理变量,诸如抗蚀剂层下面的结构的特性、抗蚀剂层的化学成分和/或物理尺寸、和/或光刻设备中的图案转移的上游或下游的一个或多个工艺的特性,诸如旋涂、PEB、显影、蚀刻、沉积、掺杂和/或封装。因为这样的变量是未建模的,所以难以确定其对量测数据的影响。
图7A和图7B示意性地示出了一个或多个未建模的处理变量对子PW的影响。为方便起见,PW在图7A中被描绘为三维(例如,焦点(f)、剂量(d)和另一未建模的处理变量X)空间的区域,尽管PW实际上可以具有其他维度。由两个处理变量——焦点(f)和剂量(d)——跨越的子PW被示出为PW的截面(例如,截面701至705)。图7B示意性地示出,如果X的可能值在截面701和705之间,则由f和d跨越的子PW是作为截面701和705之间的所有截面的重叠的阴影区域,因为阴影区域内的f和d的值将确保图案在截面701和705之间的任何X值处在规范内。未建模的处理变量X的示例可以包括抗蚀剂层下面的结构的特性、抗蚀剂层的化学组成和/或物理尺寸、和/或光刻设备中的图案转移的上游或下游的一个或多个工艺的特性,诸如旋涂、PEB、显影、蚀刻、沉积、掺杂和/或封装。
图8示意性地示出了根据一个实施例的方法的流程。从第一图案的量测数据850中去除第一组一个或多个处理变量的变化的贡献812,从而获得第二组一个或多个处理变量的变化对量测数据850的贡献822。第一组包括所有可建模的处理变量;第二组包括所有未建模的处理变量。第二组一个或多个处理变量的变化对衬底上的第二图案的量测数据的贡献842可以基于贡献822来获得。第二图案的量测数据不必可用于获得贡献842。例如,当第二组一个或多个处理变量的变化导致对量测数据的具有高空间均匀性的贡献时,贡献842可以被估计为与贡献822相同。在过程870中,基于贡献842来获得由第一组处理变量针对第一图案而跨越的子PW。在可选过程880中,可以调节第一组处理变量中的一个或多个处理变量的值,以基于子PW(并且可选地还基于贡献812)来降低第二图案处的缺陷的概率。子PW可以用于基于第一组处理变量的值来确定第二图案处是否存在缺陷。第二组中的处理变量的示例可以包括抗蚀剂层下面的结构的特性、抗蚀剂层的化学成分和/或物理尺寸、和/或光刻设备中的图案转移的上游或下游的一个或多个工艺的特性,诸如旋涂、PEB、显影、蚀刻、沉积、掺杂和/或封装。第一组中的处理变量的示例可以包括以下变量:光刻设备的照射、投影系统、衬底台等、焦点、剂量、带宽、曝光持续时间、辅助特征的形状和/或位置、通过分辨率增强技术(RET)施加的调节、高频台移动的特性(例如,频率、幅度等)、高频激光带宽变化(例如,频率、幅度等)和/或高频激光波长变化。
图9示意性地示出了根据一个实施例的方法的流程。第一组一个或多个可建模的处理变量911的变化对例如热斑的量测数据的贡献912例如通过建模来确定。获得第二组一个或多个未建模的处理变量921的变化的贡献922。贡献922可以通过实验来获得,并且可以从数据库来获得。贡献922可以使用例如获得图6中的贡献642的流程来获得(即,贡献922可以基于第二组一个或多个处理变量的变化对不同于热斑的图案的量测数据的贡献来获得)。可以针对每个衬底确定贡献912,而可以在很多衬底上重复使用贡献922。贡献912和贡献922被组合以获得热斑的量测数据的估计950,而不实际对热斑执行量测。在过程970中,基于量测数据的估计来确定热斑处是否存在缺陷。第二组中的处理变量的示例可以包括抗蚀剂层下面的结构的特性、抗蚀剂层的化学成分和/或物理尺寸、和/或光刻设备中的图案转移的上游或下游的一个或多个工艺的特性,诸如旋涂、PEB、显影、蚀刻、沉积、掺杂和/或封装。第一组中的处理变量的示例可以包括以下变量:光刻设备的照射、投影系统、衬底台等、焦点、剂量、带宽、曝光持续时间、辅助特征的形状和/或位置、通过分辨率增强技术(RET)施加的调节、高频台移动的特性(例如,频率、幅度等)、高频激光带宽变化(例如,频率、幅度等)和/或高频激光波长变化。
图10示意性地示出了根据一个实施例的方法的流程。从图案的量测数据1050中去除第一组一个或多个处理变量的变化的贡献1012,从而获得第二组一个或多个处理变量的变化对图案的量测数据的贡献1022。第一组一个或多个处理变量包括至少所有未建模的处理变量,但是可以包括或不包括任何可建模的处理变量。第二组一个或多个处理变量中的所有处理变量都是可建模的。在过程1070中,用于确定第二组一个或多个处理变量对量测数据的变化的贡献的模型的一个或多个参数对照贡献1022被拟合,从而获得模型的一个或多个参数的值1080。未建模的处理变量的示例可以包括抗蚀剂层下面的结构的特性、抗蚀剂层的化学成分和/或物理尺寸、和/或光刻设备中的图案转移的上游或下游的一个或多个工艺的特性,诸如旋涂、PEB、显影、蚀刻、沉积、掺杂和/或封装。可建模的处理变量的示例可以包括以下变量:光刻设备的照射、投影系统、衬底台等、焦点、剂量、带宽、曝光持续时间、辅助特征的形状和/或位置、通过分辨率增强技术(RET)施加的调节、高频台移动的特性(例如,频率、幅度等)、高频激光带宽变化(例如,频率、幅度等)和/或高频激光波长变化。
因此,作为示例,期望使模型和模型中表示的任何灵敏度能够适应工艺和/或衬底堆叠的变化。因此,在一个实施例中,从光刻设备,可以生成将被测量的每个衬底的预测的CDU(或套刻精度)衬底指纹。为此,可以使用预先建立的CD模型(例如,在原始模型校准期间),例如,CD=a1*D+a2*F2+a3*MSDx+a4*MSDy+a5*MSDz+...,如上所述。在测量衬底时,可以从测量的CD中去除预处理和/或后处理(例如,轨道/蚀刻)指纹和图案形成装置指纹。可以将剩余的CDU指纹测量值与预测的CD值相比较。在这种情况下,现在存在一组方程(与测量点一样多的方程),其中CD、剂量、焦点、MSD-xyz、像差等是已知的。可以针对期望的灵敏度(a1,a2,...)求解这组方程。当针对特定产品测量的多个衬底执行这个操作时,将有大量数据来重新估计期望的CD灵敏度。如果使用来自多个光刻设备的数据和/或以相同方式使用来自聚焦曝光矩阵曝光的数据,则输入信号(例如,焦点、剂量、MSD、CD等)的充分变化可以使得能够正确估计灵敏度。此外,该技术可以应用于其他量测数据,诸如焦深、曝光宽容度等。
在一个实施例中,可以使用训练算法来进一步增加准确性。例如,当解决像差的灵敏度时,可以考虑边界条件,即,像差只能在狭缝上变化并且在拟合这些灵敏度之前预先过滤CD(或套刻精度)数据。
在一个实施例中,通过不时地或连续地重新评估,灵敏度可以变得稳健,以抵抗图案化工艺的变化。
图11示意性地示出了根据一个实施例的方法的流程。将可建模的处理变量的变化对图案的量测数据的贡献1112和未建模的处理变量的变化对量测数据的贡献1122组合,从而获得量测数据的估计1150。在过程1160中,确定量测数据的估计1150是否满足标准。如果估计1150不满足标准,则在过程1170中对未建模的处理变量与贡献1122之间的关系进行调节。例如,如果未建模的处理变量包括抗蚀剂的涂覆工艺的特性,则关系的调节可以包括改变抗蚀剂的化学成分。例如,如果未建模的处理变量包括显影抗蚀剂的特性,则关系的调节可以包括改变显影中使用的化学品。例如,如果未建模的处理变量包括蚀刻衬底的特性,则关系的调节可以包括改变蚀刻设备。该流程可以用于基于蚀刻设备的特性和衬底的特性在若干蚀刻设备中进行选择。例如,可以根据蚀刻设备建立关系。
在一个实施例中,考虑到确保蚀刻室之间的性能的适当匹配的可能性是有限的以及随着时间的推移将存在性能漂移,蚀刻性能之后的CD(或其他变量)可以从工具到工具、从室到室而不同。这可能导致产量损失。因此,可以测量蚀刻之后的CD以获得工艺指纹。然后,该工艺指纹可以用于基于蚀刻之前可用的信息来预测蚀刻后性能将是什么。如果在显影之后和在蚀刻之后都测量CD,则可以得到纯蚀刻指纹(LEB)。如果针对每个蚀刻器和/或蚀刻室确定LEB指纹,则它们可以用于针对每个蚀刻器/蚀刻室预测蚀刻后CD性能和蚀刻后缺陷概率。然后,可以基于最小缺陷概率预先选择使用哪个蚀刻工具/蚀刻室用于处理衬底(例如,很多衬底)。
图12描绘了示例检查设备(例如,散射仪)。它包括将辐射投影到衬底W上的宽带(白光)辐射投影仪2。重定向的辐射被传递到光谱仪检测器4,光谱仪检测器4测量镜面反射辐射的光谱10(作为波长的函数的强度),如例如图中的左下方示出的。根据该数据,可以由处理器PU重建产生检测到的频谱的结构或轮廓,例如通过严格耦合波分析和非线性回归或通过与图12的右下方所示的模拟光谱库相比较。通常,对于重建,结构的一般形式是已知的,并且一些变量是根据用于制造结构的工艺的知识而假定的,只留下结构的一些变量要根据测量的数据来确定。这种检查设备可以被配置为垂直入射检查设备或倾斜入射检查设备。
图13中示出了可以使用的另一种检查设备。在该设备中,由辐射源2发射的辐射使用透镜系统12准直并且被传输通过干涉滤光器13和偏振器17,由部分反射表面16反射并且经由物镜15聚焦成衬底W上的斑点S,物镜15具有高数值孔径(NA),理想地为至少0.9或至少0.95。浸入式检查设备(使用诸如水等相对高折射率的流体)甚至可以具有超过1的数值孔径。
如在光刻设备LA中,可以提供一个或多个衬底台以在测量操作期间保持衬底W。衬底台的形式可以与图1的衬底台WT相似或相同。在检查设备与光刻设备集成的示例中,它们甚至可以是同一衬底台。粗略和精细定位器可以被提供给第二定位器PW,第二定位器PW被配置为相对于测量光学系统准确地定位衬底。提供各种传感器和致动器,例如以获得感兴趣的目标的位置,并且将其带到物镜15下方的位置。通常,将对在衬底W上的不同位置处的目标上进行很多测量。衬底支撑件可以在X和Y方向上移动以获得不同的目标,并且在Z方向上移动以获得目标相对于光学系统的焦点的期望位置。例如,在实践中,当光学系统可以保持基本上静止(通常在X和Y方向,但也可能在Z方向上)并且仅衬底移动时,将操作视为和描述为好像物镜被带到相对于衬底的不同位置可能是方便的。如果衬底和光学系统的相对位置是正确的,则原则上哪一个在现实世界中移动,或者两者都在移动,或者光学系统的一部分的组合在移动(例如,在Z和/或倾斜方向上)并且光学系统的其余部分是静止的以及衬底正在移动(例如,在X和Y方向上,但也可选地在Z和/或倾斜方向上)是无关紧要的。
然后,由衬底W重新定向的辐射穿过部分反射表面16进入检测器18中以便检测光谱。检测器18可以位于背投影焦平面11(即,在透镜系统15的焦距处),或者平面11可以利用辅助光学器件(未示出)被重新成像到检测器18上。检测器可以是二维检测器,从而可以测量衬底目标30的二维角散射光谱。检测器18可以是例如CCD或CMOS传感器的阵列,并且可以使用例如每帧40毫秒的积分时间。
例如,可以使用参考光束来测量入射辐射的强度。为此,当辐射束在部分反射表面16上入射时,其朝向参考镜14部分透射通过部分反射表面16作为参考光束。然后参考光束被投影到同一检测器18的不同部分上,或者可选地被投影到不同的检测器(未示出)上。
一个或多个干涉滤光器13可用于选择感兴趣的波长,在例如405至790nm的范围内或甚至更低,诸如200至300nm。干涉滤波器可以是可调谐的,而不是包括一组不同的滤波器。可以使用光栅代替干涉滤光器。可以在照射路径中设置孔径光阑或空间光调制器(未示出)以控制目标上的辐射入射角的范围。
检测器18可以测量单个波长(或窄波长范围)的重定向辐射的强度,该强度分别在多个波长处或在波长范围上积分。此外,检测器可以分别测量横向磁偏振和横向电偏振辐射的强度和/或横向磁偏振和横向电偏振辐射之间的相位差。
衬底W上的目标30可以是1-D光栅,其被印刷使得在显影之后,条由实心抗蚀剂线形成。目标30可以是2-D光栅,其被印刷使得在显影之后,光栅由固体抗蚀剂柱或抗蚀剂中的通孔形成。可以将条、柱或通孔蚀刻到衬底中或衬底上(例如,到衬底上的一个或多个层中)。(例如,条、柱或通孔的)图案对图案化工艺中的处理的变化(例如,光刻投影设备(特别是投影系统PS)中的光学像差、焦点变化、剂量变化等)是敏感的,并且将在印刷光栅的变化中表现出来。因此,印刷光栅的测量数据用于重建光栅。可以将1-D光栅的一个或多个参数(诸如线宽和/或形状)或2-D光栅的一个或多个参数(诸如柱或通孔宽度或长度或形状)输入到由处理器PU根据打印步骤和/或其他检查工艺的知识而执行的重建工艺中。
除了通过重建测量参数之外,角度分辨散射测量法也可用于测量产品和/或抗蚀剂图案中的特征的不对称性。不对称测量的特定应用是用于套刻精度的测量,其中目标30包括彼此叠置的一组周期性特征。使用图12或图13的仪器的不对称测量的概念在例如美国专利申请公开US2006-066855中有所描述,该专利申请整体并入本文。简单地说,虽然目标的衍射光谱中衍射级的位置仅由目标的周期性确定,但是衍射光谱中的不对称性表示构成目标的各个特征的不对称性。在图13的仪器中,其中检测器18可以是图像传感器,衍射级中的这样的不对称性直接表现为由检测器18记录的光瞳图像的不对称性。这种不对称性可以通过单位PU中的数字图像处理来测量,并且对照已知的套刻精度值来校准。
图14示出了典型目标30的平面图、以及图13的设备中的照射斑点S的范围。为了获得不受周围结构干扰的衍射光谱,在一个实施例中,目标30是大于照射斑点S的宽度(例如,直径)的周期性结构(例如,光栅)。斑点S的宽度可以小于目标的宽度和长度。换言之,目标由照射“欠填充”,并且衍射信号基本上没有来自目标本身之外的产品特征等的任何信号。照射装置2、12、13、17可以被配置为在物镜15的后焦平面上提供均匀强度的照射。备选地,通过例如在照射路径中包括孔径,可以将照射限制到轴上或离轴方向。
图15示意性地描绘了基于使用量测学而获得的测量数据来确定目标图案30'的一个或多个感兴趣变量的值的示例过程。检测器18检测到的辐射为目标30'提供测量的辐射分布108。
对于给定目标30',可以使用例如数值麦克斯韦尔求解器210从参数化模型206计算/模拟辐射分布208。参数化模型206示出构成目标和与目标相关联的各种材料的示例层。参数化模型206可以包括用于所考虑的目标的一部分的特征和层的一个或多个变量,其可以变化和导出。如图15所示,一个或多个变量可以包括一个或多个层的厚度t、一个或多个特征的宽度w(例如,CD)、一个或多个特征的高度h、和/或一个或多个特征的侧壁角α。尽管未示出,但是一个或多个变量可以还包括但不限于一个或多个层的折射率(例如,实数或复数折射率、折射率张量等)、一个或多个层的消光系数、一个或多个层的吸收率、显影期间的抗蚀剂损失、一个或多个特征的基础、和/或一个或多个特征的线边缘粗糙度。变量的初始值可以是针对被测量目标的预期值。然后在212处将测量的辐射分布108与计算的辐射分布208相比较以确定两者之间的差异。如果存在差异,则可以改变参数化模型206的一个或多个变量的值,计算新的计算的辐射分布208并且将其与测量的辐射分布108相比较,直到测量的辐射分布108与计算的辐射分布208之间存在足够的匹配。此时,参数化模型206的变量值提供了实际目标30'的几何形状的良好或最佳匹配。在一个实施例中,当测量的辐射分布108与计算的辐射分布208之间的差异在容限阈值内时,存在足够的匹配。
参数化模型中的一个或多个变量可以比一个或多个其他变量对计算的辐射分布具有更强的影响。例如,一个或多个变量的小的百分比变化可能导致计算的辐射分布的显著差异。这样的变量可以称为强变量。强变量可以包括但不限于特征的关键维度。另一方面,一个或多个其他变量的显著百分比变化可能导致计算的辐射分布的小差异。这样的变量可以称为弱变量。弱变量可以包括但不限于特征的侧壁角、特征的高度、层的厚度、显影期间的抗蚀剂损失、特征的基础、层的折射率、层的吸收率和/或层的消光系数。
参数化模型中的强和弱变量都可以由用户(例如,人、控制系统等)使用用于评估图案化工艺的一个或多个步骤。具体地,一个或多个弱变量可以用于确定目标30'或其他图案上是否存在缺陷,其可以在光刻设备中的图案转移的上游或下游的一个或多个工艺中使用,诸如旋涂、PEB、显影、蚀刻、沉积、掺杂和/或封装。例如,当衬底上的图案的侧壁角度超过特定阈值时,可能由于蚀刻而产生一个或多个缺陷。这样,可以在蚀刻工艺之前基于衬底上的图案的侧壁角的值来预测可能由于蚀刻而导致的缺陷。这样的示例是非限制性的。
然而,直接基于测量值来确定弱变量的值是具有挑战性的。这是因为,可以用于确定检查系统中的弱变量值的信号通常很弱,并且有时候太弱而无法检测到。另外,难以提供确定弱变量的值的一定水平的准确度,特别是当参数化模型中存在很多变量并且强变量的值未知时。
为了通过如图15中所述的重建过程获得用于各种用途(例如,预测缺陷)的一个或多个弱变量的更准确的值,期望确定重建过程本身之外的参数化模型中的一个或多个强变量(例如,CD)的值。
图16示出了根据一个实施例的用于确定衬底上的强变量的值的方法的流程(其可以避免对衬底执行强变量的量测)。该过程可以应用于获得多个不同强变量的值。如图所示,衬底的强变量1640的指纹可以通过组合以下各项来实现:来自与光刻设备相关的第一组一个或多个变量(诸如焦点、剂量、MSD、像差、光瞳形状等,并且其可以在每个裸片/场中在空间上指定,并且在应用条件下在衬底上重复,或在衬底上在空间上指定)的第一贡献1610、来自与在光刻设备中的图案转移之前或之后的一个或多个制造工艺相关联的第二组一个或多个变量(诸如蚀刻、显影等,并且其可以在衬底上在空间上指定)的第二贡献、以及来自与在图案化工艺中使用的图案形成装置相关的第三组一个或多个变量(诸如掩模CD等,并且其可以在每个裸片/场中在空间上指定,并且在应用条件下在衬底上重复,或在衬底上在空间上指定)的第三贡献1630。可以针对衬底的任何特定部分(诸如目标30'的部分)获得强变量1640的指纹。
与光刻设备相关的第一组一个或多个变量可以是如上所述的一个或多个可建模变量。第一贡献1610可以是光刻设备特定的;也就是说,第一贡献1610特定于某个实际光刻设备。在一个实施例中,第一贡献1610不特定于特定衬底(并且因此可以跨衬底使用)。因此,第一贡献1610可以被预先表征并且稍后从数据库中获得用于重建工艺。该第一贡献1610可以通过与特定衬底的一个或多个变量的数据和灵敏度关系相结合来应用于特定衬底。第一贡献1610可以是衬底特定的。例如,可以针对每个衬底或特定的一组衬底确定第一贡献1610,使得强变量1640的指纹特定于衬底或一组衬底。第一组变量的示例可以包括但不限于以下变量:照射、投影系统、焦点、剂量、带宽、曝光持续时间、高频台移动的特性(例如,衬底台的移动的移动标准偏差(MSD)、衬底台的移动的移动平均等)、高频激光带宽变化(例如,频率、幅度等)、高频激光波长变化和/或衬底的平坦度。
与图案形成装置相关的第三组一个或多个变量可以是如上所述的一个或多个可建模变量。第三贡献1630可以是图案或图案形成装置特定的;也就是说,第三贡献1630特定于某个实际图案形成装置或要由图案形成装置提供的特定图案。第三贡献1630可以与衬底无关。因此,第三贡献1630可以被预先表征并且稍后从数据库中获得用于重建工艺。第三组变量的示例可以包括但不限于掩模CD、辅助特征的形状和/或位置、通过分辨率增强技术(RET)施加的调节等。
与光刻设备中的图案转移之前或之后的一个或多个制造工艺相关的第二组一个或多个变量可以是如上所述的未建模变量。与第一贡献1610类似,第二贡献1620可以是与衬底无关的或与衬底相关的。在一个实施例中,第二贡献1620可以跨每个衬底重复使用。因此,第二贡献1620可以被预先表征并且在重建工艺期间从数据库中获得。第二组一个或多个变量的示例可以包括但不限于光刻设备中的图案转移的上游或下游的工艺的各种特性,诸如旋涂、PEB、显影、蚀刻、沉积、掺杂和/或封装。
第一贡献1610、第二贡献1620和/或第三贡献1630可以通过实验来表征或者从先前的生产数据中获得,例如,使用图4至6中的任何一个的流程。在一个实施例中,第三贡献1630(即,图案形成装置指纹)可以通过使用图案形成装置量测工具直接测量图案形成装置来获得。
在确定强变量的指纹1640之后,可以通过组合强变量的指纹1640和强变量的特定值1650来获得强变量1660的值。在一个实施例中,强变量的特定值可以是标称设计值。在一个实施例中,强变量可以是衬底上的强变量的一组测量值的平均值。可以关于衬底上的两个或更多个裸片中的相同特征执行强变量的这组测量。
给定参数化模型中的一个或多个强变量的值(例如,通过固定一个或多个强变量的值,或者将一个或多个强变量中的每个的值限制在预定范围内(例如,在10%以内,在5%以内,在3%以内,在1%以内)),可以调节一个或多个弱变量,直到计算的辐射分布与测量的辐射分布基本相似,或者计算的辐射分布与测量的辐射分布之间的差异在预定容限阈值内。当计算的辐射分布基本上类似于测量的辐射分布,或者差异在预定容差阈值内时,可以输出一个或多个弱变量的值。
如上所述,一个或多个弱变量的值可以用于预测在曝光之后是否存在由于一个或多个下游工艺引起的缺陷,例如PEB、抗蚀剂层的显影、蚀刻、沉积、掺杂和/或封装。如果预测到缺陷,则可以调节第一组一个或多个变量、第二组一个或多个变量和/或第三组一个或多个变量中的一个或多个变量的值,以获得强变量的新指纹。这样做是为了使得能够使用上述工艺重建一个或多个弱变量的一组新值。可以迭代地执行这样的调节,直到基于一个或多个弱变量的一组新值而没有预测到缺陷。
在上面讨论的贡献/指纹的另一应用中,可以使用一个或多个贡献/指纹来预测图案的轮廓。在这个上下文中,轮廓是转移到衬底的图案的特征的形状的轮廓。例如,可以通过处理衬底的图像(例如,扫描电子显微镜图像)以提取转移到衬底的图案特征的形状的外边界来可视化轮廓。但是,也可以通过数学处理(例如,模拟)来生成轮廓,以在预期将图案特征转移到衬底时产生图案特征的电子表示。虽然轮廓通常是线的形式,但是本文中使用的轮廓可以更多地概括为描述特征的边界的数据。轮廓不需要是连续的;也就是说,如果不连续轮廓和/或数据充分地描述特征的边界,则轮廓和/或数据可以在特征周围是不连续的。在一个实施例中,轮廓可以是二维的(即,定义为平面)或三维的。在一个实施例中,轮廓可以在基本平行于其上形成有图案的衬底的表面的平面中延伸。在一个实施例中,轮廓可以在基本垂直于其上形成有图案的衬底的表面的平面中延伸;在这种情况下,它可以被表征为轮廓并且可以是二维或三维形式。
为了预测轮廓,可以如本文所述获得一个或多个贡献/指纹并且将其用于选择特定标称轮廓和/或修改标称轮廓,以便得到预测轮廓。参考图17,描绘了预测轮廓的方法的流程图的实施例。在1700处,确定图案的特性的标称轮廓。在一个实施例中,标称轮廓是抗蚀剂中期望的轮廓。在一个实施例中,标称轮廓是在显影的抗蚀剂中期望的轮廓。
在一个实施例中,可以经由模型和/或模拟通过数学计算来获得标称轮廓。在一个实施例中,模拟器或模型(例如,诸如ASML的Tachyon产品等模拟器)可以确定在适用于特征的图案化工艺的一个或多个处理变量的设计值处的图案的特征的预期轮廓。然后可以将通过计算获得的该轮廓指定为标称轮廓。类似地,模拟器或模型可以确定一个或多个处理变量的各种不同值处的轮廓(例如,一个或多个光学设置或条件,诸如不同的焦点设置或条件、不同的剂量设置或条件、不同的投影系统像差设置或条件、不同的照射光瞳形状设置或条件等)以获得特征的多个轮廓,每个轮廓处于一个或多个处理变量的不同值。然后可以将通过计算获得的这些轮廓指定为标称轮廓,其中每个标称轮廓与一个或多个处理变量的不同值相关联。在一个实施例中,针对不同的焦点设置或条件确定标称轮廓,并且因此每个标称轮廓可以与不同的焦点设置或条件(诸如与最佳焦点的特定方差)相关联。虽然下面的描述集中于焦点设置或条件,但是标称轮廓可以针对与焦点不同的设置或条件来确定,并且可以针对设置或条件的各种组合来确定。
在一个实施例中,评估针对其确定标称轮廓的一个或多个处理变量对一个或多个其他处理变量的影响。在一个实施例中,所评估的一个或多个其他处理变量是对轮廓的形状和/或尺寸有影响的一个或多个处理变量。因此,在一个实施例中,在针对焦点设置确定标称轮廓的情况下,确定焦点对一个或多个其他处理变量(例如,CD)的影响。在一个实施例中,可以使用聚焦曝光矩阵(FEM)类型处理来确定该影响,其中在至少不同的聚焦设置或条件下评估特定图案。然后可以确定那些不同焦点设置或条件下的CD,以便评估由焦点引起的CD变化量。在一个实施例中,上述影响可以使用一个或多个处理过的衬底通过实验来确定,这些理过的衬底然后通过量测工具来测量。在一个实施例中,上述影响可以使用模拟器来确定。
除了通过计算确定标称轮廓之外或代替通过计算确定标称轮廓,在一个实施例中,可以通过实验来获得标称轮廓。例如,可以在一个或多个衬底上以一个或多个处理变量的适用设计值为图案化工艺产生特征,并且然后测量(例如,使用扫描电子显微镜)特征以导出特征的轮廓。然后可以将通过测量获得的该轮廓指定为标称轮廓。另外地或备选地,可以在一个或多个衬底上以一个或多个处理变量的各种不同值(例如,如上所述的一个或多个光学设置或条件)产生特征,并且然后测量特征(例如,使用扫描电子显微镜)以导出特征的多个轮廓,每个轮廓处于一个或多个处理变量的不同值。然后可以将通过测量获得的这些轮廓指定为标称轮廓,其中每个标称轮廓与一个或多个处理变量的不同值相关联。因此,作为特定示例,每个标称轮廓可以与不同的焦点设置或条件(诸如与最佳焦点的特定方差)相关联。
因此,在一个实施例中,标称轮廓可以提供轮廓的形状的指示。例如,标称轮廓可以提供在特定的焦点条件下的轮廓的形状的指示。因此,在多个不同焦点条件下获得的多个标称轮廓的情况下,每个标称轮廓可以提供在适用的焦点条件下的预测轮廓的形状的指示。
因此,在一个实施例中并且如将进一步讨论的,通过各自与一个或多个处理变量(例如,焦点)的不同值相关联的标称轮廓,可以通过参考标称轮廓针对一个或多个处理变量的任何值来预测轮廓的形状。在标称轮廓不可用于一个或多个处理变量的特定值的情况下,可以通过内插、外推等生成轮廓。因此,作为示例,对于衬底上的特定位置上的任何焦点值,可以预测适用的感兴趣的图案特征的轮廓的形状。
因此,在1710处,可以针对已经确定了标称轮廓的一个或多个处理变量获得第一贡献/指纹。第一贡献/指纹可以使用本文中描述的任何技术来获得。在一个实施例中,第一贡献/指纹对应于在蚀刻之前的情况。
在一个实施例中,第一贡献/指纹是焦点,并且因此,在一个实施例中,第一贡献/指纹是跨衬底焦点图。在一个实施例中,可以基于从用于图案化衬底的光刻设备获得的数据来生成第一贡献/指纹。例如,光刻设备可以提供聚焦信息(例如,聚焦残留误差等)和/或高频台移动(例如,MSD)的特性,以构建焦点图。图18示出了用于图案化工艺的示例焦点图1800,其中不同的阴影示意性地表示与标称焦点(例如,最佳焦点、平均焦点等)的不同变化。
在1720处,使用第一贡献/指纹1710为感兴趣特征选择标称轮廓。例如,在衬底上的特定位置并且对于感兴趣的特定特征,可以从第一贡献/指纹1710确定已经针对其确定了标称轮廓的一个或多个处理变量的值,并且然后将其用于选择相关联的标称轮廓。因此,在第一贡献/指纹1710是焦点图的示例中,焦点图内的衬底位置处的焦点估计可以用于获得相关联的标称轮廓作为轮廓的预测。因此,可以针对每个特征和每个衬底位置来确定预测轮廓。
再次参考图18,描绘了这种选择的示例。在图18中,示出了处于最佳焦点的标称轮廓1810、1812、1814。现在,在与标称轮廓1812相关联的焦点图1800上的位置处,焦点图指示焦点在最佳焦点处或附近。因此,对于该位置,标称轮廓1812将被选择作为预测轮廓。对于与标称轮廓1810相关联的位置,焦点图指示焦点处于负散焦-F处。因此,在这种情况下,代替使用标称轮廓1810,将选择针对负散焦-F确定的标称轮廓,即,标称轮廓1820。如图18所示,标称轮廓1820具有特征的特性,但由于负散焦-F而具有不同的形状。类似地,对于与标称轮廓1814相关联的位置,焦点图指示焦点处于正散焦+F。因此,在这种情况下,代替使用标称轮廓1814,将选择针对正散焦+F确定的标称轮廓,即,标称轮廓1830。如图18所示,标称轮廓1830具有特征的特性,但由于正散焦+F而具有不同的形状。因此,在焦点-F处,最佳焦点处的标称轮廓改变形状,并且类似地,在焦点+F处,最佳焦点处的标称轮廓改变形状。因此,例如,如果F是来自最佳焦点的方差并且+F和-F具有相同的绝对值,则相应的轮廓形状变化可以与图18中所示的相同。
再次参考图17,在1730处,可以获得除了已经针对其确定了标称轮廓的一个或多个处理变量之外的一个或多个处理变量的第二贡献/指纹。第二贡献/指纹1730可以使用本文中描述的任何技术来获得。在一个实施例中,第二贡献/指纹对应于蚀刻后的情况。
在一个实施例中,第二贡献/指纹1730具有临界尺寸,并且因此,在一个实施例中,第二贡献/指纹是跨衬底临界尺寸图(例如,临界尺寸均匀性图)。在一个实施例中,可以基于在图案化工艺的蚀刻步骤之后在具有图案的一个或多个衬底上使用量测工具测量的数据来生成贡献/指纹。图19示出了用于图案化工艺的示例临界尺寸图1900,其中不同的阴影示意性地表示与标称临界尺寸(例如,设计临界尺寸、平均临界尺寸等)的不同变化。因此,例如,临界尺寸图1800可以表示在锚点方面上测量的临界尺寸并且被绘制为平均临界尺寸的百分比。
在一个实施例中,针对与第一贡献/指纹相关联的一个或多个处理变量对第二贡献/指纹的一个或多个处理变量的影响来校正第二贡献/指纹。因此,例如,其中第一贡献/指纹是焦点图并且第二贡献/指纹是关键维度图,可以针对焦点对第二贡献/指纹的临界尺寸的影响来校正第二贡献/指纹(例如,焦点信息(例如,焦点残余误差等)和/或高频台移动的特性)。以上描述了确定这种影响的细节。例如,FEM可以用于隔离在图案转移步骤期间产生的对CD的焦点影响,并且然后从蚀刻后CD测量中去除该影响。另外地或备选地,可以处理各种光刻设备信号以在图案转移期间达到焦点的估计及其对CD的影响,并且然后从蚀刻后CD测量中消除该影响。如将理解的,可以以各种方式进行校正,包括将校正直接并入第二贡献/指纹中,以在从第二贡献/指纹中选择值之后进行校正,如下面关于1740所讨论的,等等。
在1740处,使用第二贡献/指纹1730修改感兴趣特征的标称轮廓。在一个实施例中,标称轮廓是在1720处选择的标称轮廓。然而,如果已经针对感兴趣特征选择了给定的标称轮廓而不使用1720处的选择步骤,则可以跳过1720处的选择(但是执行修改)。类似地,如果在步骤1720处选择标称轮廓并且不需要修改,则可以跳过1740处的修改。
因此,在1740处,例如,在衬底上的特定位置处并且对于感兴趣的特定特征,从第二贡献/指纹1730获得一个或多个其他处理变量的值,并且然后使用该值确定标称轮廓的适当修改。在一个实施例中,修改是标称轮廓的尺寸变化。因此,在第二贡献/指纹1730是临界尺寸图的示例中,临界尺寸图内的衬底位置处的临界尺寸估计可以用于将标称轮廓的尺寸(例如,在1720处选择的标称轮廓)修改为轮廓的预测。因此,可以针对每个特征和每个衬底位置确定预测轮廓。
在一个实施例中,假定在特定位置处从第二贡献/指纹1730获得的一个或多个其他处理变量的值应用于整个感兴趣特征。因此,如果在第二贡献/指纹1730中表示的特征的临界尺寸偏离某个临界尺寸(例如,平均临界尺寸)一定量(例如,5%),则相同位置的任何特征的所有关键尺寸将偏离相同的量。因此,该假定表示,整个轮廓的大小被重新调节与临界尺寸的偏差相同的量。因此,假定在衬底上的特定位置处的特征的整个轮廓尺寸改变与在已经被测量以获得第二贡献/指纹1730的相同位置处的锚点方面的临界尺寸相同的量,则标称轮廓在临界尺寸减小x%时可以缩小x%,并且在临界尺寸增加x%时可以增大x%。这种变化跨整个轮廓均匀地提供。
再次参考图19,描绘了这种尺寸变化的示例。在图19中,示出了标称轮廓1910、1912、1914。现在,在与标称轮廓1912相关联的临界尺寸图1900上的位置(其可以使用步骤1720来选择),临界尺寸图指示临界尺寸对应于标称临界尺寸(例如,设计临界尺寸、平均临界尺寸等)。因此,对于该位置,标称轮廓1912将被选择为预测轮廓。对于与标称轮廓1910相关联的位置,临界尺寸图指示临界尺寸低一定量(例如,-x%)。因此,在这种情况下,代替使用标称轮廓1910,标称轮廓1910缩小一定量(例如,-x%)以获得预测轮廓1920。如图19所示,轮廓1920具有特征的特性,但是由于较低的临界尺寸而具有较小的尺寸。类似地,对于与标称轮廓1914相关联的位置,临界尺寸图指示临界尺寸高一定量(例如,+x%)。因此,在这种情况下,代替使用标称轮廓1914,标称轮廓1914的尺寸增加一定量(例如,+x%)以获得预测轮廓1930。如图19所示,轮廓1930具有特征的特性,但是由于较高的临界尺寸而具有较大的尺寸。因此,当临界尺寸为-x%时,标称轮廓均匀收缩但仍保持其形状,并且当临界尺寸为+x%,标称轮廓尺寸均匀增加但仍保持其形状。
因此,在一个实施例中,给定这两个假定(即,某一个或多个处理变量(例如,焦点)的值可以预测轮廓形状并且某一个或多个其他处理变量的值(例如,CD)可以预测轮廓尺寸),可以基于从一个或多个贡献/指纹中选择的值来预测特征的轮廓形状和尺寸。特别地,对于衬底上的每个位置,可以预测一个或多个感兴趣特征的整个轮廓。在一个实施例中,感兴趣特征是确定的热斑。
在特定实施例中,根据临界尺寸和焦点测量值来预测轮廓。在特定实施例中,使用临界尺寸和焦点指纹来估计轮廓。
在1750处,可以在各种应用中使用预测轮廓。例如,轮廓可以自身检查,或者与一个或多个其他轮廓相关,以确定是否预测到缺陷(例如,可以对颈缩、桥接、线拉回、线细化、重叠、抗蚀剂顶部损失和/或抗蚀性底切进行一次或多次检查)。该技术尤其可以可用于例如确定桥接缺陷。这些缺陷是由彼此接触的两个特征引起的,这两个特征原则上可以发生在两个特征的轮廓上的任何点(取决于该位置处的特定CD、焦点和/或套刻精度条件)。与例如相邻特征上的切割线处的尺寸的评估相比,使用轮廓使得能够更加稳健地评估这样的缺陷。
作为另一示例,轮廓可以用于评估边缘放置位置和/或误差(其也可以用于标识诸如桥接等缺陷)。实际上,该技术可以提供量测的计算形式以确定边缘放置误差。例如,利用预测轮廓,可以预测“虚设”边缘放置误差。例如,这可以用于边缘放置误差驱动的多图案化缺陷预测。因此,可以使用CD和焦点指纹来估计边缘放置误差驱动的缺陷。
可以使用预测轮廓来确定潜在缺陷的示例是在间隔物和切割层工艺中。图20A至20C中示出了这种情况的一个示例。图20A描绘了示例间隔物和切割层工艺,其中使用图案2010“切割”线2000。图20A描绘了线2000和图案2010处于期望的对准、尺寸等的标称工艺。这样的工艺将是图案2010的中间线2000的干净切割。现在,可以使用图20中示意性示出的图1800和1900来应用图17的工艺,以得到线2000和图案2010的预测轮廓的确定。在这个示例中,如图20B所示,确定图案2010的轮廓已经被预测为尺寸增大(尽管在这个示例中形状没有改变但是它可以发生改变),而线2000的预测轮廓符合预期。现在,图20C示出了如果在间隔物和切割层工艺中使用图案2010的预测轮廓的结果。如在2020处所见,图案2010将不期望地切割上部和下部线2000的一部分。因此,在一个实施例中,间隔物和切割层工艺的预测操作可以被标记为在图案2010用于切割线2000时产生潜在缺陷。
作为另一示例,预测轮廓可以用于确定光刻-蚀刻-光刻-蚀刻(LELE)工艺中的潜在缺陷。图21A至21C中示出了这种情况的一个示例。图21A描绘了示例光刻-蚀刻-光刻-蚀刻工艺,其中线2100在第一光刻-蚀刻工艺中产生,并且图案2110通过第二光刻-蚀刻工艺与线2100交错。图21A描绘了标称工艺,其中线2100和图案2110处于期望的对准、尺寸等。这种工艺的结果将是图案2110与线2100之间的所设计的分离。现在,可以使用图21中示意性示出的图1800和1900来应用图17的工艺,以得到线2100和图案2110的预测轮廓的确定。在这个示例中,如图21B所示,确定图案2110的轮廓已经被预测为增加尺寸和形状变化,而2100线的预测轮廓符合预期。现在,图21C示出了如果在光刻-蚀刻-光刻-蚀刻工艺中使用图案2110的预测轮廓的结果。如在2120处所见,图案2110将不期望地太靠近下部线2100(例如,特征之间的空间低于某个阈值);即,它是重叠区域或违反最小距离要求。这可能会导致桥接缺陷。此外,图案2110可能具有颈缩缺陷2130,其中特征的形状已经改变使得其已经变得太窄(例如,宽度已经低于阈值)。因此,在一个实施例中,当结合线2100产生图案2110时,可以将光刻-蚀刻-光刻-蚀刻工艺的预测操作标记为产生一个或多个潜在缺陷。因此,在一个实施例中,对于多次曝光LELE型应用中的缺陷预测,与仅使用缺陷指示器/切割线相比,预测轮廓应当能够改善颈缩和/或桥接缺陷的预测能力。
在预测轮廓的另一种可能用途中,预测轮廓可以用于模型校准、尤其是光学邻近校正模型的校准。预测轮廓使得能够校正所测量的量规(轮廓)中的蚀刻指纹和/或焦点指纹。例如,该预测轮廓可以用于校准掩模数据准备蚀刻后模型。
因此,在一个实施例中,该技术使得能够从虚设晶片进行轮廓预测;因此,该技术将量测学与计算相结合,以便生成轮廓而不必测量它们。在一个实施例中,该技术能够在给定适当的指纹(例如,蚀刻后关键尺寸指纹和光刻设备焦点指纹)的情况下预测衬底上的轮廓和边缘放置误差的可变性。在一个实施例中,该技术能够实现多图案化的更好的预测能力。在一个实施例中,该技术通过使用基于预测轮廓的边缘放置优化来实现图案控制。
本文中的方法的结果(或源自本文中的方法的结果的另一结果(例如,缺陷预测))可以用于各种目的,包括控制图案化工艺中的工艺或其中的设备,监测通过图案化工艺生产的衬底,设计图案化工艺的工艺或设备,等等,例如,结果或由此得到的另一结果可以用于改变图案化工艺的设备或工艺,以进一步处理衬底或处理另一衬底。例如,结果可用于预测缺陷。例如,可以使用缺陷的预测来控制量测工具,以检查受影响的区域和/或改变图案化工艺的设备或工艺,以进一步处理衬底或处理另一衬底。此外,结果可以用于通过例如导出用于校正光刻设备的剂量配方、使得能够设计图案形成装置及其图案、设置工艺等来设计图案化工艺。此外,结果可以用于模型校准,例如,校准光学邻近校正模型、源掩模优化模型、光刻制造检查模型、抗蚀剂模型、成像模型、测量模型(例如,测量工艺的模型)等。结果可以用于确定工艺的一个或多个变量(例如,最佳曝光和/或最佳剂量),其然后可以用于各种目的。可以理解,可以有很多其他用途。
图22是示出可以帮助实现本文中公开的方法和流程的计算机系统100的框图。计算机系统100包括总线102或用于传递信息的其他通信机制、以及与总线102耦合以处理信息的处理器104(或多个处理器104和105)。计算机系统100还包括主存储器106,诸如随机存取存储器(RAM)或其他动态存储设备,主存储器106耦合到总线102以存储要由处理器104执行的信息和指令。主存储器106也可以用于存储在要由处理器104执行的指令的执行期间的临时变量或其他中间信息。计算机系统100还包括只读存储器(ROM)108或耦合到总线102以存储处理器104的静态信息和指令的其他静态存储设备。诸如磁盘或光盘等存储设备110被设置并且耦合到总线102以存储信息和指令。
计算机系统100可以经由总线102耦合到显示器112,诸如阴极射线管(CRT)或平板或触控面板显示器,以向计算机用户显示信息。包括字母数字键和其他键的输入设备114耦合到总线102以向处理器104传送信息和命令选择。另一种类型的用户输入设备是光标控制116,诸如鼠标、轨迹球或光标方向键,光标控制116用于向处理器104传送方向信息和命令选择并且用于控制显示器112上的光标移动。该输入设备通常在两个轴:第一轴(例如,x)和第二轴(例如,y)上具有两个自由度,允许设备指定平面中的位置。触控面板(屏幕)显示器也可以用作输入设备。
根据一个实施例,该过程的部分可以由计算机系统100响应于处理器104执行被包含在主存储器106中的一个或多个指令的一个或多个序列来执行。这些指令可以从诸如存储设备110等另一计算机可读介质读取到主存储器106中。被包含在主存储器106中的指令序列的执行引起处理器104执行本文中描述的处理步骤。还可以采用多处理布置的一个或多个处理器来执行被包含在主存储器106中的指令序列。在备选实施例中,可以使用硬连线电路代替软件指令或与软件指令组合。因此,本文中的描述不限于硬件电路和软件的任何特定组合。
