CN1121679A - 电动可调热辐射源装置 - Google Patents

电动可调热辐射源装置 Download PDF

Info

Publication number
CN1121679A
CN1121679A CN95108447A CN95108447A CN1121679A CN 1121679 A CN1121679 A CN 1121679A CN 95108447 A CN95108447 A CN 95108447A CN 95108447 A CN95108447 A CN 95108447A CN 1121679 A CN1121679 A CN 1121679A
Authority
CN
China
Prior art keywords
radiation source
source device
silk
incandescent
incandescent silk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95108447A
Other languages
English (en)
Other versions
CN1066855C (zh
Inventor
M·布隆贝格
M·奥帕纳
A·莱赫托
H·凯特拉斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Instrumentarium Oyj
Vaisala Oy
Original Assignee
Instrumentarium Oyj
Vaisala Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instrumentarium Oyj, Vaisala Oy filed Critical Instrumentarium Oyj
Publication of CN1121679A publication Critical patent/CN1121679A/zh
Application granted granted Critical
Publication of CN1066855C publication Critical patent/CN1066855C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K7/00Lamps for purposes other than general lighting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Resistance Heating (AREA)
  • Micromachines (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明涉及一种电动可调辐射源装置,包含一主平面基片(1),基片(1)上开有缝或孔(2),至少有一根白炽丝(3)与基片(1)相接触,该白炽丝设在缝或孔(2)处并且两端部与基片(1)上的基座(5)接触,以通电流。根据本发明,白炽丝(3)由外罩连续薄膜(32,36)的金属制成,至少在基片(1)上方悬浮的部分罩有薄膜。

Description

电动可调热辐射源装置
本发明是阐述的是一种如权利要求1中所述的电动可调热辐射源装置。
红外线发生装置在光学分析方法中用作红外线辐射源,另外它还可用作热源。有几种形式不同的红外线发生装置可用作前者(红外线辐射源),如“碳化硅炽热棒”装置,白炽灯,及厚膜辐射器。通过改变装置的输入功率来改变其温度,从而调节装置所发射射线束的强度,或者用一种叫作“断续器”的机械光束阻断装置,同时使装置温度尽可能保持恒定。
当采用机动断续器调节光束时,断续器的机械寿命通常便限制了射线发生器的失灵,通常为一到两年。电动调节器可大大延长这段时间。
“碳化硅(炽)热棒”正象它的名字所描述的那样,是一根发光棒。这种棒通常由陶瓷材料制成,通电加热。一个“碳化硅(炽)热棒”装置通常为几毫米厚,几厘米长,由此它的热时间常数为几秒钟。碳化硅(炽)热棒通常不是通过改变输入功率光来调节的。输入功率一般在几瓦至一百瓦之间变化。“碳化硅(炽)热棒”的一种变形体是一根缠有电阻线的陶瓷棒。这种变体的热敏性能与简单的碳化硅(炽)热棒相当。
一个白炽灯可以用几十赫芝甚至几百赫芝的电频来调节,但是玻璃灯炮吸收了红外区的射线,用久后就会变黑,因而灯发出射线的强度随时间降低。它所需的输入功率通常为几瓦至几十瓦。
厚膜辐射发生器通常由一层铝基片上加一层厚膜电阻构成,并通电加热。通常电阻的尺寸为几毫米见方,厚度为半毫米。电阻的加热时间常数为几秒,所需输入功率为几瓦。
微电子学及微构造学的一般生产技术使用硅1,2,3(Silicon1,2,3)生产小型电动可调辐射源装置成为可能。这种装置带有一层1毫米厚,长度为几百毫米的多晶硅薄膜结构。薄膜电阻元件的宽度为几毫米至几十毫米。这种硅白炽丝的热敏力较低,允许其在几百赫芝内可调。纯硅是一种电流的不良导体,但是如搀入适当的搀合物如硼或磷就能得到较优的导电性。硼作为搀合物的缺点是其活性水平不稳定,但这也取决于搀入前硅白炽丝的温度。这种搀合使其不断达到新的平衡状态,这就意味着白炽丝的电阻随时间降低,同时输入功率也将降低,将非输入功率被从外部稳定。硼作为搀合物在硅中的最高搀合度约为5×1019原子/cm3,其它常用的搀合物有砷和锑。这些元素作为搀合物所面临的困难是如何获得足够高的搀合度,以使其在低电压下获得高导电性。
在引用的专利公告I中所讨论的白炽丝中搀有磷以得到电阻大于50Ω/每方的电阻板。白炽丝长100μm,宽20μm,由基片抬升1.2μm。由于具备这种结构,通常炽热丝与基片间空气层的辐射损耗非常高,并且因丝在变热过程中变弯,这种与基片相连的白炽丝的高危险性是很明显的。
硼和磷的掺入都有与掺入原子位移相关的问题,在炽热的白炽丝顶端,搀入物原子的逃逸就是存在问题的证明。结果,白炽丝发射光强便会产生逐渐的变化,所观察到的就是一种长期的不稳定性。
所引用的公告2中讨论的白炽丝的结构为将白炽丝放入真空中以免烧坏,并密封于一薄膜窗口下。这种窗口不能大于几十毫米,因而白炽丝整个表面的发射输出就很小。为避免白炽丝与基片粘连,基片上升有一条V形蚀刻槽。
所引公告3中讨论的红外辐射装置尺寸为100微米×100微米,并用了两个弯曲的多晶硅电阻箱作发热元件。这种结构易于在加热时包装,大面积发射元件不能用这种方式生产。
尽管加热元件是连续的,但因加热元件的尺寸与它旁边开口的尺寸相比很小,因而在基片蚀刻所产生的汽泡不会发生问题。虽然这样,但是这种结构的散热模式并不特别优于所引公告中图2所示的结构。
由搀入物的多晶硅制成的白炽丝在温度高于其特征值时,白炽丝的温度系数将变成负值,即随着温度升高,白炽丝中电流加大。结果这样一个元件就不能由电压控制,而是由电流控制。这样的白炽丝也不能直接并联以增大辐射源装置的表面,因这时白炽丝电阻最低,其中电流最强,即温度达到最高。另一方面,串联要求在一个电压值下产生多个输入电压。掺入硼不能得到令人满意的高温度特征值,因为加入硼后的高杂质,连接时仅能得到大约600℃的特征温度值。如果白炽丝的操作温度高于这个值,白炽丝就会产生电阻随时间降低的趋势。
根据所引公告4,白炽丝由一层薄膜金属层制成。为防氧化,白炽丝被真空密封。
本发明的目的就是要克服上面所描述的先前技术的缺陷,以获得一种完全革新的电动可调热辐射源装置。
本发明的目的就是用诸如钨,钛钨合金或钼的金属来制造白炽丝,随后镀上氮化硅之类的抗氧化材料。
更准确地说,根据本发明电动可调热辐射源装置具备权利要求1特征部分所述的特征。
本发明可以带来显著的效益。
根据本发明的方法是不需对白炽丝进行真空密封。此外,金属白炽丝在其所要工作的电流通过下没有原子的逃逸现象。因此,金属白炽丝比掺硼或磷的多晶硅制成的白炽丝长期稳定性要好。
金属白炽丝的电阻温度系数在整个工作范围内都是正的,因而白炽丝可以并联并输入电压电源。
根据本发明制造方法中所用的氮化密封确保了辐射源装置具有较长的工作寿命。
下面将借助所附图中具体实施例的演示来更详细地探讨本发明。
图1a是本发明辐射源装置的俯视图。
图1b是图1a中辐射源A-A截面部分。
图2a是根据本发明的另一个辐射源装置俯视图。
图2b是图2a另一辐射源装置的A-A部分。
图3列举了一种图1a-2b中所示的,根据本发明的白炽丝的另一种几何结构。
图4是根据本发明的,带有抗反射敷层的辐射源装置敷层结构的一个纵截面图。
图5是根据本发明的带有滤光器和小孔的辐射源装置的一个纵向截面图。
图6是根据本发明的带有发射促进层的辐射源装置一纵截面图。
图7是图5辐射源装置中的滤光器的透射特征说明图。
本发明的电动快速可调热辐射源装置旨在用于光学分析中。
所需薄膜层的喷镀可按微电子学的常规标准步骤进行。
参照图1a,1b,2a和2b,辐射源装置的结构为多个白炽丝并联而成。
现参照图1,大的方块1为单晶硅芯片,带斜角的较小方块2恰好处在白炽丝3下方,在图2a及2b中带斜线的区域6,是一层氮化层。辐射装置的白炽丝3及金属部分5在图中为重黑色。白炽丝3为并联,外部通电接在金属部分5上,在图1a及1b的实施例中,白炽丝3从头至尾完全相互分离。图2a和2b详细举出了一种改进结构,其中白炽丝3用氮化硅桥6机械地互联。氮化硅桥上的开口是必不可少的,它是白积丝下蚀刻时产生的气体出口,这种结构改进了蚀刻效果。这个开口在蚀刻速度保持低速时是不需要的。
发射区域可以为例如1mm2,白炽丝3整个浮在空气中,仅其末端被支撑。白炽丝3下面的硅1蚀刻深度至少为10μm,而通常的蚀刻深度为100μm,白炽丝3的末端通过金属基座5并联,每条丝末端分别联接于基座。白炽丝3的尺寸可以例如为厚1μm×宽20μm×长1mm白炽丝的间隙为5μm。白炽丝3通过电流加热。所需输入电压从1伏到几伏。
根据本发明,金属白积丝3完全密封在氮化硅中,因而氮化物的氧化速度决定了白炽丝3的工作寿命。如果辐射源装置在800℃以下的正常室内空气中使用,其工作寿命为几年。不需要带有输出口的真空密封。
氮化白炽丝3下基片的蚀刻可以在氢氧化钾溶液中进行,腐蚀剂可以是四甲基氢氧化铵,或是加入少量邻苯二酚的乙二胺溶液。
由于白炽丝3在未叠装窗口的状态下工作,任何掉到白炽丝3上的有机杂质将被烧毁。如辐射源装置工作于脉冲状态,白炽丝下的空气将迅速升温,将落入的灰尘吹掉。相应地,根据本发明的实施例安有一个特有的自身清洁机构。
通过改变几何设计,白炽丝3的横向温度分布可以得到调节。白炽丝宽度为20μm或更窄时可得均匀的温度分布。通过采用例如氮化硅桥6热互联白炽丝3可使横向温度分布得到进一步改善。
现在参见图3,通过将白炽丝3的末端7弄尖,可使白炽丝3横向温度分布状况改进,因而使弄尖的区域7处单位长度的电阻增大,这样使该区域的较大的热功率集中。提高白炽丝末端单位长度的热效率是很有必要的,因为白炽丝3的末端7处的热传至基片,因而末端7冷却得快。由于末端7弄尖所带来的优点是白炽丝中间部分8与末端7的温度大致相同,因而辐射源的有效辐射面积加大。如此弄尖的白炽丝末端7与图1a-1b末端宽度均匀的白炽丝端部相比,前者可以达到更高的温度。弄尖的形状可以是阶梯状的,或者也可以弄成平滑的不带阶梯的。
辐射源装置可使用的最大调节速度取决于热损失比例。
这种损失的大部分是通过白炽丝下的空气层经过白炽丝末端传至硅基片而产生的。因为辐射损失仅占全部损失的百分之几,因而白炽丝3的温度几乎是输入功率的线性函数。白炽丝的工作温度通常在400℃以上,更有利的工作状态为500℃之上。通过改变白炽丝3下开口2的深度可使可调的最大速度调至最佳。开口2的深度大约为50-300μm,采用本文中所述的结构,可得到大约为1mS的热时间常数,允许电动调节至约1KHz。
参照图4,对辐射源装置的分层结构显示得更为详细,在图4所示的实施例中,所发出的辐射直接向下通过抗反射层37。图中所示31处通常为(100)定向单晶硅基芯片所组成,其上淀积了一般厚为200nm的氮化硅层36。氮化硅层36用来分离白炽丝和导电基片31,同时用作白炽丝33的下保护层。在氮化硅层36上淀积了厚0.5μm的金属层33,通过微电子学制造技术中的光刻法或等离子蚀刻成形为白炽丝。下一步,淀积上层氧化硅层32,这样通过金属层33成形的白炽丝就完全由氮化层密封。上层氮化硅层32一般为200nm厚。输入电压可通过金属座34,它可以例如由铝制成,这些基座通过上层氮化层32上的例如用等离子蚀刻的开口与白炽丝电阻性接触,构成基片31的单晶硅最终被从白炽丝上被蚀刻掉,这样就形成开口35。蚀刻步骤经过白炽丝间缝进行并在最外层白炽丝处。层37是很薄的抗反射层,可以用例如氮化硅制成。这个λ/4层可为比如400-500nm,取决于期望的工作波长。
白炽丝33的辐射率一般大于0.4,理想状态下大于0.5,特别理想时大于0.7。
辐射源装置发射的光谱可通过图5所示的Fabry-Perot干涉滤光器滤光,该滤光器可装在硅基片37的下表面上。这种结构的优点是辐射源装置不会发射任何不需要的波长的射线,这就得到了一种改进的信号-噪声比。干涉滤光器由λ/层厚的二氧化硅层41及λ/4层厚的硅层42构成。中间层41是一λ/2层。辐射源装置的小孔由带孔45的金属层44构成。金属层44一般厚为100nm。
图7具体显示了上面所述滤光器的透射特性。透射曲线的形状取决于干涉滤光器的反射层的数目。数目越大通带越窄。
波长大于3mm时钨丝的辐射率迅速降低。这种长波长幅射率的降低可通过在金属层上涂以图6所示的多晶硅来补偿。图6中所详举的实施例中,发光金属丝33使多晶硅39加热,它可作为辐射源装置。硅层39的厚度通常在100至1000nm内。在氮化硅层32及淀积在金属层33上的多晶放射改善层39内,所辐射出的光谱也受干涉影响。当多晶层39及淀积于其上的氮化层32总厚度为其中的光波波长的1/4时,所发射光谱趋于一明显的峰值。为进一步改善辐射输出,在基片31下表面淀积一层镜面43,因而实际上,该镜面是被当作一个50至100nm厚的金属层。
不偏离本发明的范围与思想,白炽丝还可以例如成对串联,这可以通过将两个电压输入基座置于基片开口一侧来实现。同时每对相邻的白炽丝通过电连接它们在开口另一侧上另一些端头而串联连接起来。
此外,在发明的范围内,白炽丝下的开口可换成穿透基片的孔。
另外,基座绝缘材料例如可为铝,蓝宝石,水晶或水晶玻璃。
可以由氧化铝或氧化硅薄膜涂于白炽丝3上替代氮化硅。
这里所说的放射指的是射线放射,特指红外线放射。
参考资料:
1.H.Guckel及D.W.Burns,《以多晶膜加热辐射为基础的积累性传感器》,《传感器》85 364-366(6月,11-14,1985)。
2.CarlosH.Mastrangelo,James Hsi-Jen Yeh,及Richard S.Muller:《真空密封多晶微型灯的电学及光学特性》。《IEEE电子设备会刊》39,6,1363-1375,(6月,1992)。
3.M.Parameswaran,A.M.Robinson,D.L.Blackburn,M.Gaitan及J.Geist,《来源于工业晶体管的微机构的热敏发射器》《IEEE电子设备Lett》,12,2,57-59(1991)
4.《半导体国际惯例》,p,17,1992,11月
5.S.M.Sze,《VLSI技术》McGraw-Hill图韦公司,1985年第三次印刷,第5页第6章。

Claims (20)

1.一个电动可调辐射源装置包含
—一个主平面基片(1),
—基片(1)上开有开口或孔(2)
—至少有一根白炽丝(3)与基片(1)相连接,该白炽丝排列在该开口或孔处,
在基片(1)上形成的触头基座(5),用以在该白炽丝(3)的两头输入电流,
其特征在于:
—该白炽丝(3)是金属的,敷有连续的发射改进薄膜(32,36),至少敷于悬浮在基片(1)上的部分。
2.根据权利要求1中所述的辐射源装置,其特征在于该薄膜(32,36)由氮化硅制成。
3.根据权利要求1中所述的辐射源装置,其特征在于至少有两根白炽丝(3)电串联连接。
4.根据权利要求1中所述的辐射源装置,其特征在于至少有两根白炽丝(3)电并联连接。
5.根据权利要求1中所述的辐射源装置,其特征在于至少有一部分白炽丝(3)既是电串联又是电并联。
6.根据权利要求1所述的辐射源装置,其特征在于每根白炽丝(3)均由钨制成。
7.根据权利要求1所述的辐射源装置,其特征在于白炽丝(3)中的每根白炽丝由由钛钨合金制成。
8.根据权利要求1所述的辐射源装置,其特征在于每根白炽丝(3)由钼制成。
9.根据以上任何权利要求所述的副射源装置,其特征在于单个白炽丝(3)机械地与其它的互相联接。
10.根据权利要求9所述的辐射源装置,其特征在于单条白炽丝通过连续的氮化硅桥(6)机械性地互相联接。
11.根据权利要求9所述的辐射源装置,其特征在于单条白炽丝(3)通过带缝隙的连续氮化硅桥(6)机械性地互相联接。
12.根据前面任一的权利要求所述的辐射源装置,其特征在于在白炽丝(3)下有一个镜面结构(43)。
13.根据前面任一的权利要求所述的辐射源装置,其特征在于白炽丝(3)下有一层抗反射层。
14.根据前面任一的权利要求所述的辐射源装置,其特征在于包括了一个Falry-Perot干涉计。
15.根据前面任一的权利要求所述的辐射源装置,其特征在于辐射源装置包含了一带有孔(45)的不透明层(44)。
16.根据前面任一的权利要求所述的辐射源装置,其特征在于白炽丝(3)外层有一多晶硅层(39)。
17.根据权利要求16所述的辐射源装置,其特征在于所述多晶硅层(39)及淀积在其上的层(32)总厚度等于测量波长的1/4。
18.根据前面任一权利要求所述的辐射源装置,其特征在于白炽丝(3)两端的形状比其中部(8)较细。
19.根据前面任一的权利要求所述的辐射源装置,其特征在于白炽丝(33)的发射率通常大于0.4,较理想时大于0.5,特别理想时大于0.7。
20.根据前面任一的权利要求所述的辐射源装置,其特征在于白炽丝工作温度通常在400℃以上,理想时在500℃之上。
CN95108447A 1994-06-23 1995-06-23 电调制热辐射源装置 Expired - Fee Related CN1066855C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI943037 1994-06-23
FI943037A FI110727B (fi) 1994-06-23 1994-06-23 Sähköisesti moduloitava terminen säteilylähde

Publications (2)

Publication Number Publication Date
CN1121679A true CN1121679A (zh) 1996-05-01
CN1066855C CN1066855C (zh) 2001-06-06

Family

ID=8540991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95108447A Expired - Fee Related CN1066855C (zh) 1994-06-23 1995-06-23 电调制热辐射源装置

Country Status (6)

Country Link
US (1) US5644676A (zh)
EP (1) EP0689229B1 (zh)
JP (1) JP3745793B2 (zh)
CN (1) CN1066855C (zh)
DE (1) DE69512141T2 (zh)
FI (1) FI110727B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222897A (zh) * 2015-09-10 2016-01-06 北京环境特性研究所 一种定量型高温红外辐射源系统
CN107055455A (zh) * 2015-11-10 2017-08-18 罗伯特·博世有限公司 用于mems 传感器的加热装置

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI102696B (fi) * 1995-02-22 1999-01-29 Instrumentarium Oy Kaksoissäteilylähdekokoonpano ja mittausanturi
JP3205230B2 (ja) * 1995-08-31 2001-09-04 株式会社島津製作所 赤外光源
FI112005B (fi) * 1995-11-24 2003-10-15 Valtion Teknillinen Sähköisesti moduloitavissa oleva terminen säteilylähde
GB9607862D0 (en) * 1996-04-16 1996-06-19 Smiths Industries Plc Light-emitting assemblies
US5956003A (en) * 1996-07-24 1999-09-21 Hypres, Inc. Flat panel display with array of micromachined incandescent lamps
FR2748810A1 (fr) * 1996-09-30 1997-11-21 Commissariat Energie Atomique Source de rayonnement infrarouge miniaturisee
US6036829A (en) * 1997-02-10 2000-03-14 Denso Corporation Oxygen sensor
US5955839A (en) * 1997-03-26 1999-09-21 Quantum Vision, Inc. Incandescent microcavity lightsource having filament spaced from reflector at node of wave emitted
FR2768813B1 (fr) 1997-09-19 1999-10-22 Commissariat Energie Atomique Spectrometre photoacoustique miniaturise
US6124145A (en) 1998-01-23 2000-09-26 Instrumentarium Corporation Micromachined gas-filled chambers and method of microfabrication
US6689976B1 (en) * 2002-10-08 2004-02-10 Agilent Technologies, Inc. Electrically isolated liquid metal micro-switches for integrally shielded microcircuits
ITTO20010341A1 (it) * 2001-04-10 2002-10-10 Fiat Ricerche Sorgente di luce a matrice di microfilamenti.
US7078849B2 (en) * 2001-10-31 2006-07-18 Agilent Technologies, Inc. Longitudinal piezoelectric optical latching relay
US20030116552A1 (en) * 2001-12-20 2003-06-26 Stmicroelectronics Inc. Heating element for microfluidic and micromechanical applications
US6660977B2 (en) * 2002-03-12 2003-12-09 Shu-Lien Chen Electrical heating plate structure
US6741767B2 (en) * 2002-03-28 2004-05-25 Agilent Technologies, Inc. Piezoelectric optical relay
US20030194170A1 (en) * 2002-04-10 2003-10-16 Wong Marvin Glenn Piezoelectric optical demultiplexing switch
US6750594B2 (en) 2002-05-02 2004-06-15 Agilent Technologies, Inc. Piezoelectrically actuated liquid metal switch
US6927529B2 (en) 2002-05-02 2005-08-09 Agilent Technologies, Inc. Solid slug longitudinal piezoelectric latching relay
US6756551B2 (en) 2002-05-09 2004-06-29 Agilent Technologies, Inc. Piezoelectrically actuated liquid metal switch
US6855898B2 (en) * 2002-12-12 2005-02-15 Agilent Technologies, Inc. Ceramic channel plate for a switch
US20040112727A1 (en) * 2002-12-12 2004-06-17 Wong Marvin Glenn Laser cut channel plate for a switch
US6787719B2 (en) * 2002-12-12 2004-09-07 Agilent Technologies, Inc. Switch and method for producing the same
US6774324B2 (en) * 2002-12-12 2004-08-10 Agilent Technologies, Inc. Switch and production thereof
US7022926B2 (en) * 2002-12-12 2006-04-04 Agilent Technologies, Inc. Ultrasonically milled channel plate for a switch
US6743990B1 (en) 2002-12-12 2004-06-01 Agilent Technologies, Inc. Volume adjustment apparatus and method for use
US7019235B2 (en) * 2003-01-13 2006-03-28 Agilent Technologies, Inc. Photoimaged channel plate for a switch
US6809277B2 (en) 2003-01-22 2004-10-26 Agilent Technologies, Inc. Method for registering a deposited material with channel plate channels, and switch produced using same
US6747222B1 (en) 2003-02-04 2004-06-08 Agilent Technologies, Inc. Feature formation in a nonphotoimagable material and switch incorporating same
US6825429B2 (en) * 2003-03-31 2004-11-30 Agilent Technologies, Inc. Hermetic seal and controlled impedance RF connections for a liquid metal micro switch
US6765161B1 (en) 2003-04-14 2004-07-20 Agilent Technologies, Inc. Method and structure for a slug caterpillar piezoelectric latching reflective optical relay
US6956990B2 (en) * 2003-04-14 2005-10-18 Agilent Technologies, Inc. Reflecting wedge optical wavelength multiplexer/demultiplexer
US6920259B2 (en) * 2003-04-14 2005-07-19 Agilent Technologies, Inc. Longitudinal electromagnetic latching optical relay
US6876130B2 (en) * 2003-04-14 2005-04-05 Agilent Technologies, Inc. Damped longitudinal mode latching relay
US6903492B2 (en) * 2003-04-14 2005-06-07 Agilent Technologies, Inc. Wetting finger latching piezoelectric relay
US6903493B2 (en) * 2003-04-14 2005-06-07 Agilent Technologies, Inc. Inserting-finger liquid metal relay
US6903287B2 (en) * 2003-04-14 2005-06-07 Agilent Technologies, Inc. Liquid metal optical relay
US6803842B1 (en) 2003-04-14 2004-10-12 Agilent Technologies, Inc. Longitudinal mode solid slug optical latching relay
US6891116B2 (en) * 2003-04-14 2005-05-10 Agilent Technologies, Inc. Substrate with liquid electrode
US6903490B2 (en) * 2003-04-14 2005-06-07 Agilent Technologies, Inc. Longitudinal mode optical latching relay
US6841746B2 (en) * 2003-04-14 2005-01-11 Agilent Technologies, Inc. Bent switching fluid cavity
US6885133B2 (en) * 2003-04-14 2005-04-26 Agilent Technologies, Inc. High frequency bending-mode latching relay
US7071432B2 (en) * 2003-04-14 2006-07-04 Agilent Technologies, Inc. Reduction of oxides in a fluid-based switch
US6770827B1 (en) 2003-04-14 2004-08-03 Agilent Technologies, Inc. Electrical isolation of fluid-based switches
US7070908B2 (en) * 2003-04-14 2006-07-04 Agilent Technologies, Inc. Feature formation in thick-film inks
US6906271B2 (en) * 2003-04-14 2005-06-14 Agilent Technologies, Inc. Fluid-based switch
US6730866B1 (en) 2003-04-14 2004-05-04 Agilent Technologies, Inc. High-frequency, liquid metal, latching relay array
US6798937B1 (en) 2003-04-14 2004-09-28 Agilent Technologies, Inc. Pressure actuated solid slug optical latching relay
US6894424B2 (en) * 2003-04-14 2005-05-17 Agilent Technologies, Inc. High frequency push-mode latching relay
US6900578B2 (en) * 2003-04-14 2005-05-31 Agilent Technologies, Inc. High frequency latching relay with bending switch bar
US6961487B2 (en) * 2003-04-14 2005-11-01 Agilent Technologies, Inc. Method and structure for a pusher-mode piezoelectrically actuated liquid metal optical switch
US20040201447A1 (en) * 2003-04-14 2004-10-14 Wong Marvin Glenn Thin-film resistor device
US6762378B1 (en) 2003-04-14 2004-07-13 Agilent Technologies, Inc. Liquid metal, latching relay with face contact
US6925223B2 (en) * 2003-04-14 2005-08-02 Agilent Technologies, Inc. Pressure actuated optical latching relay
US6946775B2 (en) * 2003-04-14 2005-09-20 Agilent Technologies, Inc. Method and structure for a slug assisted longitudinal piezoelectrically actuated liquid metal optical switch
US7012354B2 (en) * 2003-04-14 2006-03-14 Agilent Technologies, Inc. Method and structure for a pusher-mode piezoelectrically actuated liquid metal switch
US6870111B2 (en) * 2003-04-14 2005-03-22 Agilent Technologies, Inc. Bending mode liquid metal switch
US6794591B1 (en) 2003-04-14 2004-09-21 Agilent Technologies, Inc. Fluid-based switches
US6740829B1 (en) 2003-04-14 2004-05-25 Agilent Technologies, Inc. Insertion-type liquid metal latching relay
US6924443B2 (en) * 2003-04-14 2005-08-02 Agilent Technologies, Inc. Reducing oxides on a switching fluid in a fluid-based switch
US6876132B2 (en) * 2003-04-14 2005-04-05 Agilent Technologies, Inc. Method and structure for a solid slug caterpillar piezoelectric relay
US6818844B2 (en) * 2003-04-14 2004-11-16 Agilent Technologies, Inc. Method and structure for a slug assisted pusher-mode piezoelectrically actuated liquid metal optical switch
US6838959B2 (en) * 2003-04-14 2005-01-04 Agilent Technologies, Inc. Longitudinal electromagnetic latching relay
US6894237B2 (en) * 2003-04-14 2005-05-17 Agilent Technologies, Inc. Formation of signal paths to increase maximum signal-carrying frequency of a fluid-based switch
US6888977B2 (en) * 2003-04-14 2005-05-03 Agilent Technologies, Inc. Polymeric liquid metal optical switch
US6879089B2 (en) * 2003-04-14 2005-04-12 Agilent Technologies, Inc. Damped longitudinal mode optical latching relay
US6831532B2 (en) * 2003-04-14 2004-12-14 Agilent Technologies, Inc. Push-mode latching relay
US6946776B2 (en) * 2003-04-14 2005-09-20 Agilent Technologies, Inc. Method and apparatus for maintaining a liquid metal switch in a ready-to-switch condition
US6882088B2 (en) * 2003-04-14 2005-04-19 Agilent Technologies, Inc. Bending-mode latching relay
US7048519B2 (en) * 2003-04-14 2006-05-23 Agilent Technologies, Inc. Closed-loop piezoelectric pump
US6774325B1 (en) 2003-04-14 2004-08-10 Agilent Technologies, Inc. Reducing oxides on a switching fluid in a fluid-based switch
US6876133B2 (en) * 2003-04-14 2005-04-05 Agilent Technologies, Inc. Latching relay with switch bar
US6816641B2 (en) * 2003-04-14 2004-11-09 Agilent Technologies, Inc. Method and structure for a solid slug caterpillar piezoelectric optical relay
US6876131B2 (en) * 2003-04-14 2005-04-05 Agilent Technologies, Inc. High-frequency, liquid metal, latching relay with face contact
US6891315B2 (en) * 2003-04-14 2005-05-10 Agilent Technologies, Inc. Shear mode liquid metal switch
US6768068B1 (en) 2003-04-14 2004-07-27 Agilent Technologies, Inc. Method and structure for a slug pusher-mode piezoelectrically actuated liquid metal switch
US6879088B2 (en) * 2003-04-14 2005-04-12 Agilent Technologies, Inc. Insertion-type liquid metal latching relay array
US6750413B1 (en) 2003-04-25 2004-06-15 Agilent Technologies, Inc. Liquid metal micro switches using patterned thick film dielectric as channels and a thin ceramic or glass cover plate
US6777630B1 (en) 2003-04-30 2004-08-17 Agilent Technologies, Inc. Liquid metal micro switches using as channels and heater cavities matching patterned thick film dielectric layers on opposing thin ceramic plates
US6759610B1 (en) 2003-06-05 2004-07-06 Agilent Technologies, Inc. Multi-layer assembly of stacked LIMMS devices with liquid metal vias
US6759611B1 (en) 2003-06-16 2004-07-06 Agilent Technologies, Inc. Fluid-based switches and methods for producing the same
US6833520B1 (en) * 2003-06-16 2004-12-21 Agilent Technologies, Inc. Suspended thin-film resistor
US6781074B1 (en) 2003-07-30 2004-08-24 Agilent Technologies, Inc. Preventing corrosion degradation in a fluid-based switch
US6787720B1 (en) 2003-07-31 2004-09-07 Agilent Technologies, Inc. Gettering agent and method to prevent corrosion in a fluid switch
JP4534620B2 (ja) * 2004-06-22 2010-09-01 パナソニック電工株式会社 赤外線放射素子
US20060006787A1 (en) * 2004-07-06 2006-01-12 David Champion Electronic device having a plurality of conductive beams
JP4534645B2 (ja) * 2004-07-26 2010-09-01 パナソニック電工株式会社 赤外線放射素子
DE102004046705A1 (de) * 2004-09-24 2006-03-30 Eads Deutschland Gmbh Mikromechanisch hergestellter Infrarotstrahler
US7846391B2 (en) 2006-05-22 2010-12-07 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem
FI125141B (fi) * 2007-01-03 2015-06-15 Kone Corp Hissin turvalaite
FI20070486A (fi) * 2007-01-03 2008-07-04 Kone Corp Hissin turvajärjestely
US7709811B2 (en) * 2007-07-03 2010-05-04 Conner Arlie R Light emitting diode illumination system
US8098375B2 (en) 2007-08-06 2012-01-17 Lumencor, Inc. Light emitting diode illumination system
US8242462B2 (en) 2009-01-23 2012-08-14 Lumencor, Inc. Lighting design of high quality biomedical devices
US8975604B2 (en) * 2009-09-18 2015-03-10 Thermo Electron Scientific Instruments Llc Emissivity enhanced mid IR source
US8410560B2 (en) * 2010-01-21 2013-04-02 Cambridge Cmos Sensors Ltd. Electromigration reduction in micro-hotplates
US9214604B2 (en) 2010-01-21 2015-12-15 Cambridge Cmos Sensors Limited Plasmonic IR devices
US8859303B2 (en) 2010-01-21 2014-10-14 Cambridge Cmos Sensors Ltd. IR emitter and NDIR sensor
US8389957B2 (en) 2011-01-14 2013-03-05 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
US8466436B2 (en) 2011-01-14 2013-06-18 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
JP5639528B2 (ja) * 2011-04-21 2014-12-10 パナソニック株式会社 赤外線放射素子、赤外線光源
US8967846B2 (en) 2012-01-20 2015-03-03 Lumencor, Inc. Solid state continuous white light source
WO2013167874A1 (en) 2012-05-08 2013-11-14 Cambridge Cmos Sensors Limited Ir emitter and ndir sensor
US9217561B2 (en) 2012-06-15 2015-12-22 Lumencor, Inc. Solid state light source for photocuring
DE102013218840A1 (de) * 2013-09-19 2015-03-19 Robert Bosch Gmbh Mikroheizplattenvorrichtung und Sensor mit einer Mikroheizplattenvorrichtung
US9801415B2 (en) * 2014-07-11 2017-10-31 POSIFA Microsytems, Inc. MEMS vaporizer
EP2975386B1 (en) * 2014-07-14 2020-09-02 Sensirion AG Heater structure for a sensor device
US9793478B2 (en) 2015-07-10 2017-10-17 Si-Ware Systems Structured silicon-based thermal emitter
US10680150B2 (en) * 2017-08-15 2020-06-09 Dragan Grubisik Electrically conductive-semitransparent solid state infrared emitter apparatus and method of use thereof
US10636777B2 (en) 2017-12-22 2020-04-28 Ams Sensors Uk Limited Infra-red device
US10883804B2 (en) 2017-12-22 2021-01-05 Ams Sensors Uk Limited Infra-red device
US11067422B2 (en) 2018-03-28 2021-07-20 Cambridge Gan Devices Limited Thermal fluid flow sensor
US10593826B2 (en) 2018-03-28 2020-03-17 Cambridge Gan Devices Limited Infra-red devices
KR20220106141A (ko) 2019-12-03 2022-07-28 트리나미엑스 게엠베하 방사선 발생 장치 및 방법
US12106957B2 (en) * 2020-04-30 2024-10-01 Taiwan Nano & Micro-Photonics Co., Ltd. Narrow band infrared emitter through thermal manner
EP4170301A1 (en) * 2021-10-22 2023-04-26 Infineon Technologies AG Infrared radiation source

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH638055A5 (fr) * 1979-06-07 1983-08-31 Siv Soc Italiana Vetro Miroir chauffant, destine a constituer un element de retroviseur exterieur pour vehicule.
US4315968A (en) * 1980-02-06 1982-02-16 Avco Corporation Silicon coated silicon carbide filaments and method
US4501144A (en) * 1982-09-30 1985-02-26 Honeywell Inc. Flow sensor
DE3466127D1 (en) * 1983-05-09 1987-10-15 Shaye Communications Ltd Element
US4682503A (en) * 1986-05-16 1987-07-28 Honeywell Inc. Microscopic size, thermal conductivity type, air or gas absolute pressure sensor
US4706061A (en) * 1986-08-28 1987-11-10 Honeywell Inc. Composition sensor with minimal non-linear thermal gradients
US4724356A (en) * 1986-10-10 1988-02-09 Lockheed Missiles & Space Co., Inc. Infrared display device
DE3711511C1 (de) * 1987-04-04 1988-06-30 Hartmann & Braun Ag Verfahren zur Bestimmung der Gaskonzentrationen in einem Gasgemisch und Sensor zur Messung der Waermeleitfaehigkeit
EP0360418B1 (en) * 1988-08-25 1995-02-15 Toshiba Lighting & Technology Corporation Strip heater
US5021711A (en) * 1990-10-29 1991-06-04 Gte Products Corporation Quartz lamp envelope with molybdenum foil having oxidation-resistant surface formed by ion implantation
US5285131A (en) * 1990-12-03 1994-02-08 University Of California - Berkeley Vacuum-sealed silicon incandescent light
US5408319A (en) * 1992-09-01 1995-04-18 International Business Machines Corporation Optical wavelength demultiplexing filter for passing a selected one of a plurality of optical wavelengths
US5464966A (en) * 1992-10-26 1995-11-07 The United States Of America As Represented By The Secretary Of Commerce Micro-hotplate devices and methods for their fabrication
FI101911B (fi) * 1993-04-07 1998-09-15 Valtion Teknillinen Sähköisesti moduloitava terminen säteilylähde ja menetelmä sen valmist amiseksi

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222897A (zh) * 2015-09-10 2016-01-06 北京环境特性研究所 一种定量型高温红外辐射源系统
CN107055455A (zh) * 2015-11-10 2017-08-18 罗伯特·博世有限公司 用于mems 传感器的加热装置
CN107055455B (zh) * 2015-11-10 2022-03-25 罗伯特·博世有限公司 用于mems传感器的加热装置

Also Published As

Publication number Publication date
JP3745793B2 (ja) 2006-02-15
DE69512141T2 (de) 2000-04-20
EP0689229A3 (en) 1996-07-10
DE69512141D1 (de) 1999-10-21
FI943037A (fi) 1995-12-24
US5644676A (en) 1997-07-01
EP0689229B1 (en) 1999-09-15
FI110727B (fi) 2003-03-14
JPH0864183A (ja) 1996-03-08
EP0689229A2 (en) 1995-12-27
FI943037A0 (fi) 1994-06-23
CN1066855C (zh) 2001-06-06

Similar Documents

Publication Publication Date Title
CN1066855C (zh) 电调制热辐射源装置
JP3636213B2 (ja) 電気的に変調可能な熱放射源およびその製造方法
JPH09184757A (ja) 電気変調可能な熱放射源
TWI428957B (zh) Light irradiation heat treatment device
TWI649860B (zh) 紅外線發射器
US5621267A (en) High-power metal halide reflector lamp
US4482393A (en) Method of activating implanted ions by incoherent light beam
JP6714772B2 (ja) 赤外線エミッター
US20040206747A1 (en) Ceramic heater for semiconductor manufacturing/inspecting apparatus
CN110708769A (zh) 加热用led灯及具备加热用led灯的晶圆加热组件
US6842582B2 (en) Light heating apparatus and method therefor
US5814840A (en) Incandescent light energy conversion with reduced infrared emission
KR100879427B1 (ko) 플래시 램프 조사 장치
US3412286A (en) Refractory-oxide incandescent lamp with preheater
EP1614654A2 (en) Electronic device having a plurality of conductive beams
US20240365438A1 (en) Thermal emitter module and thermal radiation light source
JP3509728B2 (ja) 分析装置用赤外光源
US3777209A (en) Non-thermionic electron emissive tube comprising a ceramic heater substrate
US20230232501A1 (en) Lamp for heating and heating apparatus including same
JP4291965B2 (ja) 電子放出表示装置の製造方法
JP2720655B2 (ja) 薄膜トランジスタ制御型蛍光表示パネル
JP2023105769A (ja) 加熱用のランプ、およびそれを備える加熱装置
JPS62291881A (ja) 赤外線放射体
JPS63257195A (ja) 遠赤外線ヒ−タ−及びその製造方法
KR19990027720A (ko) 대면적화한 전계방출표시소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20010606

Termination date: 20130623