CN112126085A - 一种抗低温仿生导电水凝胶及其制备方法和应用 - Google Patents

一种抗低温仿生导电水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN112126085A
CN112126085A CN202011053260.7A CN202011053260A CN112126085A CN 112126085 A CN112126085 A CN 112126085A CN 202011053260 A CN202011053260 A CN 202011053260A CN 112126085 A CN112126085 A CN 112126085A
Authority
CN
China
Prior art keywords
conductive hydrogel
hydrogel
low
temperature
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011053260.7A
Other languages
English (en)
Other versions
CN112126085B (zh
Inventor
孙元娜
逯帅帅
卢欣礼
陆宇言
王晓娟
魏鹏婷
李博洋
贺辛亥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Dingxin Huizhi Functional Materials Technology Co ltd
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202011053260.7A priority Critical patent/CN112126085B/zh
Publication of CN112126085A publication Critical patent/CN112126085A/zh
Application granted granted Critical
Publication of CN112126085B publication Critical patent/CN112126085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • C08J2433/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/162Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种抗低温仿生导电水凝胶及其制备方法和应用,属于材料制备技术领域。首先将琼脂糖、单体、光引发剂和交联剂加入到水中,搅拌均匀,通氮气后在恒温油浴锅中加热到90℃,待琼脂糖溶解后获得均一的溶液;在室温下自然冷却形成凝胶后用紫外灯照射;然后在室温下自然干燥后浸泡在含有无机盐和抗冻剂的溶液中,抗冻剂为海藻酸、甘露醇、甜菜碱、甘氨酸或脯氨酸,得到抗低温仿生导电水凝胶。本发明操作简单,易于制备,制备过程绿色安全,耗时短,为制备多功能化高强度水凝胶提供了途径。制得的导电水凝胶具有良好的力学性能和导电率,能够广泛应用于人工皮肤、柔性传感器、组织工程和超级电容器等技术领域。

Description

一种抗低温仿生导电水凝胶及其制备方法和应用
技术领域
本发明属于材料制备技术领域,具体涉及一种抗低温仿生导电水凝胶及其制备方法和应用。
背景技术
随着智能终端的普及,柔性可穿戴设备呈现出巨大的市场前景。传感器作为核心部件之一,将影响可穿戴设备的功能设计与未来发展。高分子导电水凝胶材料因其良好的生物相容性、皮肤贴合性以及高应变灵敏度,逐渐成为柔性应变传感器的研究热点。然而传统的导电水凝胶力学性能较差,且凝胶含水量高,低温下离子传输受阻,凝胶变得硬而脆,无法正常工作。这两方面的原因限制了导电水凝胶的实际应用。
发明内容
为了解决上述现有技术中存在的缺陷,本发明公开了一种抗低温仿生导电水凝胶及其制备方法和应用,操作简单,易于制备,制备过程绿色安全,耗时短,为制备多功能化高强度水凝胶提供了途径。制得的导电水凝胶具有良好的力学性能和导电率,能够广泛应用于人工皮肤、柔性传感器、组织工程和超级电容器等技术领域。
本发明是通过以下技术方案来实现:
本发明公开的一种抗低温仿生导电水凝胶的制备方法,包括以下步骤:
步骤1:将琼脂糖、单体、光引发剂和交联剂加入到水中,搅拌均匀,通氮气除去氧气后,在恒温油浴锅中加热到90℃,待琼脂糖溶解后获得均一的溶液;在室温下待溶液自然冷却形成凝胶后用紫外灯照射,得到聚合后的双网络水凝胶;
步骤2:将步骤1得到的双网络水凝胶在室温下自然干燥后浸泡在含有无机盐和抗冻剂的溶液中,抗冻剂为海藻酸、甘露醇、甜菜碱、甘氨酸或脯氨酸,得到抗低温仿生导电水凝胶。
优选地,单体为甲基丙烯酸羟乙酯或丙烯酰胺,交联剂为亚甲基双丙烯酰胺或聚乙二醇二丙烯酸酯,光引发剂为(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮)。
进一步优选地,琼脂糖的浓度为5-50g/L,单体总浓度为1-6mol/L,引发剂的浓度为单体总浓度的0.1%-1%,交联剂的浓度为单体总浓度0.01%-0.4%。
优选地,步骤1中,紫外灯照射的时间为1-20h。
优选地,无机盐为氯化钠、氯化钾、氯化铵或氯化钙。
进一步优选地,步骤2中,溶液中无机盐的质量分数为10%-20%,抗冻剂的质量分数为10%-40%。
优选地,步骤2中,自然干燥的时间为6h。
优选地,步骤2中,浸泡的时间为24h。
本发明公开了采用上述制备方法制得的抗低温仿生导电水凝胶,在应变为98%时的压缩应力为46.3Mpa,-40℃时的电导率为1.3S/m。
本发明公开了上述抗低温仿生导电水凝胶作为低温柔性传感器的导电材料的应用。
与现有技术相比,本发明具有以下有益的技术效果:
本发明公开的抗低温仿生导电水凝胶的制备方法,首先,采用一步法合成双网络水凝胶,受到外力时,第一网络作为牺牲单元,可以断裂成小的团簇,起到物理交联点的效果,第二网络为凝胶提供大的延展性,从而得到的凝胶能获得较高的力学强度。其次,传统采用二元或多元溶剂体系制备的抗低温导电水凝胶,主要通过将高含量的溶剂(如乙二醇、甘油等)引入水凝胶以降低水的凝固点。虽然赋予凝胶抗冻性能,但大部分的凝胶在低温下电导率较低,限制了其实际应用。受抗冻植物的启发,本发明第一网络采用琼脂糖制备,原料环保无毒;采用甜菜碱、海藻酸等作为抗冻剂,通过相互作用与水分子结合,干扰水分子形成致密的氢键结构,抑制结冰过程。与此同时,不会影响离子的传导。本发明操作简单,且制备过程绿色安全,耗时较短,为制备抗低温导电水凝胶提供了途径。
进一步地,单体采用甲基丙烯酸羟乙酯或丙烯酰胺,能够作为导电水凝胶的第二网络的骨架;交联剂采用亚甲基双丙烯酰胺或聚乙二醇二丙烯酸酯,光引发剂采用(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮),原料易得且价格低廉。
进一步地,紫外灯照射的时间为1-20h,时间过短反应不完全,时间过长会造成凝胶内部分子链的断裂。
进一步地,溶液中无机盐的质量分数为10%-20%,无机盐含量过多和过低都会影响离子的传导;抗冻剂的质量分数为10%-40%,抗冻剂含量过少,抗冻效果不明显,含量过多,抗冻剂无法溶解,影响反应进程。
进一步地,自然干燥的时间为6h,时间过短凝胶内部水分流失少,时间过长凝胶变得更加致密,不利于后期抗冻剂和无机盐的扩散。
进一步地,浸泡的时间为24h,时间过短,抗冻剂和无机盐扩散未达到平衡,时间过长则影响效率。
本发明公开的采用上述方法制得的抗低温仿生导电水凝胶,在应变为98%时的压缩应力为46.3MPa,具有良好的力学性能。
本发明公开的上述抗低温仿生导电水凝胶作为低温柔性传感器的导电材料时,在低温下兼具有良好的导电率和优异的力学性能。
附图说明
图1为未添加抗冻剂的水凝胶在-40℃的实物图;
图2为本发明制得的导电水凝胶在-40℃下扭转状态图;
图3为本发明制得的导电水凝胶在-40℃下弯曲状态图;
图4为本发明制得的导电水凝胶在-40℃下拉伸状态图;
图5为本发明制得的导电水凝胶的压缩应力-应变图;
图6为本发明制得的导电水凝胶在-40℃下的阻抗图。
具体实施方式
下面结合具体的实施例和附图对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
实施例1
称取一定量的琼脂糖加入去离子水中,分别加入光引发剂(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮)、单体丙烯酰胺和交联剂亚甲基双丙烯酰胺,在90℃下加热至充分溶解后,迅速将溶液注射到模具中自然冷却,等待琼脂糖形成凝胶,凝胶形成后用紫外灯照射,一段时间后聚合得到双网络水凝胶。其中,琼脂糖的浓度为20g/L,丙烯酰胺浓度为3mol/L,(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮)浓度为0.3×10-2mol/L,亚甲基双丙烯酰胺浓度为0.3×10-2mol/L,在90℃恒温油浴锅中加热10min随之在室温下紫外光照10h后得到双网络水凝胶。
将双网络水凝胶在室温下自然干燥6h后浸泡在氯化铵和甘露醇的溶液中24h,即得到抗低温仿生导电水凝胶。其中,氯化铵的质量分数为15%,甘露醇的质量分数为20%,
实施例2
称取一定量的琼脂糖加入去离子水中,分别加入光引发剂(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮)、单体甲基丙烯酸羟乙酯和交联剂聚乙二醇二丙烯酸酯,在90℃下加热至充分溶解后,迅速将溶液注射到模具中自然冷却,等待琼脂糖形成凝胶,凝胶形成后用紫外灯照射,一段时间后聚合得到双网络水凝胶。其中,琼脂糖的浓度为5g/L,甲基丙烯酸羟乙酯浓度为1mol/L,(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮)浓度为1×10-2mol/L,聚乙二醇二丙烯酸酯浓度为1×10-4mol/L,在90℃恒温油浴锅中加热10min随之在室温下紫外光照10h后得到双网络水凝胶。
将双网络水凝胶在室温下自然干燥6h后浸泡在的氯化钙和海藻酸的溶液中24h,即得到抗低温仿生导电水凝胶。其中,氯化钙的质量分数为10%,海藻酸的质量分数为10%。
实施例3
称取一定量的琼脂糖加入去离子水中,分别加入光引发剂(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮)、单体甲基丙烯酸羟乙酯和交联剂聚乙二醇二丙烯酸酯,在90℃下加热至充分溶解后,迅速将溶液注射到模具中自然冷却,等待琼脂糖形成凝胶,凝胶形成后用紫外灯照射,一段时间后聚合得到双网络水凝胶。其中,琼脂糖的浓度为50g/L,单体甲基丙烯酸羟乙酯浓度为6mol/L,(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮)浓度为3×10-2mol/L,聚乙二醇二丙烯酸酯浓度为2.4×10-2mol/L,在90℃恒温油浴锅中加热10min随之在室温下紫外光照10h后得到双网络水凝胶。
将双网络水凝胶在室温下自然干燥6h后浸泡在一定浓度的氯化钠和甘氨酸的溶液中24h,即得到抗低温仿生导电水凝胶。其中,氯化钠的质量分数为20%,甘氨酸的质量分数为40%。
将得到的含有抗冻剂凝胶在零下40℃下放置24h后进行拍照。
实施例4
称取一定量的琼脂糖加入去离子水中,分别加入光引发剂(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮)、单体甲基丙烯酸羟乙酯和交联剂聚乙二醇二丙烯酸酯,在90℃下加热至充分溶解后,迅速将溶液注射到模具中自然冷却,等待琼脂糖形成凝胶,凝胶形成后用紫外灯照射,一段时间后聚合得到双网络水凝胶。其中,琼脂糖的浓度为10g/L,甲基丙烯酸羟乙酯浓度为4mol/L,(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮)浓度为2×10-2mol/L,聚乙二醇二丙烯酸酯浓度为2×10-3mol/L,在90℃恒温油浴锅中加热10min随之在室温下紫外光照10h后得到双网络水凝胶。
将双网络水凝胶在室温下自然干燥6h后浸泡在氯化钾和甘露醇的溶液中24h,即得到抗低温仿生导电水凝胶。其中,氯化钾的质量分数为15%,甘露醇的质量分数为30%。
如图1,为未添加抗冻剂的水凝胶在-40℃下放置24h后进行拍照,从图中可以看出,未添加抗冻剂的凝胶在-40℃下已经开始结冰,且容易断裂。
如图2、3和4,分别为本发明制得的导电水凝胶在-40℃下扭转、弯曲和拉伸状态图,由图可以看出,在低温下,导电凝胶具有良好的力学性能,可以自由扭转、弯曲和拉伸且不被破坏。
对实施例2制得的导电水凝胶进行压缩性能测试,压缩样条尺寸为:直径9mm,高度4mm的圆柱形,测试数据如图5所示,凝胶可以承受的98%压缩应变而不破坏,此时的压缩强度为46.3MPa。
如图6,对导电水凝胶在-40℃进行电化学性能测试,凝胶的厚度为1.5mm,测试直径为15.8mm,此时凝胶的阻抗为5.8Ω,经公式计算可得(σ=D/SR,其中S为凝胶的面积,D为凝胶的厚度,R为凝胶的阻抗),凝胶在-40℃下的电导率为1.3S/m。

Claims (10)

1.一种抗低温仿生导电水凝胶的制备方法,其特征在于,包括以下步骤:
步骤1:将琼脂糖、单体、光引发剂和交联剂加入到水中,搅拌均匀,通氮气除去氧气后,在恒温油浴锅中加热到90℃,待琼脂糖溶解后获得均一的溶液;在室温下待溶液自然冷却形成凝胶后用紫外灯照射,得到聚合后的双网络水凝胶;
步骤2:将步骤1得到的双网络水凝胶在室温下自然干燥后浸泡在含有无机盐和抗冻剂的溶液中,抗冻剂为海藻酸、甘露醇、甜菜碱、甘氨酸或脯氨酸,得到抗低温仿生导电水凝胶。
2.权利要求1所述的抗低温仿生导电水凝胶的制备方法,其特征在于,单体为甲基丙烯酸羟乙酯或丙烯酰胺,交联剂为亚甲基双丙烯酰胺或聚乙二醇二丙烯酸酯,光引发剂为(2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮)。
3.权利要求2所述的抗低温仿生导电水凝胶的制备方法,其特征在于,琼脂糖的浓度为5-50g/L,单体总浓度为1-6mol/L,引发剂的浓度为单体总浓度的0.1%-1%,交联剂的浓度为单体总浓度0.01%-0.4%。
4.权利要求1所述的抗低温仿生导电水凝胶的制备方法,其特征在于,步骤1中,紫外灯照射的时间为1-20h。
5.权利要求1所述的抗低温仿生导电水凝胶的制备方法,其特征在于,无机盐为氯化钠、氯化钾、氯化铵或氯化钙。
6.权利要求5所述的抗低温仿生导电水凝胶的制备方法,其特征在于,步骤2中,溶液中无机盐的质量分数为10%-20%,抗冻剂的质量分数为10%-40%。
7.权利要求1所述的抗低温仿生导电水凝胶的制备方法,其特征在于,步骤2中,自然干燥的时间为6h。
8.权利要求1所述的抗低温仿生导电水凝胶的制备方法,其特征在于,步骤2中,浸泡的时间为24h。
9.采用权利要求1~8中任意一项制备方法制得的抗低温仿生导电水凝胶,其特征在于,在应变为98%时的压缩应力为46.3Mpa,-40℃时的电导率为1.3S/m。
10.权利要求9所述的抗低温仿生导电水凝胶作为低温柔性传感器的导电材料的应用。
CN202011053260.7A 2020-09-29 2020-09-29 一种抗低温仿生导电水凝胶及其制备方法和应用 Active CN112126085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011053260.7A CN112126085B (zh) 2020-09-29 2020-09-29 一种抗低温仿生导电水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011053260.7A CN112126085B (zh) 2020-09-29 2020-09-29 一种抗低温仿生导电水凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112126085A true CN112126085A (zh) 2020-12-25
CN112126085B CN112126085B (zh) 2023-01-13

Family

ID=73843150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011053260.7A Active CN112126085B (zh) 2020-09-29 2020-09-29 一种抗低温仿生导电水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112126085B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929818A (zh) * 2021-08-04 2022-01-14 中山大学附属第一医院 基于聚丙烯酰胺-卡拉胶的导电水凝胶在柔性氧气传感器中的应用
CN113956409A (zh) * 2021-11-09 2022-01-21 西南医科大学 一种用于3d打印技术的导电树脂及其制备方法及应用
CN114349899A (zh) * 2021-12-10 2022-04-15 深圳大学 一种自粘附导电凝胶及其制备方法
CN116376060A (zh) * 2023-04-18 2023-07-04 浙江大学 适用于冷链运输的水凝胶相变材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519439A (zh) * 2009-04-03 2009-09-02 北京金迪克生物技术研究所 一种抗冻多肽、其合成及含有这种多肽的组合物和应用
CN106496656A (zh) * 2016-12-02 2017-03-15 国家海洋局第三海洋研究所 一种高强度的琼脂/粘土复合材料及其制备方法
CN108329497A (zh) * 2018-01-19 2018-07-27 深圳大学 一种保湿抗冻水凝胶及其制备方法
WO2018232384A1 (en) * 2017-06-16 2018-12-20 University Of Southern California A novel method to improve adhesive strength of reversible polymers and hydrogels
CN110078939A (zh) * 2019-04-12 2019-08-02 燕山大学 双网络水凝胶的制备方法
CN110105595A (zh) * 2019-05-28 2019-08-09 燕山大学 一种低温耐受性离子导电水凝胶及其制备方法和应用
CN111154120A (zh) * 2020-01-15 2020-05-15 西安工程大学 一种基于反应型胶束的导电水凝胶及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519439A (zh) * 2009-04-03 2009-09-02 北京金迪克生物技术研究所 一种抗冻多肽、其合成及含有这种多肽的组合物和应用
CN106496656A (zh) * 2016-12-02 2017-03-15 国家海洋局第三海洋研究所 一种高强度的琼脂/粘土复合材料及其制备方法
WO2018232384A1 (en) * 2017-06-16 2018-12-20 University Of Southern California A novel method to improve adhesive strength of reversible polymers and hydrogels
CN108329497A (zh) * 2018-01-19 2018-07-27 深圳大学 一种保湿抗冻水凝胶及其制备方法
CN110078939A (zh) * 2019-04-12 2019-08-02 燕山大学 双网络水凝胶的制备方法
CN110105595A (zh) * 2019-05-28 2019-08-09 燕山大学 一种低温耐受性离子导电水凝胶及其制备方法和应用
CN111154120A (zh) * 2020-01-15 2020-05-15 西安工程大学 一种基于反应型胶束的导电水凝胶及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙元娜等: ""阳离子型纳米胶束凝胶的制备及其对染料的吸附"", 《印染》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929818A (zh) * 2021-08-04 2022-01-14 中山大学附属第一医院 基于聚丙烯酰胺-卡拉胶的导电水凝胶在柔性氧气传感器中的应用
CN113929818B (zh) * 2021-08-04 2023-10-20 中山大学附属第一医院 基于聚丙烯酰胺-卡拉胶的导电水凝胶在柔性氧气传感器中的应用
CN113956409A (zh) * 2021-11-09 2022-01-21 西南医科大学 一种用于3d打印技术的导电树脂及其制备方法及应用
CN113956409B (zh) * 2021-11-09 2023-04-07 西南医科大学 一种用于3d打印技术的导电树脂及其制备方法及应用
CN114349899A (zh) * 2021-12-10 2022-04-15 深圳大学 一种自粘附导电凝胶及其制备方法
CN114349899B (zh) * 2021-12-10 2023-05-30 深圳大学 一种自粘附导电凝胶及其制备方法
CN116376060A (zh) * 2023-04-18 2023-07-04 浙江大学 适用于冷链运输的水凝胶相变材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112126085B (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
CN112126085B (zh) 一种抗低温仿生导电水凝胶及其制备方法和应用
CN109320673B (zh) 一种自修复柔性水凝胶电敏材料及其制备方法和应用
CN106633111B (zh) 一种高强度聚乙烯醇基双网络水凝胶的制备方法
CN110760152B (zh) 一种抗冻水凝胶及其制备方法与应用
CN112321978B (zh) 一种各向异性的高强高韧有机水凝胶及其制备方法和应用
CN111040194A (zh) 导电水凝胶及其制备方法和应用
CN110265232B (zh) 一种可自愈水凝胶电解质薄膜及其制备方法和应用
CN113549175A (zh) 一种多功能导电离子液体凝胶及其制备方法与应用
CN109535449A (zh) 一种高强韧耐高低温壳聚糖基水凝胶的制备方法
Zhou et al. Dual-network polyvinyl alcohol/polyacrylamide/xanthan gum ionic conductive hydrogels for flexible electronic devices
CN111995770A (zh) 一种物理联合网络水凝胶的制备方法
CN110698693A (zh) 一种柔性自愈合导电水凝胶传感器及其制备方法
CN113012947B (zh) 一种水系固态电解质的制备方法及其应用
CN112375235A (zh) 一种各向同性的高强韧有机水凝胶电解质及其制备方法
CN114349899B (zh) 一种自粘附导电凝胶及其制备方法
CN110591121A (zh) 一种全物理交联三重互穿网络水凝胶的制备方法
CN116836338A (zh) 一种水凝胶电解质及其制备方法和应用
CN111704728A (zh) 透明的离子导电纤维素水凝胶及其制备方法和应用
CN114874463A (zh) 一种具有优异机械性能的抗冻导电水凝胶及其制备方法与应用
CN113185715B (zh) 一种自愈合导电聚乙烯醇基水凝胶及其制备方法与应用
CN112778546A (zh) 一种高强度聚丙烯酰胺-阳离子瓜尔胶离子导电凝胶的制备方法
CN111944170B (zh) 一种自愈合水凝胶的制备方法
CN112210114A (zh) 一种超高强度多功能聚乙烯醇基油凝胶弹性体的制备方法
CN114075338A (zh) 一种超低温自愈合离子导电水凝胶及其制备方法
CN108503856A (zh) 一种基于石墨烯的高强高导蚕丝蛋白智能水凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230619

Address after: 710086 Room 008, F2005, 20th Floor, Building 4-A, Xixian Financial Port, Fengdong New Energy Jinmao District, Xixian New District, Xi'an City, Shaanxi Province

Patentee after: Shaanxi Dingxin Huizhi Functional Materials Technology Co.,Ltd.

Address before: 710048 No. 19 Jinhua South Road, Shaanxi, Xi'an

Patentee before: XI'AN POLYTECHNIC University

TR01 Transfer of patent right