本文中使用的术语“计算机可读介质”是指参与向处理器104提供指令以供执行的任何介质。这样的介质可以采用很多形式,包括但不限于非易失性介质、易失性介质和传输介质。非易失性介质包括例如光盘或磁盘,诸如存储设备110。易失性介质包括动态存储器,诸如主存储器106。传输介质包括同轴电缆、铜线和光纤,包括包含总线的电线102。传输介质还可以采用声波或光波的形式,诸如在射频(RF)和红外(IR)数据通信期间生成的声波或光波。常见形式的计算机可读介质包括例如软盘、柔性盘、硬盘、磁带、任何其他磁性介质、CD-ROM、DVD、任何其他光学介质、穿孔卡、纸带、具有孔图案的任何其他物理介质、RAM、PROM和EPROM、FLASH-EPROM、任何其他存储器芯片或盒、如下文中所述的载波、或计算机可以从其进行读取的任何其他介质。
各种形式的计算机可读介质可以涉及将一个或多个指令的一个或多个序列传送到处理器104以供执行。例如,指令最初可以承载在远程计算机的磁盘上。远程计算机可以将指令加载到其动态存储器中,并且使用调制解调器通过电话线发送指令。计算机系统100本地的调制解调器可以在电话线上接收数据并且使用红外发射器将数据转换成红外信号。耦合到总线102的红外检测器可以接收红外信号中携带的数据并且将数据放置在总线102上。总线102将数据传送到主存储器106,处理器104从主存储器106检索并且执行指令。主存储器106接收的指令可以可选地在由处理器104执行之前或之后存储在存储设备110上。
计算机系统100还优选地包括耦合到总线102的通信接口118。通信接口118提供耦合到连接到本地网络122的网络链路120的双向数据通信。例如,通信接口118可以是用于提供与相应类型的电话线的数据通信连接的综合业务数字网(ISDN)卡或调制解调器。作为另一示例,通信接口118可以是用于提供与兼容LAN的数据通信连接的局域网(LAN)卡。还可以实现无线链路。在任何这样的实现中,通信接口118发送和接收携带表示各种类型的信息的数字数据流的电信号、电磁信号或光信号。
网络链路120通常通过一个或多个网络提供到其他数据设备的数据通信。例如,网络链路120可以通过本地网络122提供到主计算机124或到由因特网服务提供商(ISP)126操作的数据设备的连接。ISP126又通过现在通常称为“因特网”128的全球分组数据通信网络提供数据通信服务。本地网络122和因特网128都使用承载数字数据流的电信号、电磁信号或光信号。通过各种网络的信号和在网络链路120上并且通过通信接口118的信号(其将数字数据传送到计算机系统100和从计算机系统100传送数字数据)是传送信息的载波的示例形式。
计算机系统100可以通过网络、网络链路120和通信接口118发送消息和接收数据,包括程序代码。在因特网示例中,服务器130可以通过因特网128、ISP 126、本地网络122和通信接口118传输用于应用程序的所请求的代码。例如,一个这样的下载的应用可以提供实施例的照射优化。所接收的代码可以在被接收时由处理器104执行,和/或存储在存储设备110或其他非易失性存储器中以供稍后执行。以这种方式,计算机系统100可以以载波的形式获得应用代码。
本公开的实施例可以用硬件、固件、软件或其任何组合来实现。本公开的实施例还可以实现为存储在机器可读介质上的指令,这些指令可以由一个或多个处理器读取和执行。机器可读介质可以包括用于以机器(例如,计算设备)可读的形式存储或传输信息的任何机制。例如,机器可读介质可以包括只读存储器(ROM);随机存取存储器(RAM);磁盘存储介质;光存储介质;闪存设备;电、光、声或其他形式的传播信号(例如,载波、红外信号、数字信号等)等。此外,本文中可以将固件、软件、例程、指令描述为执行某些动作。然而,应当理解,这样的描述仅仅是为了方便,并且这样的动作实际上是由计算设备、处理器、控制器、或执行固件、软件、例程、指令等的其他设备产生的。
在框图中,所示部件被描绘为离散功能块,但是实施例不限于其中如图所示组织本文中描述的功能的系统。由每个部件提供的功能可以由与当前描述的组织不同的软件或硬件模块来提供,例如,这样的软件或硬件可以混合、组合、复制、分解、分布(例如,在数据中心内或在地理上)、或以其他方式不同地组织。本文中描述的功能可以由执行存储在有形非瞬态机器可读介质上的代码的一个或多个计算机的一个或多个处理器来提供。在一些情况下,第三方内容传递网络可以托管通过网络传送的一些或所有信息,在这种情况下,在信息(例如,内容)被称为要被供应或以其他方式提供的情况下,可以通过发送用于从内容传送网络检索信息的指令来提供该信息。
除非另有明确说明,否则从讨论中可明显看出,应当理解,在整个说明书中,利用诸如“处理”、“计算”、“计算计算出”、“确定”等术语的讨论指的是诸如专用计算机或类似的专用电子处理/计算设备等特定设备的动作或过程。
读者应当理解,本申请描述了若干发明。申请人不是将这些发明分成多个独立的专利申请,而是将这些发明归为一个单一的文件,因为它们的相关主题有助于申请过程中的经济性。但是,这样的发明的独特优点和方面不应当混为一谈。在一些情况下,实施例解决了本文中描述的所有缺陷,但是应当理解,本发明是独立有用的,并且一些实施例仅解决了这样的问题的一部分或提供了对于本领域技术人员在回顾本公开时很清楚的其他未提及的益处。由于成本限制,本文中公开的一些发明可能目前未被要求保护,并且可以在后续申请中要求保护,诸如继续申请,或通过修改本权利要求来要求保护。类似地,由于空间限制,本文档的“摘要”部分和“发明内容”部分都不应当被视为包含所有这样的发明的全面列表或这样的发明的所有方面。
应当理解,说明书和附图并非旨在将本发明限制于所公开的特定形式,而是相反,本发明意图是套刻精度落入由所附权利要求限定的本发明的精神和范围内的所有修改、等同物和备选物。
鉴于本说明书,本领域技术人员将清楚本发明的各个方面的修改和备选实施例。因此,本说明书和附图仅被解释为说明性的,并且用于教导本领域技术人员执行本发明的一般方式的目的。应当理解,本文中所示和所述的本发明的形式将被视为实施例的示例。元素和材料可以代替本文中所示和所述的元素和材料,部件和工艺可以颠倒,按顺序改变或省略,某些特征可以独立使用,并且实施例或实施例的特征可以组合,所有这些对受益于本发明的这种描述的本领域技术人员而言都是很清楚的。在不脱离所附权利要求中描述的本发明的精神和范围的情况下,可以对本文中描述的元素进行改变。本文中使用的标题仅用于组织目的,并不表示用于限制说明书的范围。
如在整个本申请中使用的,单词“可以”以允许的意义(即,表示具有潜力)而不是强制意义(即,表示必须)来使用。词语“包括”、“包含”和“含有”等表示包括但不限于。如在整个本申请中使用的,单数形式“一”、“一个”和“该(”包括复数指示物,除非内容明确地另外指出。因此,例如,对“一”元素或“一个”元素的引用包括两个或更多个元素的组合,尽管对一个或多个元素使用其他术语和短语,诸如“一个或多个”。除非另有说明,否则术语“或”是非排他性的,即包含“和”和“或”。描述条件关系的术语(例如,“响应于X、Y”、“在X、Y时”、“如果X、Y”、“当X、Y时”等)包含以下因果关系,其中前因是必要的因果条件,前因是充分的因果条件,或者前因是后果的贡献因果条件,例如,“状态X在条件Y获得时发生”对于“X仅在Y时发生”和“X在Y和Z时发生”是通用的。这样的条件关系不限于紧接前因获得的后果,因为某些后果可能被延迟,并且在条件陈述中,前因与其后果相关,例如,前因与后果发生的可能性相关。除非另有说明,否则将多个属性或函数映射到多个对象(例如,执行步骤A、B、C和D的一个或多个处理器)的语句包括所有这样的属性或函数被映射到所有这样的对象并且属性或功能的子集被映射到属性或功能的子集(例如,每个执行步骤A到D的所有处理器,以及处理器1执行步骤A,处理器2执行步骤B和步骤C的一部分,并且处理器3执行步骤C和步骤D的一部分的情况)。此外,除非另有说明,否则一个值或动作“基于”另一条件或值的陈述包括条件或值是唯一因素的示例和条件或值是多个因素中的一个因素的示例。除非另有说明,否则某些集合的“每个”示例具有某些属性的陈述不应当被理解为排除较大集合的某些其他相同或相似成员不具有该属性(即,每个集合不一定表示每一个属性)的情况。
可以使用以下子句进一步描述实施例:
1.一种方法,包括:
获得被建模的第一处理变量对衬底上的图案的量测数据的第一贡献;
获得未被建模的第二处理变量对所述图案的所述量测数据的第二贡献;以及
由硬件计算机通过组合所述第一贡献和所述第二贡献来获得所述量测数据。
2.根据子句1所述的方法,其中所述量测数据包括临界尺寸(CD)、临界尺寸均匀性(CDU)、侧壁角度、边缘位置、套刻精度、焦点、图案偏移或选自以上各项的组合。
3.根据子句1或子句2所述的方法,其中所述量测数据包括一组图案的统计量。
4.根据子句1至3中任一项所述的方法,其中所述第二处理变量是所述衬底的曝光的下游的工艺的特性。
5.根据子句4所述的方法,其中所述工艺是所述衬底上的抗蚀剂层的显影。
6.根据子句4所述的方法,其中所述工艺是所述衬底的蚀刻。
7.根据子句1至3中任一项所述的方法,其中所述第二处理变量是所述衬底的特性。
8.根据子句1至3中任一项所述的方法,其中所述第二处理变量是所述衬底上的抗蚀剂层的特性。
9.根据子句1至8中任一项所述的方法,其中所述第二处理变量的值是未知的。
10.根据子句1至9中任一项所述的方法,其中组合所述第一贡献和所述第二贡献包括:将所述第一贡献和所述第二贡献相加,或者将所述第一贡献和所述第二贡献卷积。
11.一种方法,包括:
通过由硬件计算机从衬底上的图案的量测数据中去除第一处理变量对所述量测数据的贡献,来获得第二处理变量对所述量测数据的贡献。
12.根据子句11所述的方法,其中所述第一处理变量被建模。
13.根据子句12所述的方法,其中获得所述第一处理变量的贡献通过建模来进行。
14.根据子句12所述的方法,其中所述第一处理变量的贡献是所述第二处理变量的非线性函数。
15.根据子句11所述的方法,其中所述第一处理变量未被建模。
16.根据子句15所述的方法,其中所述第一处理变量的贡献通过实验或经验来确定。
17.一种方法,包括:
通过从衬底上的第一图案的量测数据中去除第一组一个或多个处理变量的变化对所述量测数据的贡献,来获得第二组一个或多个处理变量的变化对所述量测数据的贡献;以及
由硬件计算机基于所述第二组一个或多个处理变量的变化对所述第一图案的所述量测数据的贡献,来获得所述第二组一个或多个处理变量的变化对所述衬底上的第二图案的量测数据的贡献。
18.根据子句17所述的方法,还包括:通过基于所述第二组一个或多个处理变量的变化对所述第二图案的所述量测数据的贡献调节所述第一组一个或多个处理变量中的一个或多个变量,来降低所述第二图案处的缺陷的概率。
19.根据子句18所述的方法,其中在不对所述第二图案执行量测的情况下,降低所述第二图案处的缺陷的概率。
20.根据子句17所述的方法,其中在不获得所述第二图案的所述量测数据的情况下,获得所述第二组一个或多个处理变量的变化对所述第二图案的所述量测数据的贡献。
21.根据子句17所述的方法,还包括:通过从所述第二图案的所述量测数据中去除所述第二组一个或多个处理变量的变化对所述第二图案的所述量测数据的贡献,来获得所述第一组一个或多个处理变量的变化对所述第二图案的所述量测数据的贡献。
22.根据子句21所述的方法,其中在不获得针对所述第二图案的所述第一组一个或多个处理变量的值的情况下,获得所述第一组一个或多个处理变量的变化对所述第二图案的所述量测数据的贡献。
23.根据子句21所述的方法,还包括通过基于以下各项调节所述第一组一个或多个处理变量中的一个或多个处理变量来降低所述第二图案处的缺陷的概率:所述第一组一个或多个处理变量的变化对所述第二图案的所述量测数据的贡献、所述第二组一个或多个处理变量的变化对所述第二图案的所述量测数据的贡献、或以上两者。
24.一种方法,包括:
通过从第一图案的量测数据中去除第一组处理变量的变化对所述第一图案的所述量测数据的贡献,来获得第二组一个或多个处理变量的变化对所述第一图案的所述量测数据的贡献;
基于所述第二组一个或多个处理变量的变化对所述第一图案的所述量测数据的贡献,来获得所述第二组一个或多个处理变量的变化对所述衬底上的第二图案的量测数据的贡献;以及
由硬件计算机基于所述第二组一个或多个处理变量的变化对所述第二图案的所述量测数据的贡献,来获得针对所述第二图案的由所述第一组处理变量跨越的子工艺窗口(子PW)。
25.根据子句24所述的方法,其中所述第一组包括所有被建模的处理变量,并且所述第二组包括所有未被建模的处理变量。
26.根据子句24所述的方法,还包括:通过基于所述子PW调节所述第一组处理变量中的一个或多个处理变量的值,来降低所述第二图案处的缺陷的概率。
27.一种方法,包括:
通过组合被建模的第一组一个或多个处理变量的变化对热斑的量测数据的贡献和未被建模的第二组一个或多个处理变量的变化对所述量测数据的贡献,来获得所述量测数据的估计;以及
由硬件计算机基于所述量测数据的估计来确定所述热斑处是否存在缺陷。
28.根据子句27所述的方法,其中在不对所述热斑执行量测的情况下,获得所述估计。
29.一种方法,包括:
通过从图案的量测数据中去除第一组一个或多个处理变量的变化的贡献,来获得第二组一个或多个处理变量的变化对所述量测数据的贡献;以及
通过由硬件计算机对照所述第二组一个或多个处理变量的变化对所述图案的所述量测数据的贡献拟合模型的参数来获得所述参数的值,所述模型用于确定所述第二组一个或多个处理变量的变化对所述量测数据的贡献。
30.根据子句29所述的方法,其中所述第一组一个或多个处理变量包括所有未被建模的处理变量。
31.根据子句29所述的方法,其中所述第二组一个或多个处理变量中的所有处理变量被建模。
32.一种方法,包括:
通过组合被建模的处理变量的变化对衬底上的图案的量测数据的贡献和未被建模的处理变量的变化对所述量测数据的贡献,来获得所述量测数据的估计;
确定所述量测数据的估计是否符合标准;以及
如果所述估计不符合所述标准,则由硬件计算机调节所述被建模的处理变量与所述未被建模的处理变量的变化对所述量测数据的贡献之间的关系。
33.根据子句32所述的方法,其中调节所述关系包括改变所述衬底上的抗蚀剂的化学成分。
34.根据子句32所述的方法,其中调节所述关系包括改变在显影所述衬底上的抗蚀剂时使用的化学物质。
35.根据子句32所述的方法,其中调节所述关系包括改变用于蚀刻所述衬底的蚀刻设备。
36.一种方法,包括:
通过组合由图案化工艺处理的衬底上的第一变量的指纹和所述第一变量的特定值,来计算所述衬底的图案的或针对所述衬底的图案的所述第一变量的值;以及
至少部分基于所述第一变量的所计算的值来确定所述图案的第二变量的值。
37.根据子句36所述的方法,其中确定所述图案的所述第二变量的值包括:由硬件计算机调节所述第二变量,直到至少部分基于所述第一变量的所计算的值和所述第二变量的重建或模拟结果满足准则。
38.根据子句37所述的方法,其中所述准则指示所述衬底上的所述图案的测量结果与所述重建或模拟结果之间的差异越过或满足阈值。
39.根据子句36或子句37所述的方法,其中所述重建/模拟结果是计算的辐射分布,并且所述测量结果是测量的辐射分布。
40.根据子句37至39中任一项所述的方法,其中与所述第二变量的变化相比,所述第一变量的相同变化导致所述重建或模拟结果的更大差异。
41.根据子句36至40中任一项所述的方法,其中所述第一变量与衬底上的量测目标相关。
42.根据子句41所述的方法,其中所述第一变量是所述衬底上的所述量测目标的图案的临界尺寸。
43.根据子句36至42中任一项所述的方法,其中所述第二变量与所述衬底上的所述量测目标相关。
44.根据子句43所述的方法,其中所述第二变量包括选自以下中的一项或多项:所述量测目标的图案的侧壁角度、所述量测目标的图案的高度、所述量测目标的层的厚度、在显影期间的所述量测目标的图案中的抗蚀剂损失、所述量测目标的基础、所述量测目标的层的折射率、所述量测目标的层的吸收率、和/或所述量测目标的层的消光系数。
45.根据子句36至44中任一项所述的方法,还包括:基于所述图案的所述第二变量来预测在所述图案到所述衬底上的转移的下游的工艺之后是否存在缺陷。
46.根据子句45所述的方法,其中响应于在所述图案到所述衬底上的转移的下游的工艺之后的在所述图案处的缺陷的预测,调节针对所述衬底或另一衬底的图案化工艺的变量。
47.根据子句45或子句46所述的方法,其中所述工艺包括所述衬底上的抗蚀剂层的显影。
48.根据子句45至47中任一项所述的方法,其中所述工艺包括所述衬底的蚀刻。
49.根据子句36至48中任一项所述的方法,还包括通过组合以下各项来获得所述第一变量的指纹:来自与所述图案化工艺的光刻设备相关的第一组一个或多个变量的第一贡献、来自与在所述图案在所述光刻设备中的转移之前或之后的一个或多个制造工艺相关的第二组一个或多个变量的第二贡献、以及来自与在所述图案的转移中使用的图案形成装置相关的第三组一个或多个变量的第三贡献。
50.根据子句49所述的方法,其中所述第一组变量包括以下中的一个或多个变量:所述光刻设备的照射、所述光刻设备的投影系统、所述光刻设备的衬底台的移动的移动标准偏差、所述衬底台的移动的移动平均值、焦点、剂量、带宽、曝光持续时间、高频激光带宽变化、高频激光波长变化、和/或所述衬底的平坦度。
51.根据子句49或子句50所述的方法,其中所述第二组变量包括以下中的一个或多个变量:旋涂、曝光后烘烤、显影、蚀刻、沉积、掺杂和/或封装。
52.根据子句49至51中任一项所述的方法,其中所述第三组变量包括以下中的一个或多个变量:掩模CD、辅助图案的形状和/或位置、和/或通过分辨率增强技术而施加的调节。
53.根据子句36至52中任一项所述的方法,其中组合所述第一变量的指纹和所述第一变量的特定值包括将所述第一变量的指纹和所述第一变量的特定值相加。
54.根据子句36至53中任一项所述的方法,其中所述第一变量的特定值通过对所述衬底上的所述第一变量的一组测量值求平均来获得。
55.根据子句36至53中任一项所述的方法,其中所述第一变量的特定值是所述第一变量的设计值。
56.根据子句36至54中任一项所述的方法,其中在确定所述第二变量的值期间使用的所述第一变量具有被限制在所述第一变量的所计算的值附近的特定范围内的值。
57.一种方法,包括:
获得与由图案化工艺产生的图案相关联的变量的跨衬底指纹;以及
由硬件计算机系统基于从所述指纹内的衬底位置选择的变量的值,来预测所述图案的特征的轮廓。
58.根据子句57所述的方法,其中所述预测包括:使用所述变量的值来为所述特征选择特定形状的标称轮廓。
59.根据子句58所述的方法,其中所述标称轮廓通过使用模拟或数学模型进行计算来获得。
60.根据子句58或子句59所述的方法,其中所述标称轮廓是抗蚀剂中期望的轮廓。
61.根据子句57至60中任一项所述的方法,其中所述预测包括:针对所述特征改变标称轮廓的大小。
62.根据子句61所述的方法,其中改变所述大小是基于与所述图案相关联的另外的变量的值的,所述值在相同的衬底位置处从所述另外的变量的跨衬底指纹来选择。
63.根据子句62所述的方法,其中所述另外的变量的所述跨衬底指纹对应于蚀刻后的情况。
64.根据子句62或子句63中任一项所述的方法,其中所述另外的变量包括临界尺寸。
65.根据子句57至64中任一项所述的方法,其中所述变量包括焦点。
66.根据子句57至65中任一项所述的方法,其中所述特征是确定的热斑。
67.根据子句57至66中任一项所述的方法,还包括:使用所预测的轮廓来确定边缘放置位置或误差。
68.根据子句57至67中任一项所述的方法,还包括:使用对照所预测的轮廓的检查来确定所述特征或另一特征是否可能是有缺陷的。
69.根据子句57至68中任一项所述的方法,还包括:使用所预测的轮廓来校准数学模型。
70.根据子句69所述的方法,其中所述数学模型包括光学邻近校正模型。
71.一种计算机程序产品,包括其上记录有指令的非瞬态计算机可读介质,所述指令在由计算机执行时实现根据子句1至70中任一项所述的方法。
鉴于某些美国专利、美国专利申请或其他材料(例如,文章)已经通过引用被并入,因此这样的美国专利、美国专利申请和其他材料的文本仅通过引用被并入,因为这样的材料与本文中阐述的陈述和附图之间不存在冲突。在发生这样的冲突的情况下,这样的通过引用而并入的美国专利、美国专利申请和其他材料的任何这样的冲突文本明确地没有通过引用并入本文。
虽然以上已经描述了本公开的特定实施例,但是应当理解,实施例可以不同于所描述的方式来实践。

Claims (20)

1.一种用于处理量测数据的方法,包括:
通过从衬底上的第一图案的量测数据中去除第一组一个或多个处理变量的变化对所述量测数据的贡献,来获得第二组一个或多个处理变量的变化对所述量测数据的贡献;以及
由硬件计算机基于所述第二组一个或多个处理变量的变化对所述第一图案的所述量测数据的贡献,来获得所述第二组一个或多个处理变量的变化对所述衬底上的第二图案的量测数据的贡献。
2.根据权利要求1所述的方法,还包括:通过基于所述第二组一个或多个处理变量的变化对所述第二图案的所述量测数据的贡献调节所述第一组一个或多个处理变量中的一个或多个变量,来降低所述第二图案处的缺陷的概率。
3.根据权利要求1所述的方法,其中在不获得所述第二图案的所述量测数据的情况下,获得所述第二组一个或多个处理变量的变化对所述第二图案的所述量测数据的贡献。
4.一种用于处理量测数据的方法,包括:
通过组合被建模的第一组一个或多个处理变量的变化对热斑的量测数据的贡献和未被建模的第二组一个或多个处理变量的变化对所述量测数据的贡献,来获得所述量测数据的估计;以及
由硬件计算机基于所述量测数据的估计来确定所述热斑处是否存在缺陷。
5.根据权利要求4所述的方法,其中在不对所述热斑执行量测的情况下,获得所述估计。
6.一种用于处理量测数据的方法,包括:
通过从图案的量测数据中去除第一组一个或多个处理变量的变化的贡献,来获得第二组一个或多个处理变量的变化对所述量测数据的贡献;以及
通过由硬件计算机对照所述第二组一个或多个处理变量的变化对所述图案的所述量测数据的贡献拟合模型的参数来获得所述参数的值,所述模型用于确定所述第二组一个或多个处理变量的变化对所述量测数据的贡献。
7.一种用于处理衬底的图案的变量的方法,包括:
通过组合由图案化工艺处理的衬底上的第一变量的指纹和所述第一变量的特定值,来计算所述衬底的图案的或针对所述衬底的图案的所述第一变量的值;以及
至少部分基于所述第一变量的所计算的值来确定所述图案的第二变量的值。
8.根据权利要求7所述的方法,其中确定所述图案的所述第二变量的值包括:由硬件计算机调节所述第二变量,直到至少部分基于所述第一变量的所计算的值和所述第二变量的重建或模拟结果满足准则为止。
9.根据权利要求7或8所述的方法,其中所述第二变量与所述衬底上的所述量测目标相关。
10.根据权利要求9所述的方法,其中所述第二变量包括选自以下中的一项或多项:所述量测目标的图案的侧壁角度、所述量测目标的图案的高度、所述量测目标的层的厚度、在显影期间的所述量测目标的图案中的抗蚀剂损失、所述量测目标的基础、所述量测目标的层的折射率、所述量测目标的层的吸收率、和/或所述量测目标的层的消光系数。
11.一种用于预测轮廓的方法,包括:
获得与由图案化工艺产生的图案相关联的变量的跨衬底指纹;以及
由硬件计算机系统基于从所述指纹内的衬底位置选择的变量的值,来预测所述图案的特征的轮廓。
12.根据权利要求11所述的方法,其中所述预测包括:使用所述变量的值来为所述特征选择特定形状的标称轮廓。
13.根据权利要求12所述的方法,其中所述标称轮廓通过使用模拟或数学模型进行计算来获得。
14.根据权利要求12或13所述的方法,其中所述标称轮廓是抗蚀剂中期望的轮廓。
15.根据权利要求11至13中任一项所述的方法,还包括:使用所预测的轮廓来确定边缘放置位置或误差。
16.根据权利要求11至13中任一项所述的方法,还包括:使用对照所预测的轮廓的检查来确定所述特征或另一特征是否可能是有缺陷的。
17.根据权利要求11至13中任一项所述的方法,还包括:使用所预测的轮廓来校准数学模型。
18.根据权利要求17所述的方法,其中所述数学模型包括光学邻近校正模型。
19.一种计算机程序产品,包括其上记录有指令的非瞬态计算机可读介质,所述指令在由计算机执行时实现根据权利要求6或11所述的方法。
20.一种计算机程序产品,包括其上记录有指令的非瞬态计算机可读介质,所述指令在由计算机执行时执行:
获得被建模的第一处理变量对衬底上的图案的量测数据的第一贡献,其中所述第一贡献是根据与用来图案化所述衬底的光刻设备相关联的数据确定的;
获得未被建模的第二处理变量对所述图案的所述量测数据的第二贡献,其中所述第二处理变量的贡献是与由所述光刻设备在图案化所述衬底时使用的图案形成装置相关联的场内指纹以及与在使用所述光刻设备之前或之后的工艺中使用的设备相关联的场间指纹;以及
由硬件计算机通过组合所述第一贡献和所述第二贡献来获得所述量测数据。
CN202011207943.3A 2016-02-22 2017-02-17 对量测数据的贡献的分离 Active CN112255892B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662298367P 2016-02-22 2016-02-22
US62/298,367 2016-02-22
US201662382764P 2016-09-01 2016-09-01
US62/382,764 2016-09-01
US201762459327P 2017-02-15 2017-02-15
US62/459,327 2017-02-15
PCT/EP2017/053700 WO2017144379A1 (en) 2016-02-22 2017-02-17 Separation of contributions to metrology data
CN201780012362.4A CN108700823B (zh) 2016-02-22 2017-02-17 对量测数据的贡献的分离

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780012362.4A Division CN108700823B (zh) 2016-02-22 2017-02-17 对量测数据的贡献的分离

Publications (2)

Publication Number Publication Date
CN112255892A true CN112255892A (zh) 2021-01-22
CN112255892B CN112255892B (zh) 2023-07-18

Family

ID=58192268

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202011207943.3A Active CN112255892B (zh) 2016-02-22 2017-02-17 对量测数据的贡献的分离
CN201780012362.4A Active CN108700823B (zh) 2016-02-22 2017-02-17 对量测数据的贡献的分离

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201780012362.4A Active CN108700823B (zh) 2016-02-22 2017-02-17 对量测数据的贡献的分离

Country Status (6)

Country Link
US (2) US11520239B2 (zh)
JP (3) JP6964591B2 (zh)
KR (3) KR20180115299A (zh)
CN (2) CN112255892B (zh)
TW (4) TWI810540B (zh)
WO (1) WO2017144379A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11126092B2 (en) * 2015-11-13 2021-09-21 Asml Netherlands B.V. Methods for determining an approximate value of a processing parameter at which a characteristic of the patterning process has a target value
KR20180115299A (ko) 2016-02-22 2018-10-22 에이에스엠엘 네델란즈 비.브이. 계측 데이터에 대한 기여도들의 분리
KR102485767B1 (ko) 2017-02-22 2023-01-09 에이에스엠엘 네델란즈 비.브이. 전산 계측
EP3396458A1 (en) * 2017-04-28 2018-10-31 ASML Netherlands B.V. Method and apparatus for optimization of lithographic process
CN115220311A (zh) 2017-05-05 2022-10-21 Asml荷兰有限公司 用于预测器件制造工艺的良率的方法
WO2018206275A1 (en) 2017-05-12 2018-11-15 Asml Netherlands B.V. Methods for evaluating resist development
EP3688529B1 (en) * 2017-09-27 2023-12-13 ASML Netherlands B.V. Method of determining control parameters of a device manufacturing process
JP2021508078A (ja) * 2017-12-19 2021-02-25 エーエスエムエル ネザーランズ ビー.ブイ. 計算メトロロジに基づく補正および制御
EP3518040A1 (en) 2018-01-30 2019-07-31 ASML Netherlands B.V. A measurement apparatus and a method for determining a substrate grid
EP3531207A1 (en) 2018-02-27 2019-08-28 ASML Netherlands B.V. Alignment mark positioning in a lithographic process
TWI729334B (zh) 2018-06-07 2021-06-01 荷蘭商Asml荷蘭公司 用於判定器件之控制方案的方法、電腦程式和系統及用於判定多個器件處理之基板的方法
EP3579051A1 (en) 2018-06-07 2019-12-11 ASML Netherlands B.V. Generation of sampling scheme
WO2020035272A1 (en) 2018-08-14 2020-02-20 Asml Netherlands B.V. Model calibration and guided metrology based on smart sampling
TWI749355B (zh) * 2018-08-17 2021-12-11 荷蘭商Asml荷蘭公司 用於校正圖案化程序之度量衡資料之方法及相關的電腦程式產品
EP3657257A1 (en) 2018-11-26 2020-05-27 ASML Netherlands B.V. Method for of measuring a focus parameter relating to a structure formed using a lithographic process
EP3657281B1 (en) 2018-11-26 2022-11-30 ASML Netherlands B.V. Control strategy evaluation tool for a semiconductor manufacturing process and its user interface
WO2020114692A1 (en) 2018-12-07 2020-06-11 Asml Netherlands B.V. Method for determining root cause affecting yield in a semiconductor manufacturing process
EP3906442A1 (en) * 2018-12-31 2021-11-10 ASML Netherlands B.V. Determining subset of components of an optical characteristic of patterning apparatus
US11333982B2 (en) * 2019-01-28 2022-05-17 Kla Corporation Scaling metric for quantifying metrology sensitivity to process variation
US20220179321A1 (en) * 2019-03-25 2022-06-09 Asml Netherlands B.V. Method for determining pattern in a patterning process
WO2020193367A1 (en) * 2019-03-25 2020-10-01 Asml Netherlands B.V. Method of determining a set of metrology points on a substrate, associated apparatus and computer program
CN112014070B (zh) * 2019-05-31 2021-10-26 上海微电子装备(集团)股份有限公司 一种波像差测量装置、测量方法及光刻机
KR20220034902A (ko) 2019-08-22 2022-03-18 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 제어 방법
JP7432418B2 (ja) * 2020-03-26 2024-02-16 株式会社オーク製作所 露光装置および露光方法
US11481922B2 (en) * 2020-04-07 2022-10-25 Kla Corporation Online navigational drift correction for metrology measurements
TWI761948B (zh) * 2020-09-14 2022-04-21 倍利科技股份有限公司 由檢測影像取得輪廓的定位方法
EP4002015A1 (en) * 2020-11-16 2022-05-25 ASML Netherlands B.V. Dark field digital holographic microscope and associated metrology method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100161099A1 (en) * 2008-12-24 2010-06-24 Asml Netherlands B.V. Optimization Method and a Lithographic Cell
US20110051150A1 (en) * 2009-08-31 2011-03-03 Kla-Tencor Corporation Unique mark and method to determine critical dimension uniformity and registration of reticles combined with wafer overlay capability
US20130080984A1 (en) * 2011-09-23 2013-03-28 Kla-Tencor Corporation Process aware metrology

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297791B2 (ja) * 1994-11-16 2002-07-02 ソニー株式会社 露光方法およびレジストパターン算出方法
JP2000292906A (ja) 1999-04-12 2000-10-20 Hitachi Ltd マスクおよびパタン転写方法
US6625512B1 (en) 2000-07-25 2003-09-23 Advanced Micro Devices, Inc. Method and apparatus for performing final critical dimension control
EP1273973A1 (en) * 2001-07-03 2003-01-08 Infineon Technologies SC300 GmbH & Co. KG Method for adjusting a temperature in a resist process
JP2003297892A (ja) * 2002-03-28 2003-10-17 Trecenti Technologies Inc 半導体装置のプロセスパラメータの決定方法およびそれを用いた半導体装置の製造方法
JP4249139B2 (ja) 2003-04-23 2009-04-02 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法、及び、半導体装置製造システム
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7530048B2 (en) * 2005-04-09 2009-05-05 Cadence Design Systems, Inc. Defect filtering optical lithography verification process
US7701555B2 (en) * 2005-07-01 2010-04-20 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, and system
US7732109B2 (en) * 2007-04-04 2010-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method and system for improving critical dimension uniformity
JP4826544B2 (ja) 2007-05-23 2011-11-30 東京エレクトロン株式会社 加熱処理装置、加熱処理方法及び記憶媒体
JP2009239029A (ja) 2008-03-27 2009-10-15 Toshiba Corp リソグラフィ装置の評価方法および制御方法
JP2009288497A (ja) * 2008-05-29 2009-12-10 Toshiba Corp パターン検証方法、パターン決定方法、製造条件決定方法、パターン検証プログラム及び製造条件検証プログラム
US8806387B2 (en) 2008-06-03 2014-08-12 Asml Netherlands B.V. Model-based process simulation systems and methods
JP4703693B2 (ja) * 2008-08-08 2011-06-15 株式会社東芝 露光方法、半導体装置の製造方法、及びマスクデータの作成方法
NL2005719A (en) 2009-12-18 2011-06-21 Asml Netherlands Bv Method of measuring properties of dynamic positioning errors in a lithographic apparatus, data processing apparatus, and computer program product.
JP5289343B2 (ja) * 2010-01-15 2013-09-11 株式会社東芝 露光量決定方法、半導体装置の製造方法、露光量決定プログラムおよび露光量決定装置
US8572518B2 (en) 2011-06-23 2013-10-29 Nikon Precision Inc. Predicting pattern critical dimensions in a lithographic exposure process
CN102914945B (zh) 2011-08-04 2015-05-13 上海微电子装备有限公司 一种分布式曝光剂量控制系统及方法
US9535338B2 (en) 2012-05-29 2017-01-03 Asml Netherlands B.V. Metrology method and apparatus, substrate, lithographic system and device manufacturing method
NL2013417A (en) 2013-10-02 2015-04-07 Asml Netherlands Bv Methods & apparatus for obtaining diagnostic information relating to an industrial process.
KR102265868B1 (ko) * 2013-12-11 2021-06-16 케이엘에이 코포레이션 요건에 대한 타겟 및 프로세스 감도 분석
TWI631636B (zh) 2013-12-16 2018-08-01 克萊譚克公司 以模型爲基礎之量測及一製程模型的整合使用
CN105992975B (zh) 2014-02-11 2018-06-01 Asml荷兰有限公司 用于计算任意图案的随机变化的模型
KR101939313B1 (ko) 2014-06-25 2019-01-16 에이에스엠엘 네델란즈 비.브이. 에칭 변동 감내 최적화
WO2016128189A1 (en) 2015-02-13 2016-08-18 Asml Netherlands B.V. Process variability aware adaptive inspection and metrology
KR20180115299A (ko) 2016-02-22 2018-10-22 에이에스엠엘 네델란즈 비.브이. 계측 데이터에 대한 기여도들의 분리

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100161099A1 (en) * 2008-12-24 2010-06-24 Asml Netherlands B.V. Optimization Method and a Lithographic Cell
US20110051150A1 (en) * 2009-08-31 2011-03-03 Kla-Tencor Corporation Unique mark and method to determine critical dimension uniformity and registration of reticles combined with wafer overlay capability
US20130080984A1 (en) * 2011-09-23 2013-03-28 Kla-Tencor Corporation Process aware metrology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CRID YU等: "SEM characterization of etch and develop contributions to poly-CD error", 《SPIE》 *

Also Published As

Publication number Publication date
US11520239B2 (en) 2022-12-06
JP6964591B2 (ja) 2021-11-10
TWI721496B (zh) 2021-03-11
KR20210074410A (ko) 2021-06-21
US20190086810A1 (en) 2019-03-21
TW202131111A (zh) 2021-08-16
TWI629574B (zh) 2018-07-11
TW201826033A (zh) 2018-07-16
JP2019508734A (ja) 2019-03-28
WO2017144379A1 (en) 2017-08-31
JP2022179584A (ja) 2022-12-02
JP7410795B2 (ja) 2024-01-10
JP2020126279A (ja) 2020-08-20
CN108700823A (zh) 2018-10-23
TWI668524B (zh) 2019-08-11
CN108700823B (zh) 2020-11-27
KR20220008397A (ko) 2022-01-20
US20230042759A1 (en) 2023-02-09
TWI810540B (zh) 2023-08-01
KR20180115299A (ko) 2018-10-22
CN112255892B (zh) 2023-07-18
KR102350572B1 (ko) 2022-01-11
TW201832020A (zh) 2018-09-01
KR102461086B1 (ko) 2022-10-28
TW201939174A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
CN108700823B (zh) 对量测数据的贡献的分离
US20210191278A1 (en) Computational metrology
JP7212079B2 (ja) 処理装置をモニタするための方法及びシステム
JP7443431B2 (ja) 計算メトロロジに基づく補正および制御
KR102352673B1 (ko) 컴퓨테이션 계측법
KR102454303B1 (ko) 컴퓨테이션 계측법 기반 샘플링 스킴
CN111801623B (zh) 受引导的图案化装置的检查
TWI831362B (zh) 基於失效率之製程窗
CN112602007B (zh) 匹配光瞳确定

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant