CN113956409B - 一种用于3d打印技术的导电树脂及其制备方法及应用 - Google Patents

一种用于3d打印技术的导电树脂及其制备方法及应用 Download PDF

Info

Publication number
CN113956409B
CN113956409B CN202111322397.2A CN202111322397A CN113956409B CN 113956409 B CN113956409 B CN 113956409B CN 202111322397 A CN202111322397 A CN 202111322397A CN 113956409 B CN113956409 B CN 113956409B
Authority
CN
China
Prior art keywords
conductive
parts
printing technology
conductive resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111322397.2A
Other languages
English (en)
Other versions
CN113956409A (zh
Inventor
王力
罗亚梅
周赟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Medical University
Original Assignee
Southwest Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Medical University filed Critical Southwest Medical University
Priority to CN202111322397.2A priority Critical patent/CN113956409B/zh
Publication of CN113956409A publication Critical patent/CN113956409A/zh
Application granted granted Critical
Publication of CN113956409B publication Critical patent/CN113956409B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种用于3D打印技术的导电树脂及其制备方法及应用,属于3D打印材料技术领域。其包括:按重量份计,聚合反应材料70~95份、导电材料20~35份和光引发剂0.5~3份;所述聚合反应材料包括:丙烯酸羟乙酯、聚乙二醇二丙烯酸酯、聚乙烯醇、丙烯酰胺和改性聚二甲基硅氧烷。本发明的聚合反应材料各组分相互协同,通过物理交联和化学交联形成稳定的三维网络结构,能有效提高树脂的机械性能,解决分散于水中的导电材料在树脂中均匀分散的问题,从而提高导电树脂的导电稳定性以及避免类似组分导电水凝胶因失水机械性能变差的问题。该树脂制备方法简单,经光固化3D打印技术制造,在柔性传感等领域具有巨大的应用前景。

Description

一种用于3D打印技术的导电树脂及其制备方法及应用
技术领域
本发明涉及3D打印材料技术领域,具体涉及一种用于3D打印技术的导电树脂及其制备方法及应用。
背景技术
3D打印技术(也称为增材制造)旨在制造无需模具或机械加工的复杂三维结构。由于光固化树脂的配方多样性和组分可调节的开放性,基于光聚合的3D打印技术在市场化应用上更具优势,适合打印表面平滑和结构精细的三维图形。立体光刻(SLA),数字光处理(DLP)和连续液体界面生产(CLIP)等3D光聚合技术,使复杂多功能材料系统的3D制造具有可控的光学、化学和机械性能。使用这些技术也可以实现低特征尺寸(亚微米范围内)的高分辨率。因此,该技术在微流控、生物医学设备、软机器人、外科、组织工程、牙科和药物输送等各个领域开辟了新的方向。
数字光处理技术在保持高制造精度的同时缩短了打印时间。数字光处理技术的特点是使用紫外光源选择性辐照固化每一层液态树脂,这区别于逐点曝光的SLA技术。在数字光处理系统中,光源从树脂槽底部发光,图形成型平台从上方浸入树脂中。因此,数字光处理技术消耗的树脂量较低,且固化层不与空气直接接触(放置在容器底部),在一定程度上避免了氧对聚合的抑制作用。
在3D打印技术中,器件传感层和电极的导电膜层需要树脂与导电材料预先均匀混合,再参与到打印制造中。在实践操作中,导电固体粉末很难与树脂均匀混合,树脂中过多的导电填料还会影响树脂的柔韧性和弹性,从而影响打印材料的机械性能和导电性。
发明内容
本发明的目的是提供一种用于3D打印技术的导电树脂及其制备方法及应用,以解决现有3D打印材料中导电填料与树脂混合不均匀以及树脂的柔韧性和弹性差,从而影响打印材料的机械性能和导电性的问题。
本发明解决上述技术问题的技术方案如下:
一种用于3D打印技术的导电树脂,包括:按重量份计,聚合反应材料60~95份、导电材料20~40份和光引发剂0.5~5份;
所述聚合反应材料包括:丙烯酸羟乙酯、聚乙二醇二丙烯酸酯、聚乙烯醇、丙烯酰胺和改性聚二甲基硅氧烷。
进一步地,所述的用于3D打印技术的导电树脂,包括:按重量份计,聚合反应材料60~80份、导电材料20~40份和光引发剂0.5~5份。
进一步地,所述的用于3D打印技术的导电树脂,包括:按重量份计,聚合反应材料70~80份、导电材料25~30份和光引发剂1~2份。
进一步地,所述聚合反应材料中,丙烯酸羟乙酯、聚乙二醇二丙烯酸酯、聚乙烯醇、丙烯酰胺和改性聚二甲基硅氧烷的质量比为(0.5~1):(0.01~0.2):(0.1~0.2):(0.5~1):(0.1~0.5)。
进一步地,所述导电材料包括:碳纳米管、银纳米线、石墨烯、聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)、二维层状结构的金属碳化物和二维层状结构的金属氮化物(MXene)中的一种或几种。
碳纳米管、银纳米线、石墨烯、聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)、MXene等纳米材料可以很好的分散于水中。较之于普通导电粉体,这些材料依靠自身的低维材料几何特征,形成柔性和较低填充率的导电渗流三维网络,从而不影响树脂整体的柔韧性和弹性。因此,这些纳米导电材料与光固化型水凝胶均匀混合形成导电树脂。但水凝胶失水后的机械性能会大大衰减,不适于干燥环境中穿戴式电子的应用。
进一步地,所述光引发剂包括:(2,4,6-三甲基苯甲酰基)二苯基氧化膦、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(2,4,6-三甲基苯甲酰基)膦酸乙酯、二苯甲酮、异丙基硫杂蒽酮、2,4-二甲基硫杂蒽酮、4-对甲苯巯基二苯甲酮、安息香二甲醚和二芳基碘鎓盐中的一种或几种。
进一步地,所述改性聚二甲基硅氧烷为丙烯酸酯改性聚二甲基硅氧烷。
本发明提供一种用于3D打印技术的导电树脂的制备方法,包括以下步骤:
将导电材料分散到水或乙醇中得到分散液,然后加入聚合反应材料混合均匀后,加热蒸发掉混合体系中的水分,再引入光引发剂,得到导电树脂。
本发明还提供了用于3D打印技术的导电树脂在利用3D打印技术制备柔性可拉伸压力传感器的应用。
本发明具有以下有益效果:
1、本发明采用的聚合反应材料中,聚乙二醇二丙烯酸酯属于双官能度低聚物,能够与水混溶,可通过光交联形成树脂,但其固化后的机械性能较差。通过其他聚合反应材料,聚乙烯醇为亲水性聚合物,能与聚乙二醇二丙烯酸酯通过氢键发生物理交联,形成非共价交联网络,从而增加聚乙二醇二丙烯酸酯水疑胶的拉伸强度和断裂伸长率;丙烯酸羟乙酯为水溶性的单官能度单体,其聚合速率比其他单官能度丙烯酸酯快,起到交联剂的作用;经丙烯酸酯改性的聚二甲基硅氧烷赋予聚二甲基硅氧烷光固化活性,同时保留了部分聚二甲基硅氧烷的柔顺主链结构以及聚二甲基硅氧烷的亲油特性,能与其他反应物形成更稳定化学交联网络结构,又能提高树脂对油性的导电材料的吸附性,提高导电材料在树脂中的混合均匀度,有利于提高树脂的导电稳定性。
2、在本发明中水溶性的聚合反应材料先与导电材料水分散液混合,待蒸发掉水分后添加其他“油相”组分。根据“相似相溶”的基本原理,在不添加表面活性剂的情况下,具有相同丙烯酸酯结构的组分可以按有限比例互溶。固态粉末状的光引发剂TPO可以溶解于常见的丙烯酸酯单体。即使存在少量的水分,整个体系在持续剧烈的搅拌后也会形成均匀的乳液,这不影响打印树脂的光固化。经3D打印出的器件各结构(传感层、电极和引线)所使用的打印树脂在组分上可以相同或被部分替换但存在相同组分,这种组分连续的变化可以确保层间的化学粘合,防止拉伸过程中应力对器件的破坏。器件打印过程中,导电层与非导电层的形成中需要切换材料,例如在打印电极衬底时,当电极衬底打印完毕后,应暂停打印,更换导电树脂继续打印,从而形成器件的电极部分。
3、本发明的聚合反应材料各组分相互协同,通过物理交联和化学交联形成稳定的三维网络结构,能有效提高树脂的机械性能,解决分散于水中的导电材料在树脂中均匀分散的问题,从而提高导电树脂的导电稳定性以及避免类似组分导电树脂因失水机械性能变差的问题。该树脂制备方法简单,经光固化3D打印技术制造,在柔性传感等领域具有巨大的应用前景。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为用于3D打印技术的导电树脂在利用3D打印技术制备出的器件结构示意图。
具体实施方式
以下结合实施例及附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
光引发剂为TPO作为一种高效的光引发剂,是光交联体系不可或缺的组成部分,其吸收的光源波长在350-400nm,且在420nm处也有吸收,具有很宽的吸收范围。
实施例1:
本实施例的用于3D打印技术的导电树脂,包括:按重量份计,聚合反应材料60份、导电材料20份和光引发剂0.5份;
所述聚合反应材料包括:丙烯酸羟乙酯、聚乙二醇二丙烯酸酯、聚乙烯醇、丙烯酰胺和丙烯酸酯改性聚二甲基硅氧烷,其质量比为0.5:0.01:0.1:0.5:0.1。
所述导电材料包括:银纳米线。
所述光引发剂包括:(2,4,6-三甲基苯甲酰基)二苯基氧化膦。
本实施例的用于3D打印技术的导电树脂的制备方法,包括以下步骤:
将导电材料分散到水或乙醇中得到分散液,然后聚合反应材料混合均匀后,加热蒸发掉混合体系中的水分,再引入光引发剂,得到导电树脂。
实施例2:
本实施例的用于3D打印技术的导电树脂,包括:按重量份计,聚合反应材料70份、导电材料25份和光引发剂1份。
所述聚合反应材料包括:丙烯酸羟乙酯、聚乙二醇二丙烯酸酯、聚乙烯醇、丙烯酰胺和丙烯酸酯改性聚二甲基硅氧烷,其质量比为0.6:0.05:0.1:0.6:0.2。
所述导电材料包括:碳纳米管。
所述光引发剂包括:(2,4,6-三甲基苯甲酰基)二苯基氧化膦。
本实施例的用于3D打印技术的导电树脂的制备方法,包括以下步骤:
将导电材料分散到水或乙醇中得到分散液,然后加入聚合反应材料混合均匀后,加热蒸发掉混合体系中的水分,再引入光引发剂,得到导电树脂。
实施例3:
本实施例的用于3D打印技术的导电树脂,包括:按重量份计,聚合反应材料75份、导电材料27份和光引发剂1.5份;
所述聚合反应材料包括:丙烯酸羟乙酯、聚乙二醇二丙烯酸酯、聚乙烯醇、丙烯酰胺和丙烯酸酯改性聚二甲基硅氧烷,其质量比为0.7:0.1:0.15:0.7:0.3。
所述导电材料包括:聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)。
所述光引发剂包括:(2,4,6-三甲基苯甲酰基)二苯基氧化膦。
本实施例的用于3D打印技术的导电树脂的制备方法,包括以下步骤:
将导电材料分散到水或乙醇中得到分散液,然后加入聚合反应材料混合均匀后,加热蒸发掉混合体系中的水分,再引入光引发剂,得到导电树脂。
实施例4:
本实施例的用于3D打印技术的导电树脂,包括:按重量份计,聚合反应材料80份、导电材料30份和光引发剂2份。
所述聚合反应材料包括:丙烯酸羟乙酯、聚乙二醇二丙烯酸酯、聚乙烯醇、丙烯酰胺和丙烯酸酯改性聚二甲基硅氧烷,其质量比为0.9:0.15:0.2:0.9:0.4。
所述导电材料包括:石墨烯。
所述光引发剂包括:(2,4,6-三甲基苯甲酰基)二苯基氧化膦。
本实施例的用于3D打印技术的导电树脂的制备方法,包括以下步骤:
将导电材料分散到水或乙醇中得到分散液,然后加入聚合反应材料混合均匀后,加热蒸发掉混合体系中的水分,再引入光引发剂,得到导电树脂。
实施例5:
本实施例的用于3D打印技术的导电树脂,包括:按重量份计,聚合反应材料95份、导电材料40份和光引发剂5份;
所述聚合反应材料包括:丙烯酸羟乙酯、聚乙二醇二丙烯酸酯、聚乙烯醇、丙烯酰胺和丙烯酸酯改性聚二甲基硅氧烷,其质量比为1:0.2:0.2:1:0.5。
所述导电材料包括:MXene。
所述光引发剂包括:(2,4,6-三甲基苯甲酰基)二苯基氧化膦。
本实施例的用于3D打印技术的导电树脂的制备方法,包括以下步骤:
将导电材料分散到水或乙醇中得到分散液,然后加入聚合反应材料混合均匀后,加热蒸发掉混合体系中的水分,再引入光引发剂,得到导电树脂。
实施例6
实施例1-5中用于3D打印技术的导电树脂在利用3D打印技术制备柔性可拉伸压力传感器的应用。
器件的结构分为传感层、电极和引线,如图1所示,在图1中,1为上衬底,2为下衬底,3为具有微结构的导电层,6为引线,上衬底1和具有微结构的导电层3构成了传感层5,下衬底2和具有微结构的导电层3构成了电极5。
传感层具有表面起伏的微结构且嵌入导电材料,导电材料为碳纳米管、金属纳米线或有机导电材料。电极采用叉指状图案且具有表面起伏的微结构或凹陷沟道结构,电极导电材料为嵌入树脂的金属纳米线。银线导电材料采用金属纳米线、金属纳米颗粒或液态金属。器件所有结构均采用3D打印连续成型,每个功能层打印完毕后暂停打印,更换打印树脂后继续打印,最终获得具有三维中空结构的柔性传感器。压力传感器在压力作用下电学响应可以分成三个阶段,为了定量传感器的灵敏度,压力灵敏度被定义为S=(I/I0)/P,其中I是与压力变化P对应的相对电流变化值,I0是初始电流。在初始阶段,即低压力范围(<10kPa,一般为对人体皮肤温柔的触摸),三维电极结构的传感器灵敏度数值估算为S=1kPa-1。在该阶段,由于器件传感层和电极形成的中空三维结构,传感层表面导电材料与电极表面导电材料最开始只有少量凸出部分能接触。当对传感器施加小压力时,顶部传感层容易被压缩,导致传感层和电极之间的中空间隔空间减小。因此,在传感层和电极之间会产生许多新的导电接触点,这些接触点形成新的导电通道并且能够很大程度地降低传感器的电阻。随后,在中压力区域(10-60kPa,一般适用于操作物品),随着压力的增加,由于传感层表面可用于形成新接触点的突触减少,因此电流的增长变化趋于缓慢。最后,在高压力区(60kPa以上,此时人体会感到疼痛),电流增长趋于稳定。在此阶段,传感层的所有的表面微结构都已经与电极接触,不再有新的连接点形成,而电流的增长主要依靠嵌入有导电材料的弹性树脂材料被压平,与金属纳米线电极接触面积增大。此时传感器的灵敏度数值估算为0.1kPa-1
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种用于3D打印技术的导电树脂,其特征在于,包括:按重量份计,聚合反应材料60~95份、导电材料20~40份和光引发剂0.5~5份;
所述聚合反应材料包括:丙烯酸羟乙酯、聚乙二醇二丙烯酸酯、聚乙烯醇、丙烯酰胺和改性聚二甲基硅氧烷;
所述聚合反应材料中,丙烯酸羟乙酯、聚乙二醇二丙烯酸酯、聚乙烯醇、丙烯酰胺和改性聚二甲基硅氧烷的质量比为(0.5~1):(0.01~0.2):(0.1~0.2):(0.5~1):(0.1~0.5);
所述改性聚二甲基硅氧烷为丙烯酸酯改性聚二甲基硅氧烷;
所述导电树脂应用于柔性可拉伸压力传感器。
2.根据权利要求1所述的用于3D打印技术的导电树脂,其特征在于,包括:按重量份计,聚合反应材料60~80份、导电材料20~40份和光引发剂0.5~5份。
3.根据权利要求1所述的用于3D打印技术的导电树脂,其特征在于,包括:按重量份计,聚合反应材料70~80份、导电材料25~35份和光引发剂1~2份。
4.根据权利要求1-3任一项所述的用于3D打印技术的导电树脂,其特征在于,所述导电材料包括:碳纳米管、银纳米线、石墨烯、聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)、二维层状结构的金属碳化物和二维层状结构的金属氮化物中的一种或几种。
5.根据权利要求1-3任一项所述的用于3D打印技术的导电树脂,其特征在于,所述光引发剂包括:(2,4,6-三甲基苯甲酰基)二苯基氧化膦、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(2,4,6-三甲基苯甲酰基)膦酸乙酯、二苯甲酮、异丙基硫杂蒽酮、2,4-二甲基硫杂蒽酮、4-对甲苯巯基二苯甲酮、安息香二甲醚和二芳基碘鎓盐中的一种或几种。
6.权利要求1-5任一项所述的用于3D打印技术的导电树脂的制备方法,其特征在于,包括以下步骤:
将导电材料分散到水或乙醇中得到分散液,然后加入聚合反应材料混合均匀后,加热蒸发掉混合体系中的水分或乙醇,再引入光引发剂,得到导电树脂。
7.权利要求1-5任一项所述的用于3D打印技术的导电树脂在利用3D打印技术制备柔性可拉伸压力传感器的应用。
CN202111322397.2A 2021-11-09 2021-11-09 一种用于3d打印技术的导电树脂及其制备方法及应用 Active CN113956409B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111322397.2A CN113956409B (zh) 2021-11-09 2021-11-09 一种用于3d打印技术的导电树脂及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111322397.2A CN113956409B (zh) 2021-11-09 2021-11-09 一种用于3d打印技术的导电树脂及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN113956409A CN113956409A (zh) 2022-01-21
CN113956409B true CN113956409B (zh) 2023-04-07

Family

ID=79469927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111322397.2A Active CN113956409B (zh) 2021-11-09 2021-11-09 一种用于3d打印技术的导电树脂及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN113956409B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039075B (zh) * 2023-03-31 2023-06-20 四川大学 一种制备pedot:pss柔性导线的快速液相3d打印方法
CN116396442B (zh) * 2023-06-01 2023-08-15 四川大学华西医院 一种原位相分离光固化打印高精度凝胶材料及其制备方法
CN116640259A (zh) * 2023-06-02 2023-08-25 南京信息工程大学 一种光固化3d打印导电水凝胶传感器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108367488A (zh) * 2015-11-09 2018-08-03 爱尔兰国立都柏林大学 用于液相中三维增材制造的方法、系统和设备
CN108623727A (zh) * 2018-05-30 2018-10-09 雷周玥 一种聚电解质弹性体、制备方法及其应用
CN109400177A (zh) * 2018-10-30 2019-03-01 西安点云生物科技有限公司 用于3d光固化成型打印的陶瓷材料及陶瓷制件的制备方法
CN111423536A (zh) * 2020-02-29 2020-07-17 湖南大学 一种光固化3d打印用高拉伸导电水凝胶及其制备方法
CN112126085A (zh) * 2020-09-29 2020-12-25 西安工程大学 一种抗低温仿生导电水凝胶及其制备方法和应用
CN112679776A (zh) * 2020-12-23 2021-04-20 苏州缔因安生物科技有限公司 一种基于水凝胶的功能化柔性电子器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210292565A1 (en) * 2020-03-18 2021-09-23 Korea Institute Of Science And Technology Conductive composite resin composition for photocurable three-dimensional printing, preparation method thereof and photocurable three-dimensional printed material using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108367488A (zh) * 2015-11-09 2018-08-03 爱尔兰国立都柏林大学 用于液相中三维增材制造的方法、系统和设备
CN108623727A (zh) * 2018-05-30 2018-10-09 雷周玥 一种聚电解质弹性体、制备方法及其应用
CN109400177A (zh) * 2018-10-30 2019-03-01 西安点云生物科技有限公司 用于3d光固化成型打印的陶瓷材料及陶瓷制件的制备方法
CN111423536A (zh) * 2020-02-29 2020-07-17 湖南大学 一种光固化3d打印用高拉伸导电水凝胶及其制备方法
CN112126085A (zh) * 2020-09-29 2020-12-25 西安工程大学 一种抗低温仿生导电水凝胶及其制备方法和应用
CN112679776A (zh) * 2020-12-23 2021-04-20 苏州缔因安生物科技有限公司 一种基于水凝胶的功能化柔性电子器件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
de Ruijter, M等 . Out-of-Plane 3D-Printed Microfibers Improve the Shear Properties of Hydrogel Composites.《SMALL》.2018,第14卷(第8期),文献号1702773. *
罗壮志 ; 倪金来 ; 谷奕丰 ; 严建 ; 吴超逸 ; 吴伟伟 ; .陶瓷SLA中SiO_2粒径及温度对流变性的影响研究.机械工程与自动化.2020,(第05期),第22-23页. *

Also Published As

Publication number Publication date
CN113956409A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
CN113956409B (zh) 一种用于3d打印技术的导电树脂及其制备方法及应用
Zhao et al. Superstretchable and processable silicone elastomers by digital light processing 3D printing
Hao et al. Bifunctional smart hydrogel dressing with strain sensitivity and NIR-responsive performance
CN109781311B (zh) 一种柔性电容式压力传感器及其制备方法
Zhu et al. Tough and conductive hybrid hydrogels enabling facile patterning
CN110970232B (zh) 以水凝胶为基底的可拉伸微型电子器件及制备方法
Park et al. Design of conductive composite elastomers for stretchable electronics
Ma et al. Recent progress in flexible capacitive sensors: Structures and properties
Zhang et al. Sensitive piezoresistive pressure sensor based on micropyramid patterned tough hydrogel
Wang et al. Quasi in situ polymerization to fabricate copper nanowire-based stretchable conductor and its applications
CN109520411A (zh) 基于预拉伸的石墨烯柔性应变传感器及其制备方法
US20120279762A1 (en) Composition for forming stretchable conductive pattern, method of producing the stretchable conductive pattern using the composition, and electronic device including stretchable conductive electrode
CN109520410A (zh) 三维石墨烯泡沫柔性应变传感器及其制备方法
Hiltl et al. Guided self-assembly of microgels: from particle arrays to anisotropic nanostructures
CN114316685B (zh) 一种墨水直写3d打印pedot:pss复合水凝胶及其制备方法
KR101424172B1 (ko) 전기장 감응성 하이드로겔, 그를 이용한 약물전달체 및 그의 제조방법
US20230132700A1 (en) Hydrogel fluid device and method for manufacturing hydrogel fluid device
Imani et al. Seamless Integration of Conducting Hydrogels in Daily Life: From Preparation to Wearable Application
CN112029035A (zh) 基于数字光处理3d打印的柔性传感器的制造方法
Li et al. 3D printing of mechanically robust MXene-encapsulated polyurethane elastomer
Sakorikar et al. A Guide to Printed Stretchable Conductors
Ma et al. Direct writing concave structure on viscoelastic substrate for loading and releasing liquid on skin surface
CN116715879A (zh) 一种微结构弹性体薄膜、制备方法及可穿戴的柔性传感器
CN111320773A (zh) 一种自支撑的柔性导电超疏水薄膜的制备方法
Li et al. Preparation of Short Carbon Fiber/Polydimethylsiloxane Conductive Composites Based on Continuous Spatial‐Confining Network Assembly Technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant