CN110531707B - Scara机器人的摩擦模型改进以及动力学参数辨识方法 - Google Patents

Scara机器人的摩擦模型改进以及动力学参数辨识方法 Download PDF

Info

Publication number
CN110531707B
CN110531707B CN201910874616.4A CN201910874616A CN110531707B CN 110531707 B CN110531707 B CN 110531707B CN 201910874616 A CN201910874616 A CN 201910874616A CN 110531707 B CN110531707 B CN 110531707B
Authority
CN
China
Prior art keywords
friction
model
friction model
scara robot
parameter identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910874616.4A
Other languages
English (en)
Other versions
CN110531707A (zh
Inventor
袁野
白瑞林
李新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Xinje Electric Co Ltd
Original Assignee
Wuxi Xinje Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Xinje Electric Co Ltd filed Critical Wuxi Xinje Electric Co Ltd
Priority to CN201910874616.4A priority Critical patent/CN110531707B/zh
Publication of CN110531707A publication Critical patent/CN110531707A/zh
Application granted granted Critical
Publication of CN110531707B publication Critical patent/CN110531707B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32153Exchange data between user, cad, caq, nc, capp

Abstract

本发明公开了一种SCARA机器人的摩擦模型改进以及动力学参数辨识方法,包括:建立SCARA机器人关节动力学模型;对改进的摩擦模型进行参数辨识;将辨识后的所述摩擦模型代入动力学模型,对所述动力学模型中除所述摩擦模型外的剩余部分线性化;基于线性化后的所述动力学模型,设定观测矩阵和限制条件,从而设计出改进傅里叶形式的激励轨迹;基于所述激励轨迹,通过实验采集对应的数据,从而获得待辨识的动力学参数;通过最小二乘法辨识所述待辨识的动力学参数。实现提高参数辨识的精度和力矩预测的准确性的优点。

Description

SCARA机器人的摩擦模型改进以及动力学参数辨识方法
技术领域
本发明涉及SCARA机器人的动力学控制优化领域,具体地,涉及SCARA机器人的摩擦模型改进以及动力学参数辨识方法。
背景技术
随着智能制造业的不断发展,工业机器人逐渐应用到高精度的领域。目前,国内的工业机器人大多采用基于运动学的控制方法,各关节采用独立的PID控制策略,跟踪精度不高。设计基于模型的先进控制,考虑各个关节的动力学是实现高精度运动控制的有效方法,但该类控制策略都需要机器人的精准动力学模型以及动力学参数。
机器人动力学参数的获取方法主要有解体测量法、CAD法以及整体辨识法。机器人结构复杂,解体测量法无法直接测量出所有参数;CAD方法忽略了机器人的装备误差,精度不高;整体辨识法不需要拆解机器人,也无需搭建专门的实验平台,过程方便,受到了广泛应用。但现有的辨识法存在参数辨识的精度不够和力矩预测的准确性不足的问题。
发明内容
本发明的目的在于,针对上述问题,提出一种SCARA机器人的摩擦模型改进以及动力学参数辨识方法,以实现提高参数辨识的精度和力矩预测的准确性的优点。
为实现上述目的,本发明实施例采用的技术方案是:
一种SCARA机器人的摩擦模型改进以及动力学参数辨识方法,包括:
建立SCARA机器人关节动力学模型;
对改进的摩擦模型进行参数辨识;
将辨识后的所述摩擦模型代入动力学模型,对所述动力学模型中除所述摩擦模型外的剩余部分线性化;
基于线性化后的所述动力学模型,设定观测矩阵和限制条件,从而设计出改进傅里叶形式的激励轨迹;
基于所述激励轨迹,通过实验采集对应的数据,从而获得待辨识的动力学参数;
通过最小二乘法辨识所述待辨识的动力学参数。
进一步的,所述建立SCARA机器人关节动力学模型,包括:
用拉格朗日法建立简化的SCARA机器人动力学模型;
n关节的SCARA机器人简化的动力学模型中的动力学方程为:
Figure BDA0002203151820000021
式中,q为转角向量,其1、2阶导
Figure BDA0002203151820000022
分别为角速度和角加速度向量,H(q)为是n阶机器人惯性矩阵,
Figure BDA0002203151820000023
为哥氏力离心力矩阵,G(q)为重力向量,
Figure BDA0002203151820000024
τ分别为摩擦、驱动力矩向量。
进一步的,所述对改进的摩擦模型进行参数辨识,包括:
在设定条件下采集实验数据;
基于实验数据建立轴摩擦力矩与轴角速度、轴加速度和角位置相关联的改进的摩擦模型;
基于所述改进的摩擦模型进行参数辨识。
进一步的,在设定条件下采集实验数据为:
在设定条件下采集单轴在电机侧的输出转速区间内的36组不同速度的恒速跟踪实验数据。
进一步的,基于实验数据建立轴摩擦力矩与轴角速度、轴加速度相关联的改进的摩擦模型,包括:
通过库伦+黏滞摩擦模型对实验数据进行拟合:
Figure BDA0002203151820000025
其中,Fv为与速度相关的摩擦力,fc为库伦摩擦系数,fv为粘滞摩擦系数;
将摩擦模型分解为与速度相关的摩擦模型和与角度相关的摩擦模型;
与所述速度相关的摩擦模型在库伦+黏滞摩擦的基础上添加摩擦项以及高速摩擦补偿项为:
Figure BDA0002203151820000031
其中fs为静摩擦系数,vs为速度比例系数,fa是添加的高速摩擦补偿系数。
进一步的,基于实验数据建立轴摩擦力矩与角位置相关联的改进的摩擦模型,包括:
与所述角度相关的摩擦模型分析时将所述实验数据进行快速傅里叶变化,得到主导频率成分,采用正弦函数组合形式表示为:
Figure BDA0002203151820000032
其中,Fp为与角位置相关的摩擦力,A1,A2为幅值,
Figure BDA0002203151820000033
为相移,p为输入电机侧的角位移。
进一步的,所述基于线性化后的所述动力学模型,设定观测矩阵和限制条件,从而设计出改进傅里叶形式的激励轨迹,包括:
构造观测矩阵的优化标准为:
Figure BDA0002203151820000034
其中,Y为观测矩阵,σmin(Y)表示矩阵的最小奇异值,λ表示权重,λ等于0.1。
进一步的,所述基于线性化后的所述动力学模型,设定观测矩阵和限制条件,从而设计出改进傅里叶形式的激励轨迹,包括:
通过遗传算法解决所述激励轨迹中角度、速度和加速度的限制;
在遗传算法中针对违反约束的个体,在违反约束的个体的适应度值上施加一个惩罚函数,所述惩罚函数为:
F′=F+α·max{0,p},
F为原适应度函数,α为大于0的一个罚函数因子,p为罚函数,不满足约束时p为正值,满足时p为0。
进一步的,所述基于所述激励轨迹,通过实验采集对应的数据,从而获得待辨识的动力学参数,包括:
采用非线性跟踪微分器对采集的关节角度进行处理,从而求取角速度信号与角加速度信号,
所述非线性跟踪微分器包括,速度因子r和快速最优控制综合函数u(x1,x2)。
进一步的,所述通过最小二乘法辨识所述待辨识的动力学参数,包括:
通过最小二乘法对所述待辨识的动力学参数估计:
Figure BDA0002203151820000041
其中,Y为观测矩阵,
Figure BDA0002203151820000042
分别为角速度和角加速度向量,τ为驱动力矩向量,
Figure BDA0002203151820000043
为需要辨识的动力学参数集,Ff为摩擦模型。
本发明的技术方案具有以下有益效果:
(1)在机器人本体动力学模型中加入改进的摩擦模型得到完整的改进动力学模型,这将提高参数辨识的精度和力矩预测的准确性。
(2)针对SCARA机器人运动时摩擦的复杂非线性现象,本发明提出的改进摩擦模型可以更好的表征SCARA机器人高速运动时的复杂摩擦现象。
(3)通过设计带奖惩函数的组合优化算法,设计了参数辨识时所用的激励轨迹,加快了优化时间,并通过采用数据预处理得到辨识所需的关节速度加速度和力矩等信号。本发明在保证SCARA机器人运动不超限的同时提高了整体辨识的精度。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明实施例所述的SCARA机器人的摩擦模型改进以及动力学参数辨识方法的流程图;
图2为本发明实施例所述的SCARA机器人连杆坐标系图;
图3为本发明实施例所述的SCARA机器人结构示意图;
图4为本发明实施例所述的激励轨迹组合优化算法流程图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
如图1所示,一种SCARA机器人的摩擦模型改进以及动力学参数辨识方法,包括:
S101:建立SCARA机器人关节动力学模型;
S102:对改进的摩擦模型进行参数辨识;
S103:将辨识后的所述摩擦模型代入动力学模型,对所述动力学模型中除所述摩擦模型外的剩余部分线性化;
S104:基于线性化后的所述动力学模型,设定观测矩阵和限制条件,从而设计出改进傅里叶形式的激励轨迹;
S105:基于所述激励轨迹,通过实验采集对应的数据,从而获得待辨识的动力学参数;
S106:通过最小二乘法辨识所述待辨识的动力学参数。
具体的实施方式中,SCARA机器人结构如图3所示。
一种基于改进摩擦模型的动力学参数辨识方法,包括:
建立简化的SCARA机器人关节动力学模型;
根据SCARA机器人结构,采用拉格朗日法建立简化的SCARA机器人两关节动力学模型;
n关节的机器人系统的动力学方程为:
Figure BDA0002203151820000061
式中,q为转角向量,其1、2阶导
Figure BDA0002203151820000062
分别为角速度和角加速度向量,H(q)为是n阶机器人惯性矩阵,
Figure BDA0002203151820000063
为哥氏力离心力矩阵,G(q)为重力向量,
Figure BDA0002203151820000064
τ分别为摩擦、驱动力矩向量。
改进摩擦模型,并设计实验进行参数辨识;
通过传统库伦+黏滞摩擦模型对实验数据进行拟合,具体形式为:
Figure BDA0002203151820000065
其中,fc为库伦摩擦系数,fv为粘滞摩擦系数。
将摩擦模型分解为两部分,与速度相关部分和与角度相关部分。
与速度相关的摩擦模型在粘滞摩擦+库伦摩擦的基础上添加斯特里贝克(Stribeck)摩擦项以及高速摩擦补偿项,目的在高速阶段能够更好的表征关节摩擦。形式为:
Figure BDA0002203151820000066
其中fs为静摩擦系数,vs为速度比例系数,fa是添加的高速摩擦补偿系数。
在一组恒速跟踪实验中,研究轴角度与摩擦力矩的关系,与角度相关的摩擦模型分析时可将数据进行快速傅里叶变化,得到主导频率成分,采用正弦函数组合形式表示,得到影响较大的频率大小,获得与角度相关的摩擦力矩表达式:
Figure BDA0002203151820000067
其中,Fp为与角位置相关的摩擦力,A1,A2为幅值,
Figure BDA0002203151820000068
为相移,q为输入电机侧的角位移。
实验时,运动单轴时,锁定其他轴,单轴在电机侧的输出转速区间内,进行36组不同速度的恒速跟踪实验;
具体的:以关节1为例,锁定其它三个关节,关节1进行恒速跟踪实验。为了分析摩擦力矩和电机转速之间的关系,在电机侧的输出转速区间[-1500,1500]r/min内,进行36组不同速度的恒速跟踪实验。考虑到低速阶段摩擦影响更大,速度取值较密,进而得到了角速度—摩擦数据。求取每一固定速度下采样力矩的平均值。通过单轴恒速运动,建立轴摩擦力矩与轴角速度、轴加速度的关系模型。
将辨识后的摩擦模型代入动力学公式,对剩余部分线性化;
通过对改进后的动力学模型进行线性化处理,得到含有4个待辨识参数的基参数集;
Figure BDA0002203151820000071
其中,
Figure BDA0002203151820000072
Figure BDA0002203151820000073
Figure BDA0002203151820000074
Figure BDA0002203151820000075
其中,mi、li和xi分别为连杆i的质量、连杆长度和质心距离,Jci为连杆i的质心转动惯量,si=sin(qi)、ci=cos(qi)。
SCARA机器人连杆坐标系如图2所示。
对式(5)SCARA机器人动力学方程进行线性化处理得到线性组合的观测矩阵Y2×4和基参数集φ4×1,基参数集为待辨识的一组最小参数集:
Figure BDA0002203151820000076
其中,
Figure BDA0002203151820000081
φ2=m2l1x2
Figure BDA0002203151820000082
Figure BDA0002203151820000083
Y14=0,Y21=0,
Figure BDA0002203151820000084
由观测矩阵和限制条件,设计出改进傅里叶形式的激励轨迹;
根据所求模型预测任意速度、角度下的摩擦力矩,结合由拉格朗日法推导的动力学方程,得到动力学参数辨识的基参数集和观测矩阵;
通过给定各关节特定的激励轨迹,采样N次关节跟踪轨迹的输入力矩、关节角度,间接计算角速度和角加速度,可得到辨识的观测矩阵。
Figure BDA0002203151820000085
激励轨迹的设计决定了动力学参数辨识的精度,选择采用周期性的傅里叶级数作为激励轨迹。并且,在傅里叶级数的基础上添加角度、速度和加速度零位偏移量,以保证初始角度、速度和加速度连续。
采用带零位补偿的五级傅里叶级数作为激励轨迹,保证了初始角度、速度和加速度连续,具体形式为:
Figure BDA0002203151820000086
Figure BDA0002203151820000087
其中,ai,k,bi,k是傅里叶级数的系数,也是需要优化的参数,qi,0为零位补偿。
式(11)中,当观测矩阵Y和输出力矩τ都含有扰动时,观测矩阵条件数越大,会导致解的相对误差也就越大。并且辨识中需要求得矩阵YTY的逆矩阵,需要Y矩阵的最小奇异值较大。综合考虑,构造如下的优化标准:
Figure BDA0002203151820000088
其中,σmin(Y)表示矩阵的最小奇异值,λ表示权重,综合考虑奇异值的影响以及优化复杂度,一般取0.1。
如图4所示,确定了激励轨迹的形式以及优化标准后,可通过优化算法优化激励轨迹参数,即
min(F(YN)) (14),
Figure BDA0002203151820000091
qmin≤q(t)≤qmax,
Figure BDA0002203151820000092
Figure BDA0002203151820000093
式(15)是一个非线性优化问题,可以采用遗传算法。因为机器人关节角度、速度、加速度限制以及机器人末端空间位置限制,对激励轨迹有了一定的约束。遗传算法可以设计遗传变量的方法解决角度、速度、加速度的限制,但不能直接解决机器人末端空间位置限制的问题。本专利提出了一种惩罚函数,在遗传算法中针对违反约束的个体,在其适应度值上施加一个惩罚函数,即
F′=F+α·max{0,p} (16),
其中,F为原适应度函数,α为大于0的一个罚函数因子,p为罚函数,不满足约束时为正值,满足时为0。
同时,考虑到遗传算法全局搜索能力强,而非线性规划算法局部搜索能力较强。本专利设计一种基于惩罚机制的遗传算法和非线性规划组合算法,兼顾了二者的优点。
通过组合非线性规划和遗传算法,对激励轨迹改进傅里叶级数的参数进行优化。
采用改进的傅里叶级数作为激励轨迹,利用上述优化算法对傅里叶级数的20个参数进行寻优,由优化后的傅里叶级数,激励机器人运动,采集轴的角位置信号和电流大小。
将上述激励轨迹进行实验,对采样数据预处理;
为降低噪声信号对辨识精度的影响,需要对测量信号预处理。可以多次重复执行激励轨迹,对采样数据取均值,以提高信噪比。
由于编码器反馈的位置信号混杂有量化误差与测量噪声,而数值微分会放大噪声。为避免微分对噪声带来的放大作用,本研究采用非线性跟踪微分器(TD)对采集回的关节角度进行处理,求取角速度信号与角加速度信号,降低了两次微分带来的传递误差。
非线性跟踪微分器表达式为:
Figure BDA0002203151820000101
其中,r为速度因子,调节该参数即可调节跟踪速度,安排过渡过程。函数u(x1,x2)是快速最优控制综合函数,是以原点为终点的回归函数。
通过最小二乘法辨识动力学参数;
通过多次重复实验,得到原始数据并预处理,通过预处理得到角速度信号、角加速度信号和力矩大小,构造观测矩阵后最终通过最小二乘法对动力学参数估计:
Figure BDA0002203151820000102
其中,Y为观测矩阵,
Figure BDA0002203151820000103
分别为角速度和角加速度向量,τ为驱动力矩向量,
Figure BDA0002203151820000104
为需要辨识的动力学参数集,Ff为摩擦模型。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种SCARA机器人的摩擦模型改进以及动力学参数辨识方法,其特征在于,包括:
建立SCARA机器人关节动力学模型;
对改进的摩擦模型进行参数辨识;
将辨识后的所述摩擦模型代入动力学模型,对所述动力学模型中除所述摩擦模型外的剩余部分线性化;
基于线性化后的所述动力学模型,设定观测矩阵和限制条件,从而设计出改进傅里叶形式的激励轨迹;
基于所述激励轨迹,通过实验采集对应的数据,从而获得待辨识的动力学参数;
通过最小二乘法辨识所述待辨识的动力学参数;
所述建立SCARA机器人关节动力学模型,包括:
用拉格朗日法建立简化的SCARA机器人动力学模型;
n关节的SCARA机器人简化的动力学模型中的动力学方程为:
Figure FDA0003459751350000011
式中,q为转角向量,其1、2阶导
Figure FDA0003459751350000012
分别为角速度和角加速度向量,H(q)为是n阶机器人惯性矩阵,
Figure FDA0003459751350000013
为哥氏力离心力矩阵,G(q)为重力向量,
Figure FDA0003459751350000014
τ分别为摩擦、驱动力矩向量;
所述对改进的摩擦模型进行参数辨识,包括:
在设定条件下采集实验数据;
基于实验数据建立轴摩擦力矩与轴角速度、轴加速度和角位置相关联的改进的摩擦模型;
基于所述改进的摩擦模型进行参数辨识;
在设定条件下采集实验数据为:在设定条件下采集单轴在电机侧的输出转速区间内的36组不同速度的恒速跟踪实验数据;
基于实验数据建立轴摩擦力矩与轴角速度、轴加速度相关联的改进的摩擦模型,包括:
通过库伦+黏滞摩擦模型对实验数据进行拟合:
Figure FDA0003459751350000021
其中,Fv为与速度相关的摩擦力,fc为库伦摩擦系数,fv为粘滞摩擦系数;
将摩擦模型分解为与速度相关的摩擦模型和与角度相关的摩擦模型;
与所述速度相关的摩擦模型在库伦+黏滞摩擦的基础上添加摩擦项以及高速摩擦补偿项为:
Figure FDA0003459751350000022
其中fs为静摩擦系数,vs为速度比例系数,fa是添加的高速摩擦补偿系数;
基于实验数据建立轴摩擦力矩与角位置相关联的改进的摩擦模型,包括:与所述角度相关的摩擦模型分析时将所述实验数据进行快速傅里叶变化,得到主导频率成分,采用正弦函数组合形式表示为:
Figure FDA0003459751350000023
其中,Fp为与角位置相关的摩擦力,A1,A2为幅值,
Figure FDA0003459751350000024
为相移,p为输入电机侧的角位移。
2.根据权利要求1所述的SCARA机器人的摩擦模型改进以及动力学参数辨识方法,其特征在于,所述基于线性化后的所述动力学模型,设定观测矩阵和限制条件,从而设计出改进傅里叶形式的激励轨迹,包括:
构造观测矩阵的优化标准为:
Figure FDA0003459751350000031
其中,Y为观测矩阵,σmin(Y)表示矩阵的最小奇异值,λ表示权重,λ等于0.1。
3.根据权利要求2所述的SCARA机器人的摩擦模型改进以及动力学参数辨识方法,其特征在于,所述基于线性化后的所述动力学模型,设定观测矩阵和限制条件,从而设计出改进傅里叶形式的激励轨迹,包括:
通过遗传算法解决所述激励轨迹中角度、速度和加速度的限制;
在遗传算法中针对违反约束的个体,在违反约束的个体的适应度值上施加一个惩罚函数,所述惩罚函数为:
F′=F+α·max{0,p},
F为原适应度函数,α为大于0的一个罚函数因子,p为罚函数,不满足约束时p为正值,满足时p为0。
4.根据权利要求3所述的SCARA机器人的摩擦模型改进以及动力学参数辨识方法,其特征在于,所述基于所述激励轨迹,通过实验采集对应的数据,从而获得待辨识的动力学参数,包括:
采用非线性跟踪微分器对采集的关节角度进行处理,从而求取角速度信号与角加速度信号,
所述非线性跟踪微分器包括,速度因子r和快速最优控制综合函数u(x1,x2)。
5.根据权利要求4所述的SCARA机器人的摩擦模型改进以及动力学参数辨识方法,其特征在于,所述通过最小二乘法辨识所述待辨识的动力学参数,包括:
通过最小二乘法对所述待辨识的动力学参数估计:
Figure FDA0003459751350000032
其中,Y为观测矩阵,
Figure FDA0003459751350000041
分别为角速度和角加速度向量,τ为驱动力矩向量,
Figure FDA0003459751350000042
为需要辨识的动力学参数集,Ff为摩擦模型。
CN201910874616.4A 2019-09-16 2019-09-16 Scara机器人的摩擦模型改进以及动力学参数辨识方法 Active CN110531707B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910874616.4A CN110531707B (zh) 2019-09-16 2019-09-16 Scara机器人的摩擦模型改进以及动力学参数辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910874616.4A CN110531707B (zh) 2019-09-16 2019-09-16 Scara机器人的摩擦模型改进以及动力学参数辨识方法

Publications (2)

Publication Number Publication Date
CN110531707A CN110531707A (zh) 2019-12-03
CN110531707B true CN110531707B (zh) 2022-03-18

Family

ID=68668806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910874616.4A Active CN110531707B (zh) 2019-09-16 2019-09-16 Scara机器人的摩擦模型改进以及动力学参数辨识方法

Country Status (1)

Country Link
CN (1) CN110531707B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111191344B (zh) * 2019-12-09 2023-09-15 北京动力机械研究所 一种运动副摩擦参数的识别方法
CN113128018B (zh) * 2019-12-31 2023-04-07 深圳市优必选科技股份有限公司 摩擦力计算方法、装置、机器人及可读存储介质
CN111185908B (zh) * 2020-01-14 2022-03-18 深圳众为兴技术股份有限公司 识别摩擦力的机器人控制方法、装置、机器人及存储介质
CN111267105A (zh) * 2020-03-18 2020-06-12 无锡砺成智能装备有限公司 一种六关节机器人的动力学参数辨识及碰撞检测方法
CN111496791B (zh) * 2020-04-27 2023-05-02 无锡信捷电气股份有限公司 一种基于串联机器人的整体动力学参数辨识方法
CN111400936A (zh) * 2020-04-27 2020-07-10 无锡信捷电气股份有限公司 一种机器人动力学参数辨识方法
CN111702807B (zh) * 2020-06-08 2022-04-29 北京配天技术有限公司 机器人摩擦辨识方法、装置、系统及存储介质
CN111975779A (zh) * 2020-08-24 2020-11-24 合肥工业大学 基于随机数的多关节机械臂最小动力学参数集的计算方法
CN113051673B (zh) * 2020-12-14 2023-09-26 华南理工大学 一种机器人改进Stribeck摩擦模型辨识方法
CN113001588A (zh) * 2021-03-08 2021-06-22 陕西知感通和物联科技有限公司 一种足式机器人动力学参数辨识方法
CN113459095B (zh) * 2021-06-23 2022-12-06 佛山智能装备技术研究院 一种机器人碰撞响应方法
CN113885493A (zh) * 2021-09-17 2022-01-04 华南理工大学 基于pd+鲁棒控制器的并联机器人轨迹跟踪控制方法
CN114516050B (zh) * 2022-03-03 2024-02-13 上海交通大学 基于位形雅可比条件数优化的机器人外力估计方法及系统
CN114896731B (zh) * 2022-05-19 2023-04-14 法奥意威(苏州)机器人系统有限公司 一种机械传动系统的动力学参数辨识方法及相关装置
CN114800536B (zh) * 2022-06-30 2022-09-16 上海捷勃特机器人有限公司 多连杆机器人的动力学参数辨识方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106426174A (zh) * 2016-11-05 2017-02-22 上海大学 一种基于力矩观测和摩擦辨识的机器人接触力检测方法
CN107671861A (zh) * 2017-11-13 2018-02-09 无锡信捷电气股份有限公司 一种改进的scara机器人动力学参数辨识方法
CN107703747A (zh) * 2017-10-09 2018-02-16 东南大学 一种面向搅拌摩擦焊应用的重载机器人动力学参数自标定方法
CN109514602A (zh) * 2018-11-08 2019-03-26 东南大学 一种基于负载自适应辨识的工业机器人力矩补偿控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107498562A (zh) * 2017-04-21 2017-12-22 浙江工业大学 六自由度机械臂动力学模型辨识方法
CN108717492A (zh) * 2018-05-18 2018-10-30 浙江工业大学 基于改进的人工蜂群算法的机械臂动力学模型辨识方法
CN108890650A (zh) * 2018-08-30 2018-11-27 无锡信捷电气股份有限公司 基于动力学参数辨识的ptp加速度优化方法及装置
CN109583093B (zh) * 2018-11-30 2020-07-03 山东大学 一种考虑关节弹性的工业机器人动力学参数辨识方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106426174A (zh) * 2016-11-05 2017-02-22 上海大学 一种基于力矩观测和摩擦辨识的机器人接触力检测方法
CN107703747A (zh) * 2017-10-09 2018-02-16 东南大学 一种面向搅拌摩擦焊应用的重载机器人动力学参数自标定方法
CN107671861A (zh) * 2017-11-13 2018-02-09 无锡信捷电气股份有限公司 一种改进的scara机器人动力学参数辨识方法
CN109514602A (zh) * 2018-11-08 2019-03-26 东南大学 一种基于负载自适应辨识的工业机器人力矩补偿控制方法

Also Published As

Publication number Publication date
CN110531707A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
CN110531707B (zh) Scara机器人的摩擦模型改进以及动力学参数辨识方法
CN107671861B (zh) 一种改进的scara机器人动力学参数辨识方法
CN104932506B (zh) 基于快速终端滑模的轮式移动机器人轨迹跟踪方法
CN103495977B (zh) 一种6r型工业机器人负载识别方法
Duchaine et al. Computationally efficient predictive robot control
CN111496791B (zh) 一种基于串联机器人的整体动力学参数辨识方法
CN111267105A (zh) 一种六关节机器人的动力学参数辨识及碰撞检测方法
CN108638070A (zh) 基于动态平衡的机器人负载重力参数辨识方法
CN113051673A (zh) 一种机器人改进Stribeck摩擦模型辨识方法
CN111168682B (zh) 并联机器人结合鲁棒精确微分器有限时间收敛滑模控制方法
CN112975987A (zh) 一种基于动力学模型的骨科手术机器人控制方法
CN114102606B (zh) 机器人运动信息规划方法及相关装置
CN112677156A (zh) 一种机器人关节摩擦力补偿方法
CN111673742A (zh) 一种工业机器人轨迹跟踪控制算法
CN107505844A (zh) 混联式汽车电泳涂装输送机构基于综合误差的同步协调滑模控制方法
CN114589702B (zh) 基于动力学参数辨识和导纳控制的协作机器人拖动方法
CN112223276B (zh) 基于自适应神经网络滑模控制的多关节机器人控制方法
Kennedy et al. Estimation and modeling of the harmonic drive transmission in the Mitsubishi PA-10 robot arm
Chen et al. Robot Zero-Moment Control Algorithm Based on Parameter Identification of Low-Speed Dynamic Balance [J]
Wang et al. Smooth trajectory planning for manipulator of cotton harvesting machinery based on quaternion and b-spline
CN114454161B (zh) 一种基于球形电机驱动的机械手刚柔耦合系统
CN111293949B (zh) 一种抗干扰电动六自由度并联机构控制方法
CN114800498B (zh) 一种scara机器人力矩前馈补偿方法
Deng et al. Modeling and μ-synthesis based robust trajectory tracking control of a wheeled mobile robot
CN115230805B (zh) 一种面向重载agv的精确转向控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant