CN112223276B - 基于自适应神经网络滑模控制的多关节机器人控制方法 - Google Patents

基于自适应神经网络滑模控制的多关节机器人控制方法 Download PDF

Info

Publication number
CN112223276B
CN112223276B CN202010901796.3A CN202010901796A CN112223276B CN 112223276 B CN112223276 B CN 112223276B CN 202010901796 A CN202010901796 A CN 202010901796A CN 112223276 B CN112223276 B CN 112223276B
Authority
CN
China
Prior art keywords
neural network
joint
robot
joint robot
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010901796.3A
Other languages
English (en)
Other versions
CN112223276A (zh
Inventor
任彬
王耀
杨权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202010901796.3A priority Critical patent/CN112223276B/zh
Publication of CN112223276A publication Critical patent/CN112223276A/zh
Application granted granted Critical
Publication of CN112223276B publication Critical patent/CN112223276B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于自适应神经网络滑模控制器的多关节机器人控制方法,属于多关节机器人控制系统设计领域。本方法的操作步骤为:1)利用拉格朗日动力学方程建立多关节机器人系统的动力学模型;2)基于自适应神经网络滑模控制设计多关节机器人的控制系统模型;3)在MATLAB/Simulink中建立多关节机器人的控制仿真模型;4)通过仿真实验,分析在自适应神经网络滑模控制器的作用下,多关节机器人的角度及角速度跟踪误差,以及误差收敛情况。本发明方法具有创新性和仿真依据,可解决现有多关节机器人运动控制中误差较大及鲁棒性不足等缺陷,对多关节机器人控制系统的设计具有重大的指导意义。

Description

基于自适应神经网络滑模控制的多关节机器人控制方法
技术领域
本发明涉及一种基于自适应神经网络滑模控制的多关节机器人的优化控制方法,应用于多关节机器人的运动控制领域。
背景技术
多关节机器人是一个复杂的系统,具有强耦合、快时变性和非线性等特点,并存在模型不精确、参数变化、摩擦、外部干扰等不确定性因素的影响。因此,在实际系统中很难建立精确的多关节机器人模型。径向基函数神经网络具有高度的非线性逼近映射能力和在线学习能力,利用径向基函数神经网络设计控制系统不依赖于多关节机器人的数学模型,且具有很强的实时性。因此,径向基函数神经网络非常适用于解决多关节机器人的建模问题。利用径向基函数在线逼近多关节机器人的动力学模型,同时利用自适应神经网络控制率实现系统的实时优化,并引入鲁棒滑模控制器用于提高系统的稳定性和抗干扰能力。
发明内容
本发明的目的在于克服已有技术存在的不足,提供一种基于自适应神经网络滑模控制的多关节机器人控制方法,通过径向基函数神经网络控制在线逼近多关节机器人的动力学模型,建立实时更新的多关节机器人控制系统。
为达到上述目的,本发明采用如下技术方案:
一种基于自适应神经网络滑模控制的多关节机器人控制方法,操作步骤如下:
a.构建多关节机器人的模型:
利用拉格朗日动力学方程建立多关节机器人的动力学模型如下:
Figure BDA0002659975440000011
式中,
Figure BDA0002659975440000012
是多关节机器人的惯性矩阵,
Figure BDA0002659975440000013
表示离心力和哥式力,
Figure BDA0002659975440000014
是重力项,
Figure BDA0002659975440000015
表示由建模误差、额外干扰等因素引起的系统不确定性,ΔD(q),
Figure BDA0002659975440000016
ΔG(q)分别是矩阵D(q),
Figure BDA0002659975440000017
G(q)的建模误差,τd(t)是额外干扰力,
Figure BDA0002659975440000018
分别是关节的旋转角度、角速度和角加速度,T(t)是输出力矩,n是关节的数量,t表示时间;对双关节机器人,n=2,矩阵D(q),
Figure BDA0002659975440000019
和G(q)表达式如下:
Figure BDA0002659975440000021
Figure BDA0002659975440000022
Figure BDA0002659975440000023
式中,P=[p1,p2,p3,p4,p5]T表示机器人的模型参数向量,且有
Figure BDA0002659975440000024
式中,m1,m2表示机器人关节连杆的质量,l1,l2表示机器人关节连杆的长度,I1,I2表示机器人关节连杆的转动惯量;
b.自适应神经网络滑模控制:
定义多关节机器人的关节角度误差函数e(t)及其一阶导数如下:
e(t)=q(t)-qd(t) (6)
Figure BDA0002659975440000025
定义辅助函数α(t)和滑模面函数s(t)如下:
Figure BDA0002659975440000031
Figure BDA0002659975440000032
利用径向基函数神经网络对矩阵D(q),
Figure BDA00026599754400000318
和G(q)分别建模,结果如下:
D(q)=DSNN(q)+εD(q) (10)
Figure BDA0002659975440000033
G(q)=GSNN(q)+εG(q) (12)
式中,DSNN(q),
Figure BDA00026599754400000319
和GSNN(q)是神经网络的输出,
Figure BDA0002659975440000034
Figure BDA0002659975440000035
Figure BDA0002659975440000036
Figure BDA0002659975440000037
是神经网络建模的理想权重,HD(q),
Figure BDA0002659975440000038
和HG(q)是径向基函数,εD(q),
Figure BDA0002659975440000039
εG(q)分别是神经网络对D(q),
Figure BDA00026599754400000310
G(q)的建模误差;
矩阵DSNN(q),
Figure BDA00026599754400000311
和GSNN(q)的估计值为:
Figure BDA00026599754400000312
Figure BDA00026599754400000313
Figure BDA00026599754400000314
式中,
Figure BDA00026599754400000315
分别是
Figure BDA00026599754400000316
的估计权值;神经网络控制器设计如下:
Figure BDA00026599754400000317
系统总控制器设计如下:
T(t)=TNN(t)+Tr(t)+Tf(t) (17)
Figure BDA0002659975440000047
Figure BDA0002659975440000041
Tf(t)=-Kfs (20)
式中,qd(t)是机器人关节角度的期望值,Λ>0是滑模系数,Tr是鲁棒滑模控制器,用于补偿机器人系统中存在的不确定性,k1,k2是控制增益,Kf是一个正定对称矩阵;用于求解估计权值
Figure BDA0002659975440000042
的自适应控制率设计如下:
Figure BDA0002659975440000043
Figure BDA0002659975440000044
Figure BDA0002659975440000045
式中,ΓMi,ΓVi,ΓGi是正定对称矩阵,hDi(q)∈HD(q),
Figure BDA0002659975440000046
利用自适应神经网络控制率求解神经网络的权值,在线逼近多关节机器人的模型参数,神经网络控制器可实时地进行更新;给定多关节机器人的期望关节角度qd(t),在神经网络控制器、鲁棒滑模控制器和自适应神经网络控制率的作用下,可实现多关节机器人的实际关节运动角度q(t)对期望轨迹qd(t)的有效跟踪,并且具有较强的抗干扰能力;
c.构建多关节机器人MATLAB/Simulink仿真模型:
基于所述自适应神经网络控制方法的上述步骤,在MATLAB/Simulink中搭建多关节机器人单臂控制的仿真模型;该仿真模型包含四个主要模块,分别是输入模块、控制器模块、动力学模型模块和输出模块;其中,控制器模块是由鲁棒滑模控制器模块、神经网络控制器模块及自适应神经网络控制率模块构成;
输入模块用于定义多关节机器人的期望关节角度qd(t);输入模块用于输出机器人末端执行器的目标运动轨迹或期望轨迹;
鲁棒滑模控制器模块、神经网络控制器模块和自适应神经网络控制率模块组成总控制器,用于控制多关节机器人的轨迹跟踪运动,设置多关节机器人模型模块用于定义多关节机器人的动力学模型,自适应神经网络控制率模块对神经网络控制器模块进行补偿,鲁棒滑模控制器模块和神经网络控制器模块控制多关节机器人模型模块,自适应神经网络控制率模块输出估计权值;
输出模块用于输出神经网络控制器的估计权值,输出模块用于输出多关节机器人的关节运动的实际轨迹;
d.仿真结果分析:
根据仿真结果,分别得到机器人关节角度和角速度的跟踪情况,以及误差的收敛情况;具体包括关节1的角度和角速度的轨迹跟踪情况图,关节2的角度和角速度的轨迹跟踪情况图,关节角度和加速度的轨迹跟踪误差图。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1.本发明提出一种自适应神经网络滑模控制方法,用于解决多关节机器人的轨迹跟踪问题;在控制系统中,利用径向基函数神经网络控制器逼近多关节机器人的动态系统模型,可以有效地解决多关节机器人控制模型不精确的问题,且控制器结构相对简单,实时控制性能较好;
2.本发明在控制器中加入了鲁棒滑模控制器,有助于提高多关节机器人的抗干扰能力,同时能够提高系统的稳定性。
附图说明
图1为本发明基于多关节机器人自适应神经网络滑模控制的控制系统架构图。
图2为本发明基于多关节机器人自适应神经网络滑模控制的控制系统
MATLAB/Simulink仿真图。
图3为本发明实施例二的关节1的角度和角速度跟踪轨迹。
图4为本发明实施例二的关节2的角度和角速度跟踪轨迹。
图5为本发明实施例二的关节角度和角速度的轨迹跟踪误差。
具体实施方式
本发明的优选实施例结合附图详述如下:
实施例一:
参见图1-图2,一种基于自适应神经网络滑模控制的多关节机器人控制方法,操作步骤如下:
a.构建多关节机器人的模型:
利用拉格朗日动力学方程建立多关节机器人的动力学模型如下:
Figure BDA0002659975440000051
式中,
Figure BDA0002659975440000061
是多关节机器人的惯性矩阵,
Figure BDA0002659975440000062
表示离心力和哥式力,
Figure BDA0002659975440000063
是重力项,
Figure BDA0002659975440000064
表示由建模误差、额外干扰等因素引起的系统不确定性,ΔD(q),
Figure BDA0002659975440000065
ΔG(q)分别是矩阵D(q),
Figure BDA0002659975440000066
G(q)的建模误差,τd(t)是额外干扰力,
Figure BDA0002659975440000067
分别是关节的旋转角度、角速度和角加速度,T(t)是输出力矩,n是关节的数量;对双关节机器人,n=2,矩阵D(q),
Figure BDA0002659975440000068
和G(q)表达式如下:
Figure BDA0002659975440000069
Figure BDA00026599754400000610
Figure BDA00026599754400000611
式中,P=[p1,p2,p3,p4,p5]T表示机器人的模型参数向量,且有
Figure BDA00026599754400000612
式中,m1,m2表示机器人关节连杆的质量,l1,l2表示机器人关节连杆的长度,I1,I2表示机器人关节连杆的转动惯量;
b.自适应神经网络滑模控制:
定义多关节机器人的关节角度误差函数e(t)及其一阶导数如下:
e(t)=q(t)-qd(t) (6)
Figure BDA0002659975440000071
定义辅助函数α(t)和滑模面函数s(t)如下:
Figure BDA0002659975440000072
Figure BDA0002659975440000073
利用径向基函数神经网络对矩阵D(q),
Figure BDA0002659975440000074
和G(q)分别建模,结果如下:
D(q)=DSNN(q)+εD(q) (10)
Figure BDA00026599754400000717
G(q)=GSNN(q)+εG(q) (12)
式中,DSNN(q),
Figure BDA0002659975440000075
和GSNN(q)是神经网络的输出,
Figure BDA0002659975440000076
Figure BDA0002659975440000077
Figure BDA0002659975440000078
Figure BDA0002659975440000079
是神经网络建模的理想权重,HD(q),
Figure BDA00026599754400000710
和HG(q)是径向基函数,εD(q),
Figure BDA00026599754400000711
εG(q)分别是神经网络对D(q),
Figure BDA00026599754400000712
G(q)的建模误差;
矩阵DSNN(q),
Figure BDA00026599754400000713
和GSNN(q)的估计值为:
Figure BDA00026599754400000714
Figure BDA00026599754400000715
Figure BDA00026599754400000716
式中,
Figure BDA0002659975440000081
分别是
Figure BDA0002659975440000082
的估计权值;神经网络控制器设计如下:
Figure BDA0002659975440000083
系统总控制器设计如下:
T(t)=TNN(t)+Tr(t)+Tf(t) (17)
Figure BDA0002659975440000084
Figure BDA0002659975440000085
Tf(t)=-Kfs (20)
式中,qd(t)是机器人关节角度的期望值,Λ>0是滑模系数,Tr是鲁棒滑模控制器,用于补偿机器人系统中存在的不确定性,k1,k2是控制增益,Kf是一个正定对称矩阵;用于求解估计权值
Figure BDA0002659975440000086
的自适应控制率设计如下:
Figure BDA0002659975440000087
Figure BDA0002659975440000088
Figure BDA0002659975440000089
式中,ΓMi,ΓVi,ΓGi是正定对称矩阵,hDi(q)∈HD(q),
Figure BDA00026599754400000810
hGi(q)∈HG(q);
利用自适应神经网络控制率求解神经网络的权值,在线逼近多关节机器人的模型参数,神经网络控制器)可实时地进行更新;给定多关节机器人的期望关节角度qd(t),在神经网络控制器、鲁棒滑模控制器和自适应神经网络控制率的作用下,可实现多关节机器人的实际关节运动角度q(t)对期望轨迹qd(t)的有效跟踪,并且具有较强的抗干扰能力;
c.构建多关节机器人MATLAB/Simulink仿真模型:
基于所述自适应神经网络控制方法的上述步骤,在MATLAB/Simulink中搭建多关节机器人单臂控制的仿真模型;该仿真模型包含四个主要模块,分别是输入模块1、控制器模块9、动力学模型模块和输出模块8;其中,控制器模块9是由鲁棒滑模控制器模块3、神经网络控制器模块4及自适应神经网络控制率模块5构成;
输入模块1用于定义多关节机器人的期望关节角度qd(t);输入模块(1)用于输出机器人末端执行器的目标运动轨迹或期望轨迹;
鲁棒滑模控制器模块3、神经网络控制器模块4和自适应神经网络控制率模块5组成总控制器,用于控制多关节机器人的轨迹跟踪运动,设置多关节机器人模型模块6用于定义多关节机器人的动力学模型,自适应神经网络控制率模块5对神经网络控制器模块4进行补偿,鲁棒滑模控制器模块3和神经网络控制器模块4控制多关节机器人模型模块6,自适应神经网络控制率模块5输出估计权值;
输出模块8用于输出神经网络控制器的估计权值,输出模块8用于输出多关节机器人的关节运动的实际轨迹;
d.仿真结果分析:
根据仿真结果,分别得到机器人关节角度和角速度的跟踪情况,以及误差的收敛情况;具体包括关节1的角度和角速度的轨迹跟踪情况图,关节2的角度和角速度的轨迹跟踪情况图,关节角度和加速度的轨迹跟踪误差图。
实施例二:
本实施例与实施例一基本相同,特别之处在于:
参考图1~图5,基于自适应神经网络滑模控制器的多关节机器人控制方法,操作步骤如下:
a.多关节机器人的模型
根据上述发明内容a的内容,双关节机器人动力学模型如下:
Figure BDA0002659975440000091
式中,q=[q1 q2]T,q1,q2是机器人关节的运动角度。m1=4.58kg,m2=6.52kg,l1=0.3m,l2=0.35m,g=9.8m/s2,其中Kg是质量单位千克,m是长度单位米,s是时间单位秒。初始位置是q(0)=[0.1 0.6]T
Figure BDA0002659975440000093
干扰设为
Figure BDA0002659975440000092
b.自适应神经网络滑模控制
根据上述发明内容b的内容,基于自适应神经网络滑模控制的多关节机器人控制器如下:
T(t)=TNN+Tr+Tf (25)
Figure BDA0002659975440000101
Figure BDA0002659975440000102
Tf=-Kfs (28)
自适应神经网络控制率如下:
Figure BDA0002659975440000103
Figure BDA0002659975440000104
Figure BDA0002659975440000105
式中,k1=5,
Figure BDA0002659975440000106
Figure BDA0002659975440000107
kM=km=kC=kc=kg=0.01,δ=0.01,Λ=diag[5 5],Kf=diag[150 150]。
c.多关节机器人MATLAB/Simulink仿真模型
根据上述发明内容c的内容,建立如图1所示的基于自适应神经网络鲁棒控制器的多关节机器人控制系统模型。
d.仿真结果分析
通过仿真结果可以得到多关节机器人关节的角度和角速度的跟踪情况,以及误差的收敛情况。图1是基于自适应神经网络鲁棒控制器的多关节机器人控制系统架构,图2是控制系统MATLAB/Simulink仿真模型,图3是关节1的角度和角速度跟踪情况,图4是关节2的角度和角速度跟踪情况,图5是关节角度和角速度的轨迹跟踪误差。角度的量纲是弧度,角速度的量纲是弧度每秒。从图3和图4看出自适应神经网络滑模控制器对期望关节轨迹(角度和角速度)具有良好的跟踪效果。根据图5,肩关节和肘关节的角度跟踪误差和角速度跟踪误差都能够快速收敛至零,并且逐渐稳定在零的某一个很小的领域之内。根据仿真结果,对于给定的多关节机器人,在自适应神经网络滑模控制器和自适应神经网络控制率的作用下,多关节机器人能够实现对期望轨迹的有效跟踪,并且关节的跟踪误差是最终一致有界的。
本实施例基于自适应神经网络技术设计了多关节机器人的控制方法,有效地提高多关节机器人系统的抗干扰能力及最小化跟踪误差,对提高多关节机器人的控制性能具有一定的借鉴意义。
综上所述,上述实施例基于自适应神经网络滑模控制器的多关节机器人控制方法,应用于多关节机器人控制系统设计领域。其方法的操作步骤为:1)利用拉格朗日动力学方程建立多关节机器人系统的动力学模型;2)基于自适应神经网络滑模控制设计多关节机器人的控制系统模型;3)在MATLAB/Simulink中建立多关节机器人的控制仿真模型;4)通过仿真实验,分析在自适应神经网络滑模控制器的作用下,多关节机器人的角度及角速度跟踪误差,以及误差收敛情况。上述实施例方法具有创新性和仿真依据,可解决现有多关节机器人运动控制中误差较大及鲁棒性不足等缺陷,对多关节机器人控制系统的设计具有重大的指导意义。
上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明的技术原理和发明构思,都属于本发明的保护范围。

Claims (1)

1.一种基于自适应神经网络滑模控制的多关节机器人控制方法,其特征在于,操作步骤如下:
a.构建多关节机器人的模型:
利用拉格朗日动力学方程建立多关节机器人的动力学模型如下:
Figure FDA0003899310400000011
式中,
Figure FDA0003899310400000012
是多关节机器人的惯性矩阵,
Figure FDA0003899310400000013
表示离心力和哥式力,
Figure FDA0003899310400000014
是重力项,
Figure FDA0003899310400000015
表示由建模误差、额外干扰等因素引起的系统不确定性,ΔD(q),
Figure FDA0003899310400000016
ΔG(q)分别是矩阵D(q),
Figure FDA0003899310400000017
G(q)的建模误差,τd(t)是额外干扰力,
Figure FDA0003899310400000018
分别是关节的旋转角度、角速度和角加速度,T(t)是输出力矩,n是关节的数量,t表示时间;对双关节机器人,n=2,矩阵D(q),
Figure FDA0003899310400000019
和G(q)表达式如下:
Figure FDA00038993104000000110
Figure FDA00038993104000000111
Figure FDA00038993104000000112
式中,P=[p1,p2,p3,p4,p5]T表示机器人的模型参数向量,且有
Figure FDA00038993104000000113
p5=m2lc2
式中,m1,m2表示机器人关节连杆的质量,l1,l2表示机器人关节连杆的长度,I1,I2表示机器人关节连杆的转动惯量;
b.自适应神经网络滑模控制:
定义多关节机器人的关节角度误差函数e(t)及其一阶导数如下:
e(t)=q(t)-qd(t) (6)
Figure FDA0003899310400000021
定义辅助函数α(t)和滑模面函数s(t)如下:
Figure FDA0003899310400000022
Figure FDA0003899310400000023
利用径向基函数神经网络对矩阵D(q),
Figure FDA0003899310400000024
和G(q)分别建模,结果如下:
D(q)=DSNN(q)+εD(q) (10)
Figure FDA0003899310400000025
G(q)=GSNN(q)+εG(q) (12)
式中,DSNN(q),
Figure FDA0003899310400000026
和GSNN(q)是神经网络的输出,
Figure FDA0003899310400000027
Figure FDA0003899310400000028
Figure FDA0003899310400000029
Figure FDA00038993104000000210
是神经网络建模的理想权重,HD(q),
Figure FDA00038993104000000211
和HG(q)是径向基函数,εD(q),
Figure FDA00038993104000000212
εG(q)分别是神经网络对D(q),
Figure FDA00038993104000000213
G(q)的建模误差;
矩阵DSNN(q),
Figure FDA0003899310400000031
和GSNN(q)的估计值为:
Figure FDA0003899310400000032
Figure FDA0003899310400000033
Figure FDA0003899310400000034
式中,
Figure FDA0003899310400000035
分别是
Figure FDA0003899310400000036
的估计权值;神经网络控制器设计如下:
Figure FDA0003899310400000037
系统总控制器设计如下:
T(t)=TNN(t)+Tr(t)+Tf(t) (17)
Figure FDA0003899310400000038
Figure FDA0003899310400000039
Tf(t)=-Kfs (20)
式中,qd(t)是机器人关节角度的期望值,Λ>0是滑模系数,Tr是鲁棒滑模控制器,用于补偿机器人系统中存在的不确定性,k1,k2是控制增益,Kf是一个正定对称矩阵;用于求解估计权值
Figure FDA00038993104000000310
的自适应控制率设计如下:
Figure FDA00038993104000000311
Figure FDA00038993104000000312
Figure FDA00038993104000000313
式中,ΓMi,ΓVi,ΓGi是正定对称矩阵,hDi(q)∈HD(q)
Figure FDA00038993104000000314
hGi(q)∈HG(q);
利用自适应神经网络控制率求解神经网络的权值,在线逼近多关节机器人的模型参数,神经网络控制器可实时地进行更新;给定多关节机器人的期望关节角度qd(t),在神经网络控制器、鲁棒滑模控制器和自适应神经网络控制率的作用下,可实现多关节机器人的实际关节运动角度q(t)对期望轨迹qd(t)的有效跟踪,并且具有较强的抗干扰能力;
c.构建多关节机器人MATLAB/Simulink仿真模型:
基于自适应神经网络滑模控制的上述步骤,在MATLAB/Simulink中搭建多关节机器人单臂控制的仿真模型;该仿真模型包含四个主要模块,分别是输入模块(1)、控制器模块(9)、动力学模型模块和输出模块(8);其中,控制器模块(9)是由鲁棒滑模控制器模块(3)、神经网络控制器模块(4)及自适应神经网络控制率模块(5)构成;
输入模块(1)用于定义多关节机器人的期望关节角度qd(t);输入模块(1)用于输出机器人末端执行器的目标运动轨迹或期望轨迹;
鲁棒滑模控制器模块(3)、神经网络控制器模块(4)和自适应神经网络控制率模块(5)组成总控制器,用于控制多关节机器人的轨迹跟踪运动,设置多关节机器人模型模块(6)用于定义多关节机器人的动力学模型,自适应神经网络控制率模块(5)对神经网络控制器模块(4)进行补偿,鲁棒滑模控制器模块(3)和神经网络控制器模块(4)控制多关节机器人模型模块(6),自适应神经网络控制率模块(5)输出估计权值;
输出模块(8)用于输出神经网络控制器的估计权值,输出模块(8)用于输出多关节机器人的关节运动的实际轨迹;
d.仿真结果分析:
根据仿真结果,分别得到机器人关节角度和角速度的跟踪情况,以及误差的收敛情况;具体包括关节1的角度和角速度的轨迹跟踪情况图,关节2的角度和角速度的轨迹跟踪情况图,关节角度和加速度的轨迹跟踪误差图。
CN202010901796.3A 2020-09-01 2020-09-01 基于自适应神经网络滑模控制的多关节机器人控制方法 Active CN112223276B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010901796.3A CN112223276B (zh) 2020-09-01 2020-09-01 基于自适应神经网络滑模控制的多关节机器人控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010901796.3A CN112223276B (zh) 2020-09-01 2020-09-01 基于自适应神经网络滑模控制的多关节机器人控制方法

Publications (2)

Publication Number Publication Date
CN112223276A CN112223276A (zh) 2021-01-15
CN112223276B true CN112223276B (zh) 2023-02-10

Family

ID=74116449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010901796.3A Active CN112223276B (zh) 2020-09-01 2020-09-01 基于自适应神经网络滑模控制的多关节机器人控制方法

Country Status (1)

Country Link
CN (1) CN112223276B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200837B (zh) * 2021-12-08 2023-10-10 北京理工大学 一种干扰未知球形机器人的分层滑模控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105904461A (zh) * 2016-05-16 2016-08-31 西北工业大学 一种基于径向基函数的神经网络自适应遥操作控制方法
CN109227550A (zh) * 2018-11-12 2019-01-18 吉林大学 一种基于rbf神经网络的机械臂控制方法
CN110673544A (zh) * 2019-09-27 2020-01-10 上海大学 基于自适应在线学习的上肢康复机器人控制方法
CN111496792A (zh) * 2020-04-27 2020-08-07 北京科技大学 一种机械臂输入饱和固定时间轨迹跟踪控制方法及系统
KR20200097982A (ko) * 2019-02-11 2020-08-20 동의대학교 산학협력단 입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 pso를 이용한 rbfnn 기반 분산 적응 추종 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105904461A (zh) * 2016-05-16 2016-08-31 西北工业大学 一种基于径向基函数的神经网络自适应遥操作控制方法
CN109227550A (zh) * 2018-11-12 2019-01-18 吉林大学 一种基于rbf神经网络的机械臂控制方法
KR20200097982A (ko) * 2019-02-11 2020-08-20 동의대학교 산학협력단 입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 pso를 이용한 rbfnn 기반 분산 적응 추종 시스템
CN110673544A (zh) * 2019-09-27 2020-01-10 上海大学 基于自适应在线学习的上肢康复机器人控制方法
CN111496792A (zh) * 2020-04-27 2020-08-07 北京科技大学 一种机械臂输入饱和固定时间轨迹跟踪控制方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Single Leg Gait Tracking of Lower Limb Exoskeleton Based on Adaptive Iterative Learning Control;Ren Bin, 等;《APPLIED SCIENCES-BASEL》;20190531;第9卷(第11期);2251 *
基于RBF神经网络的膝关节步态预测方法研究;罗旭荣,等;《工业控制计算机》;20190825;第32卷(第8期);90-91 *

Also Published As

Publication number Publication date
CN112223276A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
CN111152225B (zh) 存在输入饱和的不确定机械臂固定时间轨迹跟踪控制方法
CN110531707B (zh) Scara机器人的摩擦模型改进以及动力学参数辨识方法
CN108527372B (zh) 一种变刚度串联弹性驱动器的机器人关节自适应控制方法
CN109465825A (zh) 机械臂柔性关节的rbf神经网络自适应动态面控制方法
CN112223275B (zh) 基于有限时间跟踪控制的协作机器人控制方法
CN110977988A (zh) 基于有限时间命令滤波的多关节机械臂阻抗控制方法
CN109352656B (zh) 一种具有时变输出约束的多关节机械臂控制方法
CN110673544B (zh) 基于自适应在线学习的上肢康复机器人控制方法
CN109445274B (zh) 一种柔性空间机械臂振动控制方法及系统
CN111649906B (zh) 一种风洞试验的受油机模型支撑装置的滑膜跟随控制方法
CN114347018A (zh) 一种基于小波神经网络的机械臂扰动补偿方法
CN111730594A (zh) 一种模块化机器人面向外部碰撞的分散控制方法及系统
CN112223276B (zh) 基于自适应神经网络滑模控制的多关节机器人控制方法
CN114310911B (zh) 基于神经网络的驱动关节动态误差预测与补偿系统及方法
CN114942593A (zh) 一种基于干扰观测器补偿的机械臂自适应滑模控制方法
Jing et al. A recursive dynamic modeling and control for dual-arm manipulator with elastic joints
JPH10128688A (ja) ロボットの非干渉化制御方法
Zhang et al. Adaptive disturbance observer-based dual-loop integral-type fast terminal sliding mode control for micro spacecraft and its gimbal tracking device
CN111872933B (zh) 一种基于改进二次型迭代学习控制的scara机器人轨迹跟踪控制方法
CN112180719A (zh) 基于人机协作系统的新型鲁棒有限时间轨迹控制方法
WO2023020036A1 (zh) 一种基于回声状态网络的冗余机械臂追踪控制方法
CN115473467A (zh) 基于模糊观测器的柔性关节机械臂指令滤波反步控制方法
CN113219841B (zh) 基于自适应鲁棒的水下多关节液压机械臂非线性控制方法
CN115476356A (zh) 一种无需力传感器的空间机械臂自适应混合阻抗控制方法
CN111399397B (zh) 机器人的控制方法、控制器及控制系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant