CN112156812A - 一种超薄g-C3N4层负载包裹UiO-66复合物、制备方法及其光催化应用 - Google Patents

一种超薄g-C3N4层负载包裹UiO-66复合物、制备方法及其光催化应用 Download PDF

Info

Publication number
CN112156812A
CN112156812A CN202011140757.2A CN202011140757A CN112156812A CN 112156812 A CN112156812 A CN 112156812A CN 202011140757 A CN202011140757 A CN 202011140757A CN 112156812 A CN112156812 A CN 112156812A
Authority
CN
China
Prior art keywords
uio
layer
ultra
thin
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011140757.2A
Other languages
English (en)
Other versions
CN112156812B (zh
Inventor
姚建峰
陈钱
冯艺
王铎颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202011140757.2A priority Critical patent/CN112156812B/zh
Publication of CN112156812A publication Critical patent/CN112156812A/zh
Application granted granted Critical
Publication of CN112156812B publication Critical patent/CN112156812B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J31/1625Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超薄g‑C3N4层负载包裹UiO‑66复合物、制备方法及其光催化应用,其包括,超薄g‑C3N4层负载包裹UiO‑66的复合物包括g‑C3N4和UiO‑66。本发明通过化学气相沉积法所得到的g‑C3N4@UiO‑66复合物,与纯UiO‑66相比具有更高的光催化活性,可高效去除水体中有机污染物如四环素等。

Description

一种超薄g-C3N4层负载包裹UiO-66复合物、制备方法及其光催 化应用
技术领域
本发明涉及材料合成及光催化应用技术领域,特别是涉及一种制备超薄g-C3N4层负载包裹UiO-66复合物的方法。
背景技术
光催化技术被认为是一种对环境友好的污染物处理方式,其具有节能环保、效率高等优势,目前光催化技术在处理废水、废气和产氢方面都有一定的应用。
UiO-66是一种经典的金属有机骨架材料,其具有较高的比表面积及热/化学稳定性而受到广泛关注,在该材料有着如此多优点的前提下,它还具有相对较宽的带隙,从而使得UiO-66只对于紫外线的照射进行反应,无法对于可见光进行有效的响应,导致对于UiO-66制备和利用技术领域中,UiO-66在应用时利用的太阳能仅占太阳能的约4%,这在很大程度上限制了UiO-66的使用时的使用效率,因此,许多研究致力于通过各种方式将UiO-66于其他半导体进行复合,从而产生更有效的电荷分离效率,提高光催化活性。
目前报道的各种合成g-C3N4/UiO-66复合材料的方法中,共提供了两大类方法:UiO-66与g-C3N4直接混合或者在g-C3N4的纳米片中生长UiO-66。采用直接混合的方法将会导致UiO-66或者g-C3N4的严重团聚,从而严重影响光催化性能。在g-C3N4的纳米片中生长UiO-66的方法将会导致UiO-66的表面上负载过多的g-C3N4,这会降低表面积和降低活性位点的暴露。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
鉴于上述和/或现有g-C3N4层负载包裹UiO-66的复合物中存在的问题,提出了本发明。
因此,本发明其中一个目的是,克服现有g-C3N4层负载包裹UiO-66的复合物产品的不足,提供一种超薄g-C3N4层负载包裹UiO-66的复合物。
为解决上述技术问题,根据本发明的一个方面,本发明提供了如下技术方案:一种超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66),其包括,超薄g-C3N4层负载包裹UiO-66的复合物包括g-C3N4和UiO-66。
作为本发明所述超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的一种优选方案,其中:超薄g-C3N4层负载包裹UiO-66的复合物中UiO-66和g-C3N4的重量比为:0.3~2:1。
作为本发明所述超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的一种优选方案,其中:超薄g-C3N4层负载包裹UiO-66的复合物中UiO-66和g-C3N4的重量比为:0.5:1。
本发明另一个目的是,提供一种超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的制备方法。
为解决上述技术问题,根据本发明的一个方面,本发明提供了如下技术方案:一种超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的制备方法,其包括如下步骤:
物料放置:布置一个坩埚,坩埚底部放置三聚氰胺,坩埚中部多孔载体上放置UiO-66颗粒。
加热:将坩埚整体加热,得到g-C3N4@UiO-66复合物。
作为本发明所述超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的制备方法的一种优选方案,其中:加热中坩埚整体在马弗炉中加热。
作为本发明所述超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的制备方法的一种优选方案,其中:加热中加热温度为330-350℃,所述加热时间为0.3-2h。
作为本发明所述超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的制备方法的一种优选方案,其中:加热中加热的温度为350℃,加热时间为0.5h。
作为本发明所述超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的制备方法的一种优选方案,其中:物料放置中UiO-66颗粒的制备过程为190.3mg的ZrCl4和133mg的H2BDC溶于81.7mL的DMF溶液中,随后加入4.6g的乙酸并超声20min,后搅拌2h。将混合溶液转移到150mL高压反应釜中并在120℃烘箱中加热24h。自然冷却室温后,用DMF及甲醇各离心洗涤3次,在80℃烘箱中干燥过夜。
作为本发明所述超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的制备方法的一种优选方案,其中:制得g-C3N4@UiO-66复合物用于光催化降解有机污染物:四环素。
本发明提供一种制备超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的方法,与现有技术相比,合成温度更低,处理时间更短,更为节能和绿色环保,操作难度更低,适应于大规模生产;此外,本发明所述的化学气相沉积法可有效避免大量多余g-C3N4的形成和团聚,使得所得到的复合物得到改进,其表面负载的g-C3N4片层具有纳米级别厚度(~2nm),可有效缩短电子、电荷传输距离并提高界面电子、电荷传输;除此之外,本发明通过化学气相沉积法所得到的g-C3N4@UiO-66复合物,与纯UiO-66相比具有更高的光催化活性,可高效去除水体中有机污染物如四环素等。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为UiO-66(左图)以及g-C3N4@UiO-66(右图)表观颜色变化。纯UiO-66为白色,经过化学气相沉积法处理后得到的g-C3N4@UiO-66为淡黄色
图2为实施例1中合成的UiO-66以及g-C3N4@UiO-66的XRD图
图3为实施例1中合成的g-C3N4@UiO-66的TEM图
图4为实施例2和对比样中合成UiO-66以及g-C3N4@UiO-66的光催化性能图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书实施例对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
实施例1
将190.3mg的ZrCl4和133mg的H2BDC溶于81.7mL的DMF溶液中,随后加入4.6g的乙酸并超声20min,后搅拌2h。将混合溶液转移到150mL高压反应釜中并在120℃烘箱中加热24h。自然冷却室温后,用DMF及甲醇各离心洗涤3次,在80℃烘箱中干燥过夜,得到UiO-66。
将2.0g的三聚氰胺放在坩埚底部,而制备得到的UiO-66放在坩埚中间的多孔支撑物上面,然后将坩埚放在马弗炉中350℃加热30min,得到g-C3N4@UiO-66。
实施例2
将190.3mg的ZrCl4和133mg的H2BDC溶于81.7mL的DMF溶液中,随后加入4.6g的乙酸并超声20min,后搅拌2h。将混合溶液转移到150mL高压反应釜中并在120℃烘箱中加热24h。自然冷却室温后,用DMF及甲醇各离心洗涤3次,在80℃烘箱中干燥过夜,得到UiO-66。
将2.0g的三聚氰胺放在坩埚底部,而制备得到的UiO-66放在坩埚中间的多孔支撑物上面,然后将坩埚放在马弗炉中350℃加热1h,得到g-C3N4@UiO-66。
实施例3
将190.3mg的ZrCl4和133mg的H2BDC溶于81.7mL的DMF溶液中,随后加入4.6g的乙酸并超声20min,后搅拌2h。将混合溶液转移到150mL高压反应釜中并在120℃烘箱中加热24h。自然冷却室温后,用DMF及甲醇各离心洗涤3次,在80℃烘箱中干燥过夜,得到UiO-66。
将2.0g的三聚氰胺放在坩埚底部,而制备得到的UiO-66放在坩埚中间的多孔支撑物上面,然后将坩埚放在马弗炉中350℃加热2h,得到g-C3N4@UiO-66。
实施例4
将190.3mg的ZrCl4和133mg的H2BDC溶于81.7mL的DMF溶液中,随后加入4.6g的乙酸并超声20min,后搅拌2h。将混合溶液转移到150mL高压反应釜中并在120℃烘箱中加热24h。自然冷却室温后,用DMF及甲醇各离心洗涤3次,在80℃烘箱中干燥过夜,得到UiO-66。
将2.0g的三聚氰胺放在坩埚底部,而制备得到的UiO-66放在坩埚中间的多孔支撑物上面,然后将坩埚放在马弗炉中350℃加热15min,得到g-C3N4@UiO-66。
实施例5
将实施例1~4中制得的g-C3N4@UiO-66取40g放置在40mL的100ppm四环素溶液中,在反应器周围用铝箔纸包住搅拌1h后,打开光源,照射2h。每间隔30min取出溶液,用紫外测定吸收值,取催化2h的数据记录在表1中。
对比例设置为40mg UiO-66催化剂放置在40mL的100ppm四环素溶液中,在反应器周围用铝箔纸包住搅拌1h后,打开光源,照射2h。每间隔30min取出溶液,用紫外测定吸收值,取催化2h的数据记录在表1中。
实施例1~4中制得的g-C3N4@UiO-66和对比例对于四环素的催化效果见图1。
表1实施例1~4中g-C3N4@UiO-66和UiO-66对于四环素催化的效果
Figure BDA0002738203400000051
根据表1可得,实施例1中坩埚置于马弗炉中加热30min所制得的g-C3N4@UiO-66对于四环素的光催化降解效果最好,当加热时间从30min增加或者减少时,都会造成对于四环素催化效果的下降,加热时间的优选值为30min。
此外,根据实施例1~4和对比例的结果可以看出,没有经过三聚氰胺化学气相沉积处理的UiO-66对于四环素的催化效果较差,经过三聚氰胺化学气相沉积处理的UiO-66对于四环素的催化效果有着较大程度的提升。
我方发明中使用的处理温度设置为350℃,在处理UiO-66的方法中属于较低的温度,且处理时间精选为30min,为较短的处理时间,与处理UiO-66的其他方法相比,合成温度低,处理时间段,更加的节能和绿色环保,通过化学化学气相沉积处理的方法使得生成g-C3N4薄且均匀,生成的复合物表面负载的g-C3N4片层具有纳米级别厚度(~2nm),可有效缩短电子、电荷传输距离并提高界面电子、电荷传输。
根据图1可得,经过UiO-66和g-C3N4@UiO-66在表观颜色上有着明显的区别,本发明制备的g-C3N4@UiO-66相较未经过加工的UiO-66在外表面形成了一道C3N4包裹,从而使得UiO-66的催化性能得到极大的提高。
根据图2、图3、图4可得,实施例1中制得的g-C3N4@UiO-66与UiO-66为两种不同的物质,且低温下的催化性能相同,但是在温度稍高的情况下,g-C3N4@UiO-66拥有着相较UiO-66更好的催化能力。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66),其特征在于:所述超薄g-C3N4层负载包裹UiO-66的复合物包括g-C3N4和UiO-66。
2.根据权利要求1所述的超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66),其特征在于:所述超薄g-C3N4层负载包裹UiO-66的复合物中UiO-66和g-C3N4的重量比为:0.3~2:1。
3.根据权利要求1或2所述的超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66),其特征在于:所述超薄g-C3N4层负载包裹UiO-66的复合物中UiO-66和g-C3N4的重量比为:0.5:1。
4.根据权利要求1~3中任一所述的超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的制备方法,其特征在于:包括如下步骤:
物料放置:布置一个坩埚,坩埚底部放置三聚氰胺,坩埚中部多孔载体上放置UiO-66颗粒;
加热:将坩埚整体加热,得到g-C3N4@UiO-66复合物。
5.根据权利要求4所述的超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的制备方法,其特征在于:所述加热中坩埚整体在马弗炉中加热。
6.根据权利要求4或5所述的制备超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的方法,其特征在于:所述加热中加热温度为330-370℃,所述加热时间为0.25-2h。
7.根据权利要求4~6中任一所述的超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的制备方法,其特征在于:所述加热中加热的温度为350℃,加热时间为0.5h。
8.根据权利要求4所述的超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的制备方法,其特征在于:所述物料放置中UiO-66颗粒的制备过程为190.3mg的ZrCl4和133mg的H2BDC溶于81.7mL的DMF溶液中,随后加入4.6g的乙酸并超声20min,后搅拌2h。将混合溶液转移到150mL高压反应釜中并在120℃烘箱中加热24h。自然冷却室温后,用DMF及甲醇各离心洗涤3次,在80℃烘箱中干燥过夜。
9.根据权利要求1~7所述的超薄g-C3N4层负载包裹UiO-66的复合物(g-C3N4@UiO-66)的使用方法,其特征在于:制得g-C3N4@UiO-66复合物用于光催化降解有机污染物:四环素。
CN202011140757.2A 2020-10-22 2020-10-22 一种超薄g-C3N4层负载包裹UiO-66复合物、制备方法及其光催化应用 Expired - Fee Related CN112156812B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011140757.2A CN112156812B (zh) 2020-10-22 2020-10-22 一种超薄g-C3N4层负载包裹UiO-66复合物、制备方法及其光催化应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011140757.2A CN112156812B (zh) 2020-10-22 2020-10-22 一种超薄g-C3N4层负载包裹UiO-66复合物、制备方法及其光催化应用

Publications (2)

Publication Number Publication Date
CN112156812A true CN112156812A (zh) 2021-01-01
CN112156812B CN112156812B (zh) 2023-04-07

Family

ID=73866038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011140757.2A Expired - Fee Related CN112156812B (zh) 2020-10-22 2020-10-22 一种超薄g-C3N4层负载包裹UiO-66复合物、制备方法及其光催化应用

Country Status (1)

Country Link
CN (1) CN112156812B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181287A (zh) * 2022-08-03 2022-10-14 重庆工商大学 一种纳米复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657699A (zh) * 2013-12-12 2014-03-26 上海师范大学 一种g-C3N4量子点修饰的氧化钛纳米管催化剂及其制备方法和应用
CN109590022A (zh) * 2018-12-13 2019-04-09 常州大学 层状UiO-66/g-C3N4/Ag复合材料的制备方法及应用
CN110776049A (zh) * 2019-11-18 2020-02-11 湖南大学 功能化锆基金属有机骨架/质子化氮化碳复合材料活化过一硫酸盐处理有机废水的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657699A (zh) * 2013-12-12 2014-03-26 上海师范大学 一种g-C3N4量子点修饰的氧化钛纳米管催化剂及其制备方法和应用
CN109590022A (zh) * 2018-12-13 2019-04-09 常州大学 层状UiO-66/g-C3N4/Ag复合材料的制备方法及应用
CN110776049A (zh) * 2019-11-18 2020-02-11 湖南大学 功能化锆基金属有机骨架/质子化氮化碳复合材料活化过一硫酸盐处理有机废水的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RONG WANG ET AL.: ""Quasi-Polymeric Metal–Organic Framework UiO-66/g-C3N4 Heterojunctions for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation"", 《ADV. MATER. INTERFACES》, 31 December 2015 (2015-12-31), pages 1 - 5 *
YING ZHANG ET AL.: ""Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst"", 《CHEMOSPHERE》, vol. 212, 23 August 2018 (2018-08-23), XP085490751, DOI: 10.1016/j.chemosphere.2018.08.117 *
衣晓虹: ""MOFs及其复合物光催化还原Cr(Ⅵ)及降解有机污染物性能研究"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》, no. 7, 15 July 2019 (2019-07-15), pages 34 - 43 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181287A (zh) * 2022-08-03 2022-10-14 重庆工商大学 一种纳米复合材料及其制备方法和应用
CN115181287B (zh) * 2022-08-03 2023-08-25 重庆工商大学 一种纳米复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112156812B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN112169819B (zh) 一种g-C3N4/(101)-(001)-TiO2复合材料的制备方法和应用
Zeng et al. WS 2/gC 3 N 4 composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis
CN107876087B (zh) 甲胺铅碘-还原氧化石墨烯复合光催化材料的制备及其光催化制氢的应用
CN111437867B (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
Jiang et al. A study of spherical TiO2/g-C3N4 photocatalyst: morphology, chemical composition and photocatalytic performance in visible light
CN108671907B (zh) 一种铂/二氧化钛纳米花复合材料及其制备方法与应用
CN110624583A (zh) 一种复合石墨相氮化碳异质结光催化剂的制备方法
CN112517081B (zh) 金属锡卟啉轴向功能化二氧化钛的复合光催化剂及其制备方法
CN112209815B (zh) 一种以甲酸为主的液态含氧化合物的制备方法
CN111804343A (zh) 一种金属有机骨架材料封装金/二氧化钛复合光催化材料及其制备方法和应用
CN112295604B (zh) 金属有机框架纳米片、其制备方法及在高效光催化还原二氧化碳中的应用
CN113457663A (zh) 一种3D纳米花状Zn3(VO4)2制备方法及其应用
CN112156812B (zh) 一种超薄g-C3N4层负载包裹UiO-66复合物、制备方法及其光催化应用
CN103801354B (zh) 一种后退火处理的石墨相氮化碳空心球可见光催化剂
CN110237855A (zh) 一种可见光响应氧化铁掺杂氮缺陷氮化碳复合材料的制备方法及应用
Yuan et al. Synergistically enhanced photothermal catalytic CO2 reduction by spatially separated oxygen and sulphur dual vacancy regulated redox half-reactions
CN110721685B (zh) 一种复合光催化材料及其制备方法和应用
CN117225452A (zh) 一种中空结构TiN-Ni光热催化剂及其制备方法和应用
CN112958141A (zh) 一种含氧g-C3N4纳米片光催化剂的制备方法和应用
CN113134378A (zh) 一种W18O49/g-C3N4/RGO半导体光催化剂制备方法
CN115364886B (zh) 一种等离子体光催化材料及在二氧化碳环加成反应的应用
CN116393155A (zh) 碳环掺杂的g-C3N4基面内异质结的制备方法及其应用于光重整纤维素
CN110586057A (zh) 杂化改性TiO2复合光催化剂、其制备及用途
CN113457692A (zh) 一种3D纳米花状CuS制备方法及其光催化应用
CN110152706A (zh) 一种以共晶前驱体制备富碳氮化碳可见光催化剂的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20230407