CN112206830B - CuPc@Ti3C2Tx MXene催化材料及电极与在硝酸根还原中的应用 - Google Patents

CuPc@Ti3C2Tx MXene催化材料及电极与在硝酸根还原中的应用 Download PDF

Info

Publication number
CN112206830B
CN112206830B CN202011177643.5A CN202011177643A CN112206830B CN 112206830 B CN112206830 B CN 112206830B CN 202011177643 A CN202011177643 A CN 202011177643A CN 112206830 B CN112206830 B CN 112206830B
Authority
CN
China
Prior art keywords
mxene
cupc
nitrate
catalytic material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011177643.5A
Other languages
English (en)
Other versions
CN112206830A (zh
Inventor
路建美
贺竞辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202011177643.5A priority Critical patent/CN112206830B/zh
Publication of CN112206830A publication Critical patent/CN112206830A/zh
Application granted granted Critical
Publication of CN112206830B publication Critical patent/CN112206830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了CuPc@Ti3C2Tx MXene催化材料及其电极制备方法与在硝酸根还原产氨中的应用,将CuPc乙醇溶液与Ti3C2Tx MXene溶液混合后离心洗涤,再将沉淀物干燥,得到CuPc@Ti3C2Tx MXene催化材料;然后将CuPc@Ti3C2Tx MXene催化材料负载在碳布亲水面上,得到电催化还原硝酸盐产氨用电极,用于电催化还原硝酸盐产氨。本发明所公开的CuPc@Ti3C2Tx Mxene复合材料制备的电极具有循环稳定性好,电化学活性高的特点。

Description

CuPc@Ti3C2Tx MXene催化材料及电极与在硝酸根还原中的 应用
技术领域
本发明属于催化材料技术领域,具体涉及Ti3C2Tx MXene与酞菁铜(CuPc)复合材料的合成方法及其电极的制备方法,以及该电极在硝酸根还原产氨中的应用。
背景技术
氨气是氮肥,制冷剂,硝酸,塑料,纤维等化工产品的重要合成原料,同时也是颇具发展前景的高比能量的载体。NH3的传统合成方法是通过Haber-Bosch工艺,然而,该工艺合成条件非常苛刻,产生大量能耗的同时,还不可避免地产生了大量的温室气体。基于这些难题,利用硝酸盐作为氮源的电化学还原产氨已引起越来越多的关注和研究。一方面,硝酸盐的键能小,硝酸根的电化学还原反应发生在固液界面,比起氮气还原反应(NRR)更有利于传质。另一方面,硝酸盐本身就是需要被降解的水体污染物,城市生活和工业污水中过多的硝酸盐排放会导致水体富营养化,甚至反硝化产生的亚硝酸盐还会导致癌症和婴儿蓝血病。美国卫生协会制定的硝酸盐排放标准低于50mg/L。然而,目前硝酸根的电化学还原仍然存在着转化率低、对氨选择性差和副产物亚硝酸根浓度偏高等问题,因此,亟需引入一种高效且具有高选择性的硝酸盐电还原催化剂材料。
发明内容
本发明的目的旨在提供CuPc和Ti3C2Tx MXene催化材料的合成方法,及其制备成电极的方法。与已有的硝酸根还原产氨的报道相比,本发明制备的电极材料能高效地转化硝酸根,并且产物具有高的氨选择性,同时还具备良好的循环稳定性。
为了实现上述目的,本发明采用如下具体技术方案:
一种CuPc@Ti3C2Tx MXene催化材料,其制备方法为,将CuPc乙醇溶液与Ti3C2TxMXene溶液混合后离心洗涤,再将沉淀物干燥,得到CuPc@Ti3C2Tx MXene催化材料。
一种电催化还原硝酸盐产氨用电极,其制备方法为,将CuPc乙醇溶液与Ti3C2TxMXene溶液混合后离心洗涤,再将沉淀物干燥,得到CuPc@Ti3C2Tx MXene催化材料;然后将CuPc@Ti3C2Tx MXene催化材料负载在碳布亲水面上,得到电催化还原硝酸盐产氨用电极,用于电催化还原硝酸盐产氨。
本发明中,CuPc用量是根据与Ti3C2Tx Mxene中的Ti和CuPc中的Cu的物质的量的比例设计的,即Cu占Ti的物质的量之比为10%~50%,比如10%、20%、30%、50%,优选为20%。
本发明中,CuPc在乙醇中常规超声分散30min,得到CuPc乙醇溶液;将Ti3C2TxMxene水溶液与甲醇混合,得到Ti3C2Tx Mxene溶液。
本发明中,CuPc乙醇溶液通过微量注射器逐滴加入到Ti3C2Tx Mxene溶液中;离心的速度为7800 rpm,离心时间为10min,用乙醇进行洗涤,总共离心洗涤3次;干燥为真空干燥,优选真空干燥的温度为60℃,时间为3h。
本发明中,使用的电极基底为面积为1*1 cm2的碳布,碳布的亲水面用氧等离子体处理5min,疏水面用氧等离子体处理15min。
本发明中,称取真空干燥后的CuPc@Ti3C2Tx MXene催化材料,加入乙醇和粘接剂(优选Nafion粘结剂),常规分散后,用移液枪吸常规滴涂在处理后的碳布亲水面上,优选每块碳布上的CuPc@Ti3C2Tx MXene催化材料的负载量为2.5~2.8mg/cm2;滴涂后的碳布在室温下干燥3h,得到电催化还原硝酸盐产氨用电极,用于电化学测试。
与现有的技术相比,利用上述技术方案的本发明具有如下优点:
(1) 本发明公开的CuPc@Ti3C2Tx Mxene复合材料,成本低廉,原料易得,合成方法简单、易于操作;
(2) 本发明公开的CuPc@Ti3C2Tx Mxene复合材料,与现有的研究相比,具有高效的硝酸根去除率,同时还具有优异的产氨选择性,低的副产物的产生;
(3) 本发明所公开的CuPc@Ti3C2Tx Mxene复合材料制备的电极具有循环稳定性好,电化学活性高的特点。
附图说明
图1为20%CuPc@ Ti3C2Tx MXene复合材料TEM图;
图2为20%CuPc@MXene复合材料的HRTEM图;
图3为CuPc、MXene、20%CuPc@MXene复合材料的线性扫描伏安曲线(线性扫描速度:10mV/s,电压范围:-0.1V~-1.85V,NO3 --N浓度为30mg/L,电解液为0.5 mol/L Na2SO4);
图4为不同物质的量之比的CuPc@ Ti3C2Tx MXene复合材料同CuPc、MXene的性能对比图(恒电压模式电解8h,电压为-1.65V,NO3 --N浓度为30mg/L,电解液为0.5 mol/LNa2SO4);
图5为不同电压下,20%CuPc@ Ti3C2Tx MXene复合材料对硝酸根的去除率和产氨的选择性对比图(在不同电压下电解8h,NO3 --N浓度为30mg/L,电解液为0.5 mol/L Na2SO4);
图6为不同硝酸盐浓度下,20%CuPc@ Ti3C2Tx MXene复合材料的选择性比较(恒电压模式电解8h,电压为-1.65V,电解液为0.5 mol/L Na2SO4);
图7为20%CuPc@ Ti3C2Tx MXene复合材料对硝酸盐的转化和产生氨、亚硝酸盐的动力学曲线图(恒电压模式电解8h,电压为-1.65V,电解液为0.5 mol/L Na2SO4, NO3 --N浓度为30mg/L);
图8为20%CuPc@ Ti3C2Tx MXene复合材料电极的循环稳定性性能图(每次循环都在恒电压模式电解8h,电压为-1.65V,NO3 --N浓度为30mg/L,电解液为0.5 mol/L Na2SO4)。
具体实施方式
本发明CuPc@Ti3C2Tx MXene催化材料首次将两者的组合用于硝酸盐的电化学还原,具有出色的导电性、化学稳定性高、活性部位均匀、效率高等特点;因此,本发明探究MXene和酞菁铜的复合材料在电催化还原硝酸根产氨中的性能,对硝酸根的无害化和资源化有着重要的意义。
下文将结合附图和具体实例来进一步说明本发明的技术方案。除非另有说明,下列实施例中所用的试剂、材料、仪器均可通过商业手段获得;所涉及的具体操作方法以及测试方法都为常规技术。
本发明中,所使用的电极基底是碳布,碳布在使用之前,亲水面用氧等离子体处理5min,疏水面用氧等离子体处理15min,碳布基底的尺寸为1×1 cm2
实施例一
CuPc@Ti3C2Tx MXene催化材料的合成,具体步骤如下:
室温下,量取5mg/ml的Ti3C2Tx MXene (购自山东烯研新材料科技有限公司) 1mL于烧瓶中,然后加入49 mL的无水甲醇,得到Ti3C 2Tx MXene溶液。
根据铜钛不同的物质的量之比(Cu占Ti的物质的量之比为分别为10%、20%、30%、50%),用微量注射器将100mL酞菁铜乙醇溶液逐滴加入到上述Ti3C2Tx MXene溶液中,滴加速度为1mL/min,滴加完毕后通过7800 rpm的离心速度离心10min,用无水乙醇进行洗涤,总共离心洗涤3次,最后将离心后的上清液倒掉,得到的沉淀物60℃真空干燥3h,为CuPc@Ti3C2TxMXene催化材料。
附图1为Cu、Ti的物质的量之比为20%的CuPc@Ti3C2Tx MXene催化材料的TEM图,从图中可以看到CuPc在MXene上均匀地分散。附图2为CuPc@Ti3C2Tx MXene催化材料的HRTEM图,晶格清晰明显。
实施例二
电催化还原硝酸盐产氨用电极的制备,具体步骤如下:
称取真空干燥后的CuPc@Ti3C2Tx MXene催化材料与100微升无水乙醇和100微升的Nafion粘结剂溶液(充当粘结剂作用,市售产品)混合,得到催化剂浆液;再用移液枪吸取100微升催化剂浆液滴涂在一块经过氧等离子体处理后的碳布亲水面上;滴涂后的碳布在室温下干燥3h,这样就制备了CuPc@Ti3C2Tx MXene复合材料电极器件,为电催化还原硝酸盐产氨用电极,碳布上的CuPc@Ti3C2Tx MXene催化材料负载量为2.7mg/cm2
实施例三
CuPc@Ti3C2Tx MXene催化材料通过电化学工作站进行测试(型号CorrTestCS310)。测试之前,把工作电极与电催化还原硝酸盐产氨用电极的碳布相连,以铂片作对电极,甘汞电极作参比电极,电解池为H型电解池。待组装完毕,以0.5mol/L的硫酸钠为电解液,30mg/L~200mg/L 氮浓度的硝酸盐为电解物,主要的电化学测试为线性伏安扫描法,扫描电势范围-0.1~-1.85V,恒电压法,施加电压范围-1.45~-1.85V。
附图3是CuPc、MXene及20%的CuPc@MXene催化材料的线性扫描伏安曲线,从图中可以看出复合后的材料表现出更高的还原电流密度,拥有更好的导电能力和硝酸根还原能力。附图4是CuPc、MXene以及不同物质的量之比的CuPc@MXene催化材料随时间对硝酸根的降解图,可以看出20%的CuPc@MXene复合材料在相同条件下,表现出最好的还原效果。附图5和附图6显示最优的工作电压为-1.65V,在不同浓度的硝酸盐电解下产氨的选择性都能达到80%以上。附图7是20%CuPc@ Ti3C2Tx MXene催化材料对硝酸盐的转化和产生氨、亚硝酸盐的动力学曲线图,可以看出随着时间的增加,硝酸根不断地减少,转化为氨和亚硝酸根,亚硝酸根始终保持较低的浓度,氨的浓度不断地增加。附图8是20%CuPc@ Ti3C2Tx MXene催化材料电极的循环稳定性性能图,每次循环都是在-1.65V,30mg/L的NO3 N为还原底物的条件下进行8h的恒电压电解,每次循环结束后,阴阳极电解池都换上新的电解液,在其他条件不改变的情况下重新电解8h。图中显示出经过七次循环测试后,催化剂依然能表现出优异产氨速率和对氨的高选择性(>70%),证明催化剂能够长时间地稳定工作,高效的还原硝酸根产氨。
实验中氨、硝酸根、亚硝酸根的浓度检测都是通过紫外分光光度法进行测试定量的。硝酸根的转化率计算方法如方程(1):
其中c0和c分别为硝酸根的初始浓度和测试浓度(mg/L)。
对氨的选择性计算方法如方程(2):
其中c是测试时产氨的浓度(mg/L),△CNO3-是硝酸根的降解浓度(mg/L)。
氨气的产率计算方法如方程(3):
其中,c是测试时氨的浓度(mg/L),V是电解液体积(L),S是电极面积(cm2),t是测试时间(h)。
通过以上分析,说明采用本发明限定技术方案制备的CuPc@MXene催化材料及其制备的电极展现出优异的硝酸根去除率(90.4%),以及对氨极高的选择性(94.0%)。该发明下制备的电极催化剂材料催化性能优良,循环稳定性好。不仅解决了硝酸根污染物的降解问题,同时还生成了有利用价值的氨,这为未来的能源的循环利用提供了极其有效的参考,在实际应用中具有良好的前景。

Claims (7)

1.一种CuPc@Ti3C2Tx MXene催化材料在电催化还原硝酸盐产氨中的应用,其特征在于,所述CuPc@Ti3C2Tx MXene催化材料的制备方法为,将CuPc乙醇溶液与Ti3C2Tx MXene溶液混合后离心洗涤,再将沉淀物干燥,得到CuPc@Ti3C2Tx MXene催化材料;Cu占Ti的物质的量之比为10%~50%。
2.根据权利要求1所述CuPc@Ti3C2Tx MXene催化材料在电催化还原硝酸盐产氨中的应用,其特征在于,将Ti3C2Tx Mxene水溶液与甲醇混合,得到Ti3C2Tx Mxene溶液。
3.根据权利要求1所述CuPc@Ti3C2Tx MXene催化材料在电催化还原硝酸盐产氨中的应用,其特征在于,离心的速度为7800 rpm,离心时间为10min。
4.一种电催化还原硝酸盐产氨用电极在电催化还原硝酸盐产氨中的应用,其特征在于,所述电催化还原硝酸盐产氨用电极的制备方法为,将CuPc乙醇溶液与Ti3C2Tx MXene溶液混合后离心洗涤,再将沉淀物干燥,得到CuPc@Ti3C2Tx MXene催化材料;然后将CuPc@Ti3C2Tx MXene催化材料负载在碳布亲水面上,得到电催化还原硝酸盐产氨用电极;碳布上,CuPc@Ti3C2Tx MXene催化材料的负载量为2.5~2.8mg/cm2
5.根据权利要求4所述电催化还原硝酸盐产氨用电极在电催化还原硝酸盐产氨中的应用,其特征在于,CuPc乙醇溶液通过微量注射器滴加到Ti3C2Tx Mxene溶液中。
6.根据权利要求4所述电催化还原硝酸盐产氨用电极在电催化还原硝酸盐产氨中的应用,其特征在于,干燥为真空干燥。
7.根据权利要求4所述电催化还原硝酸盐产氨用电极在电催化还原硝酸盐产氨中的应用,其特征在于,碳布的亲水面用氧等离子体处理。
CN202011177643.5A 2020-10-28 2020-10-28 CuPc@Ti3C2Tx MXene催化材料及电极与在硝酸根还原中的应用 Active CN112206830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011177643.5A CN112206830B (zh) 2020-10-28 2020-10-28 CuPc@Ti3C2Tx MXene催化材料及电极与在硝酸根还原中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011177643.5A CN112206830B (zh) 2020-10-28 2020-10-28 CuPc@Ti3C2Tx MXene催化材料及电极与在硝酸根还原中的应用

Publications (2)

Publication Number Publication Date
CN112206830A CN112206830A (zh) 2021-01-12
CN112206830B true CN112206830B (zh) 2023-10-13

Family

ID=74057455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011177643.5A Active CN112206830B (zh) 2020-10-28 2020-10-28 CuPc@Ti3C2Tx MXene催化材料及电极与在硝酸根还原中的应用

Country Status (1)

Country Link
CN (1) CN112206830B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862701B (zh) * 2021-10-18 2023-06-13 苏州大学 一种铜单原子催化材料与电极的制备方法及其在硝酸盐还原产氨中的应用
CN113862718B (zh) * 2021-10-28 2023-04-07 苏州大学 Pt@Ti3C2TX MXene催化材料及其电极与制备方法和在还原氯霉素中的应用
CN114361470B (zh) * 2022-01-06 2023-03-31 河北工业大学 一种氮掺杂MXene负载酞菁钴复合材料的制备方法和应用
CN114318369B (zh) * 2022-01-07 2023-06-02 河北工业大学 一种MXene量子点负载酞菁分子复合催化剂的制备方法及应用
CN114883561B (zh) * 2022-04-18 2024-03-01 北京理工大学 一种二维过渡金属单原子催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783536A (zh) * 2019-08-19 2020-02-11 浙江工业大学 普鲁士蓝类似物/MXene复合电极材料及其原位制备方法、应用
CN111167513A (zh) * 2019-12-25 2020-05-19 同济大学 一种用于去除水中硝酸盐的柔性电催化膜及其制备方法和应用
CN111763213A (zh) * 2020-06-01 2020-10-13 南方科技大学 金属酞菁-MXene复合材料、超级电容器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783536A (zh) * 2019-08-19 2020-02-11 浙江工业大学 普鲁士蓝类似物/MXene复合电极材料及其原位制备方法、应用
CN111167513A (zh) * 2019-12-25 2020-05-19 同济大学 一种用于去除水中硝酸盐的柔性电催化膜及其制备方法和应用
CN111763213A (zh) * 2020-06-01 2020-10-13 南方科技大学 金属酞菁-MXene复合材料、超级电容器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. CHEBOTAREVA等.Metallophthalocyanine catalysed electroreduction of nitrate and nitrite ions in alkaline media.JOURNAL OF APPLIED ELECTROCHEMISTRY.1996,第27卷975-981. *

Also Published As

Publication number Publication date
CN112206830A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
CN112206830B (zh) CuPc@Ti3C2Tx MXene催化材料及电极与在硝酸根还原中的应用
US20190030516A1 (en) Monatomic metal-doped few-layer molybdenum disulfide electrocatalytic material, preparing method thereof, and method for electrocatalytic nitrogen fixation
WO2021077730A1 (zh) 一种低温射流等离子体耦合单原子催化的固氮装置及方法
CN114045518B (zh) 一种钴酸铜催化电极材料及其在硝酸根还原制氨中的应用
CN108588748A (zh) 一种二氧化碳电化学还原制备甲烷和乙烯的方法
CN113862701B (zh) 一种铜单原子催化材料与电极的制备方法及其在硝酸盐还原产氨中的应用
CN112206797B (zh) Cu(I)@Ti3C2TxMXene催化材料及电极与在硝酸根还原中的应用
CN112430829A (zh) 一种MoS2/S-NiCoCr-LDH复合材料的制备方法
CN113005477B (zh) 一种磷硫共掺杂石墨烯负载Mo2C复合材料的制备方法
CN116145193B (zh) 一种电催化还原硝酸根为氨的铜基催化剂及其制备方法
CN111589459A (zh) 一种高效电解水的双功能催化剂及其制备方法与应用
CN115537865B (zh) 一种纳米化泡沫银电极的应用及其制备方法
CN113089001B (zh) 一种超疏水性的钼基催化剂的制备方法及其应用
CN110038637A (zh) 一种三元纳米复合材料的制备方法和应用
CN114540841A (zh) 氧化亚铜纳米催化剂在电催化还原硝酸盐氮中的应用
CN113774421A (zh) 一种Ni-Cu LDH金属纳米层材料电催化剂的制备方法
CN113832481A (zh) 一种富含氧缺陷的三氧化钼催化剂及其制备方法和在合成氨中的应用
CN109609973B (zh) 有机硫化物修饰碳纳米管负载低含量钯复合材料的制备方法和应用
CN115254193B (zh) 酞菁钯分子催化剂、碳基底支撑的酞菁钯分子催化剂的制备方法及其应用
Li et al. Microstructure regulation of carbon nitrides for electrochemical nitrogen fixation
CN115072731B (zh) 一种硼化钴纳米材料的制备方法及其在电催化还原硝酸盐中的应用
CN111270254B (zh) 一种Cu/Ca-MOF纳米复合催化剂促进室温氮气还原的方法
CN114150344B (zh) 用于分解水的氮化钴/磷化铁自支撑电极及其制备方法
CN117089879A (zh) 一种复合纳米材料MoO2/MoS2的制备及其在电催化硝酸根还原合成氨中的应用
CN116288473A (zh) 一种纳米二氧化钛电化学硝酸根还原催化剂的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant