CN111423536A - 一种光固化3d打印用高拉伸导电水凝胶及其制备方法 - Google Patents

一种光固化3d打印用高拉伸导电水凝胶及其制备方法 Download PDF

Info

Publication number
CN111423536A
CN111423536A CN202010131790.2A CN202010131790A CN111423536A CN 111423536 A CN111423536 A CN 111423536A CN 202010131790 A CN202010131790 A CN 202010131790A CN 111423536 A CN111423536 A CN 111423536A
Authority
CN
China
Prior art keywords
photocuring
hydrogel
printing
solution
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010131790.2A
Other languages
English (en)
Inventor
陈雷
张艺茹
王兆龙
段辉高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202010131790.2A priority Critical patent/CN111423536A/zh
Publication of CN111423536A publication Critical patent/CN111423536A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明公开了一种光固化3D打印用高拉伸导电水凝胶及其制备方法,按质量百分比组份包括:水凝胶聚合单体10‑60%,交联剂0.1‑10%,二元混合溶剂60‑90%,导电填料5‑40%,纳米无机粒子0.5‑5%,光引发剂0.5‑3%,光吸收剂0.01‑1%。本光固化3D打印用高拉伸导电水凝胶中的纳米无机粒子与水凝胶均匀融合,经光固化3D打印后的水凝胶具有高拉伸性;导电填料赋予了水凝胶良好的导电性能。该水凝胶制备方法简单,经光固化3D打印技术制造,在柔性传感器、可穿戴器件等领域具有巨大的应用前景。

Description

一种光固化3D打印用高拉伸导电水凝胶及其制备方法
技术领域
本发明涉及3D打印材料领域,尤其涉及一种光固化3D打印用高拉伸导电水凝胶及其制备方法。
背景技术
光固化3D打印,是一种以数字模型文件为基础,通过光源对液态材料选择性照射实现液态材料的选择性固化,经过逐层叠加后形成三维结构。光固化3D打印材料主要有液态光敏树脂、水凝胶等,在一定程度上拓宽了光固化3D打印的应用范围。
水凝胶是一种亲水性的三维网状高分子聚合物,可以吸收大量水能够保持三维网络结构的软物质。依托水凝胶基体构建的导电水凝胶,可以将应变、力、温度等刺激信号转变为电信号输出,是一种经广泛关注的柔性电子材料,在生物医学领域、软驱动器、传感器、电子皮肤等方面具有广泛的应用。为了满足这些应用,水凝胶应具有良好的机械性能和导电性,然而传统可光固化3D打印水凝胶的机械性能和导电性都比较差,在一定程度上限制了水凝胶的应用。因此,设计一个可光固化3D打印高拉伸导电水凝胶具有重要的应用价值。
发明内容
有鉴于此,本发明提供了一种光固化3D打印用高拉伸导电水凝胶及其制备方法,本光固化3D打印用高拉伸导电水凝胶中的纳米无机粒子与水凝胶均匀融合,经光固化3D打印后的水凝胶具有高拉伸性和良好的导电性。
一种光固化3D打印用高拉伸导电水凝胶,按质量百分比组份包括:
Figure BDA0002395974800000011
Figure BDA0002395974800000021
优选地,所述水凝胶聚合单体为丙烯酰胺、N-异丙基丙烯酰胺、丙烯酸、甲基丙烯酸、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、N-乙烯基吡咯烷酮的至少一种。
优选地,所述交联剂为聚乙二醇丙烯酸酯、聚乙二醇二甲基丙烯酸酯、N,N-亚甲基双丙烯酰胺的至少一种。
优选地,所述二元混合溶剂为水-乙醇、水-乙二醇、水-丙三醇的至少一种。
优选地,所述导电填料分为氯化锂、氯化钠、氯化钾、聚吡咯、聚苯胺、PEDOT:PSS、碳纳米管、炭黑、纳米银线的至少一种。
优选地,所述纳米无机粒子为纳米二氧化硅、纳米羟基磷灰石、纳米三氧化二铝、纳米氧化镁、纳米碳酸钙、纳米蒙脱土的至少一种。
优选地,所述纳米无机粒子的粒径为5-200nm。
优选地,所述光引发剂为(2,4,6-三甲基苯甲酰基)二苯基氧化膦、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(2,4,6-三甲基苯甲酰基)膦酸乙酯、二苯甲酮、异丙基硫杂蒽酮、2,4-二甲基硫杂蒽酮、4-对甲苯巯基二苯甲酮、安息香二甲醚、二芳基碘鎓盐的至少一种。
优选地,所述光吸收剂为紫外光吸收剂UV-327、紫外光吸收剂UV-P、荧光增白剂OB、苏丹红I、罗丹明B、曙红Y的至少一种。
一种光固化3D打印用高拉伸导电水凝胶的制备方法,方法包括:
a.称取一定质量的二元混合溶剂于烧杯中,在室温下搅拌20-50min,然后向上述溶液中加入一定质量的水凝胶聚合单体、交联剂、导电填料、光引发剂、光吸收剂,放在水浴锅中在温度40-50℃下继续搅拌25-70min至完全溶解,冷却至室温后,加入纳米无机填料,溶液放置超声机中超声10-40min,再抽真空至溶液中无气泡后,在黑暗中静置3-5h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为2-12s,打印得到三维结构的水凝胶。
本发明提供了一种光固化3D打印用高拉伸导电水凝胶及其制备方法,本光固化3D打印用高拉伸导电水凝胶中的纳米无机粒子与水凝胶均匀融合,经光固化3D打印后的水凝胶具有高拉伸性;导电填料赋予了水凝胶良好的导电性能。该水凝胶制备方法简单,经光固化3D打印技术制造,在柔性传感器、可穿戴器件等领域具有巨大的应用前景。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为具体实施例1的打印拉伸件的应力-应变曲线;
图2为具体实施例1的打印结构的SEM图;
图3为具体实施例1的打印物件作为导体点亮LED图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体实施例1
一种光固化3D打印用高拉伸导电水凝胶,按质量百分比组份包括:
Figure BDA0002395974800000041
一种光固化3D打印用高拉伸导电水凝胶的制备方法,方法包括:
a.称取一定质量的水-丙三醇混合溶剂于烧杯中,在室温下搅拌30min,然后向上述溶液中加入一定质量的丙烯酰胺、聚乙二醇丙烯酸酯、氯化锂、(2,4,6-三甲基苯甲酰基)二苯基氧化膦、罗丹明B,放在水浴锅中在温度45℃下继续搅拌30min至完全溶解,冷却至室温后,加入纳米二氧化硅,溶液放置超声机中超声20min,再抽真空至溶液中无气泡后,在黑暗中静置4h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为10s,打印得到三维结构的水凝胶。
具体实施例2
一种光固化3D打印用高拉伸导电水凝胶,按质量百分比组份包括:
Figure BDA0002395974800000042
一种光固化3D打印用高拉伸导电水凝胶的制备方法,方法包括:
a.称取一定质量的水-乙二醇混合溶剂于烧杯中,在室温下搅拌35min,然后向上述溶液中加入一定质量的丙烯酰胺、丙烯酸、聚乙二醇二甲基丙烯酸酯、氯化钠、(2,4,6-三甲基苯甲酰基)膦酸乙酯、罗丹明B,放在水浴锅中在温度50℃下继续搅拌40min至完全溶解,冷却至室温后,加入纳米羟基磷灰石,溶液放置超声机中超声25min,再抽真空至溶液中无气泡后,在黑暗中静置3.5h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为9s,打印得到三维结构的水凝胶。
具体实施例3
一种光固化3D打印用高拉伸导电水凝胶,按质量百分比组份包括:
Figure BDA0002395974800000051
一种光固化3D打印用高拉伸导电水凝胶的制备方法,方法包括:
a.称取一定质量的水-乙醇混合溶剂于烧杯中,在室温下搅拌45min,然后向上述溶液中加入一定质量的甲基丙烯酸羟乙酯、聚乙二醇丙烯酸酯、聚吡咯、二苯甲酮、苏丹红I,放在水浴锅中在温度50℃下继续搅拌25min至完全溶解,冷却至室温后,加入纳米碳酸钙,溶液放置超声机中超声35min,再抽真空至溶液中无气泡后,在黑暗中静置4h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为10.5s,打印得到三维结构的水凝胶。
具体实施例4
一种光固化3D打印用高拉伸导电水凝胶,按质量百分比组份包括:
Figure BDA0002395974800000061
一种光固化3D打印用高拉伸导电水凝胶的制备方法,方法包括:
a.称取一定质量的水-乙二醇混合溶剂于烧杯中,在室温下搅拌30min,然后向上述溶液中加入一定质量的N-异丙基丙烯酰胺丙烯酰胺、甲基丙烯酸、聚乙二醇二甲基丙烯酸酯、碳纳米管、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、曙红Y,放在水浴锅中在温度40℃下继续搅拌30min至完全溶解,冷却至室温后,加入纳米三氧化二铝,溶液放置超声机中超声20min,再抽真空至溶液中无气泡后,在黑暗中静置3.5h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为8.6s,打印得到三维结构的水凝胶。
具体实施例5
一种光固化3D打印用高拉伸导电水凝胶,按质量百分比组份包括:
Figure BDA0002395974800000062
Figure BDA0002395974800000071
一种光固化3D打印用高拉伸导电水凝胶的制备方法,方法包括:
a.称取一定质量的水-丙三醇混合溶剂于烧杯中,在室温下搅拌50min,然后向上述溶液中加入一定质量的丙烯酰胺、N-异丙基丙烯酰胺、N,N-亚甲基双丙烯酰胺、纳米银线、二苯甲酮、异丙基硫杂蒽酮、荧光增白剂OB,放在水浴锅中在温度40℃下继续搅拌40min至完全溶解,冷却至室温后,加入纳米蒙脱土,溶液放置超声机中超声30min,再抽真空至溶液中无气泡后,在黑暗中静置5h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为7.2s,打印得到三维结构的水凝胶。
以具体实施例1为例:请参看图1、图2以及图3,图1为具体实施例1的打印拉伸件的应力-应变曲线;图2为具体实施例1的打印结构的SEM图;图3为具体实施例1的打印物件作为导体点亮LED图。可以看出,本光固化3D打印用高拉伸导电水凝胶中的纳米无机粒子与水凝胶均匀融合,无明显团聚现象出现,并且本光固化3D打印高拉伸导电水凝胶具有优异的拉伸性能和导电性能。参考实施例1-例5,可以看出,本光固化3D打印高拉伸导电凝胶制备方法简单,制备周期短,省时省力,在柔性传感器、可穿戴器件等领域具有巨大的应用前景。
本文进行了详细的介绍,应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

Claims (10)

1.一种光固化3D打印用高拉伸导电水凝胶,其特征在于:按质量百分比组份包括:
Figure FDA0002395974790000011
2.如权利要求1所述的一种光固化3D打印用高拉伸导电水凝胶,其特征在于,所述水凝胶聚合单体为丙烯酰胺、N-异丙基丙烯酰胺、丙烯酸、甲基丙烯酸、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、N-乙烯基吡咯烷酮的至少一种。
3.如权利要求1所述的一种光固化3D打印用高拉伸导电水凝胶,其特征在于,所述交联剂为聚乙二醇丙烯酸酯、聚乙二醇二甲基丙烯酸酯、N,N-亚甲基双丙烯酰胺的至少一种。
4.如权利要求1所述的一种光固化3D打印用高拉伸导电水凝胶,其特征在于,所述二元混合溶剂为水-乙醇、水-乙二醇、水-丙三醇的至少一种。
5.如权利要求1所述的一种光固化3D打印用高拉伸导电水凝胶,其特征在于,所述导电填料分为氯化锂、氯化钠、氯化钾、聚吡咯、聚苯胺、PEDOT:PSS、碳纳米管、炭黑、纳米银线的至少一种。
6.如权利要求1所述的一种光固化3D打印用高拉伸导电水凝胶,其特征在于,所述纳米无机粒子为纳米二氧化硅、纳米羟基磷灰石、纳米三氧化二铝、纳米氧化镁、纳米碳酸钙、纳米蒙脱土的至少一种。
7.如权利要求6所述的一种光固化3D打印用高拉伸导电水凝胶,其特征在于,所述纳米无机粒子的粒径为5-200nm。
8.如权利要求1所述的一种光固化3D打印用高拉伸导电水凝胶,其特征在于,所述光引发剂为(2,4,6-三甲基苯甲酰基)二苯基氧化膦、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(2,4,6-三甲基苯甲酰基)膦酸乙酯、二苯甲酮、异丙基硫杂蒽酮、2,4-二甲基硫杂蒽酮、4-对甲苯巯基二苯甲酮、安息香二甲醚、二芳基碘鎓盐的至少一种。
9.如权利要求1所述的一种光固化3D打印用高拉伸导电水凝胶,其特征在于,所述光吸收剂为紫外光吸收剂UV-327、紫外光吸收剂UV-P、荧光增白剂OB、苏丹红I、罗丹明B、曙红Y的至少一种。
10.利用权利要求1-9任一所述的一种光固化3D打印用高拉伸导电水凝胶进行的制备方法,其特征在于,该制备方法包括如下步骤,
a.称取一定质量的二元混合溶剂于烧杯中,在室温下搅拌20-50min,然后向上述溶液中加入一定质量的水凝胶聚合单体、交联剂、导电填料、光引发剂、光吸收剂,放在水浴锅中在温度40-50℃下继续搅拌25-70min至完全溶解,冷却至室温后,加入纳米无机填料,溶液放置超声机中超声10-40min,再抽真空至溶液中无气泡后,在黑暗中静置3-5h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为2-12s,打印得到三维结构的水凝胶。
CN202010131790.2A 2020-02-29 2020-02-29 一种光固化3d打印用高拉伸导电水凝胶及其制备方法 Pending CN111423536A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010131790.2A CN111423536A (zh) 2020-02-29 2020-02-29 一种光固化3d打印用高拉伸导电水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010131790.2A CN111423536A (zh) 2020-02-29 2020-02-29 一种光固化3d打印用高拉伸导电水凝胶及其制备方法

Publications (1)

Publication Number Publication Date
CN111423536A true CN111423536A (zh) 2020-07-17

Family

ID=71547290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010131790.2A Pending CN111423536A (zh) 2020-02-29 2020-02-29 一种光固化3d打印用高拉伸导电水凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN111423536A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011012A (zh) * 2020-08-13 2020-12-01 华南理工大学 Pdes在耐压缩自修复三维立体传感器中的应用、三维立体传感器及其制备方法与应用
CN112029035A (zh) * 2020-08-25 2020-12-04 华东理工大学 基于数字光处理3d打印的柔性传感器的制造方法
CN112062878A (zh) * 2020-08-25 2020-12-11 南方科技大学 水溶性光吸收剂及其制备方法和3d打印材料
CN112450938A (zh) * 2020-11-25 2021-03-09 上海交通大学 一种用于长期脑电采集的水凝胶电极及其制备方法
CN112562887A (zh) * 2020-11-18 2021-03-26 深圳市华科创智技术有限公司 一种耐弯曲性能优异的纳米银线透明导电膜
CN113045708A (zh) * 2021-03-17 2021-06-29 中国科学院化学研究所 一种光固化3d打印水凝胶用光敏树脂及其制备方法和应用
CN113105653A (zh) * 2021-04-09 2021-07-13 东南大学 一种温敏释药水凝胶的制备方法
CN113461971A (zh) * 2021-06-28 2021-10-01 广州大学 一种导电水凝胶及其制备方法和应用
CN113956409A (zh) * 2021-11-09 2022-01-21 西南医科大学 一种用于3d打印技术的导电树脂及其制备方法及应用
CN114958079A (zh) * 2022-06-13 2022-08-30 浙江大学 一种高强度水凝胶作为打印墨水在光固化3d打印上的应用
CN115139679A (zh) * 2022-09-01 2022-10-04 安徽大学 一种基于柔性材料的随机激光阵列显示面板制作方法
WO2022268609A1 (en) * 2021-06-24 2022-12-29 Basf Se Composition for 3d-printing, 3d-printed object formed therefrom and process for forming the same
CN116284566A (zh) * 2022-09-09 2023-06-23 南方科技大学 一种可用于高弹性可穿戴应变传感器的光固化浆料、有机水凝胶及其制备方法
CN116396442A (zh) * 2023-06-01 2023-07-07 四川大学华西医院 一种原位相分离光固化打印高精度凝胶材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108948379A (zh) * 2018-06-20 2018-12-07 东莞蚂蚁三维科技有限公司 一种3d打印导电水凝胶的制备方法
CN109081928A (zh) * 2018-07-30 2018-12-25 哈尔滨工业大学 一种用于3d打印uv引发的水凝胶及其制备和打印方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108948379A (zh) * 2018-06-20 2018-12-07 东莞蚂蚁三维科技有限公司 一种3d打印导电水凝胶的制备方法
CN109081928A (zh) * 2018-07-30 2018-12-25 哈尔滨工业大学 一种用于3d打印uv引发的水凝胶及其制备和打印方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
励杭泉编: "《材料导论(第二版)》", 30 June 2013 *
薛巍、张渊明等主编: "《生物医用水凝胶》", 31 December 2012 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011012A (zh) * 2020-08-13 2020-12-01 华南理工大学 Pdes在耐压缩自修复三维立体传感器中的应用、三维立体传感器及其制备方法与应用
CN112029035A (zh) * 2020-08-25 2020-12-04 华东理工大学 基于数字光处理3d打印的柔性传感器的制造方法
CN112062878A (zh) * 2020-08-25 2020-12-11 南方科技大学 水溶性光吸收剂及其制备方法和3d打印材料
CN112562887A (zh) * 2020-11-18 2021-03-26 深圳市华科创智技术有限公司 一种耐弯曲性能优异的纳米银线透明导电膜
CN112562887B (zh) * 2020-11-18 2022-07-15 深圳市华科创智技术有限公司 一种耐弯曲性能优异的纳米银线透明导电膜
CN112450938B (zh) * 2020-11-25 2022-04-26 上海交通大学 一种用于长期脑电采集的水凝胶电极及其制备方法
CN112450938A (zh) * 2020-11-25 2021-03-09 上海交通大学 一种用于长期脑电采集的水凝胶电极及其制备方法
CN113045708A (zh) * 2021-03-17 2021-06-29 中国科学院化学研究所 一种光固化3d打印水凝胶用光敏树脂及其制备方法和应用
CN113105653A (zh) * 2021-04-09 2021-07-13 东南大学 一种温敏释药水凝胶的制备方法
WO2022268609A1 (en) * 2021-06-24 2022-12-29 Basf Se Composition for 3d-printing, 3d-printed object formed therefrom and process for forming the same
CN113461971A (zh) * 2021-06-28 2021-10-01 广州大学 一种导电水凝胶及其制备方法和应用
CN113461971B (zh) * 2021-06-28 2023-12-26 广州大学 一种导电水凝胶及其制备方法和应用
CN113956409A (zh) * 2021-11-09 2022-01-21 西南医科大学 一种用于3d打印技术的导电树脂及其制备方法及应用
CN113956409B (zh) * 2021-11-09 2023-04-07 西南医科大学 一种用于3d打印技术的导电树脂及其制备方法及应用
CN114958079A (zh) * 2022-06-13 2022-08-30 浙江大学 一种高强度水凝胶作为打印墨水在光固化3d打印上的应用
CN114958079B (zh) * 2022-06-13 2023-02-14 浙江大学 一种高强度水凝胶作为打印墨水在光固化3d打印上的应用
CN115139679A (zh) * 2022-09-01 2022-10-04 安徽大学 一种基于柔性材料的随机激光阵列显示面板制作方法
CN116284566A (zh) * 2022-09-09 2023-06-23 南方科技大学 一种可用于高弹性可穿戴应变传感器的光固化浆料、有机水凝胶及其制备方法
CN116396442A (zh) * 2023-06-01 2023-07-07 四川大学华西医院 一种原位相分离光固化打印高精度凝胶材料及其制备方法
CN116396442B (zh) * 2023-06-01 2023-08-15 四川大学华西医院 一种原位相分离光固化打印高精度凝胶材料及其制备方法

Similar Documents

Publication Publication Date Title
CN111423536A (zh) 一种光固化3d打印用高拉伸导电水凝胶及其制备方法
CN111269354B (zh) 一种光固化3d打印用抗冻导电水凝胶及其制备方法
CN107177024B (zh) 可聚合低共熔溶剂在制备透明导电弹性体中的应用
Jin et al. Nanoclay-based self-supporting responsive nanocomposite hydrogels for printing applications
CN108948379A (zh) 一种3d打印导电水凝胶的制备方法
Guo et al. A highly stretchable and intrinsically self-healing strain sensor produced by 3D printing
CN110128586A (zh) 一种疏水型离子液体凝胶的制备方法
CN110078866A (zh) 一种纳米纤维素-聚合物复合水凝胶及其制备方法和应用
Qian et al. Octopus tentacles inspired triboelectric nanogenerators for harvesting mechanical energy from highly wetted surface
CN112201386A (zh) 一种柔性透明高稳定离子导电电极、制备方法及其应用
CN112029035B (zh) 基于数字光处理3d打印的柔性传感器的制造方法
CN105176412B (zh) 一种封框胶及其固化方法、显示装置
Huang et al. Ti3C2Tx MXene as a novel functional photo blocker for stereolithographic 3D printing of multifunctional gels via Continuous Liquid Interface Production
Guo et al. Tough, stretchable dual-network liquid metal-based hydrogel toward high-performance intelligent on-off electromagnetic interference shielding, human motion detection and self-powered application
KR101424172B1 (ko) 전기장 감응성 하이드로겔, 그를 이용한 약물전달체 및 그의 제조방법
CN106252087B (zh) 一种光固化凝胶电解质及其制备方法和应用
CN113956409B (zh) 一种用于3d打印技术的导电树脂及其制备方法及应用
Chang et al. Radiation-assistant preparation of highly conductive, transparent and self-healing hydrogels with triple-network structure
CN114316685A (zh) 一种墨水直写3d打印pedot:pss复合水凝胶及其制备方法
CN104882190A (zh) 一种基于纳米线的柔性透明导电电极及其制备方法
Zhao et al. A fast self-healable and stretchable conductor based on hierarchical wrinkled structure for flexible electronics
CN112301803A (zh) 高透明导电纳米纸及其便捷制备方法与应用
Wang et al. Facile preparation of agar/polyvinyl alcohol-based triple-network composite hydrogels with excellent mechanical performances
CN113701924A (zh) 一种多孔固态离子凝胶电极及其制备方法、应用
CN211446394U (zh) 高透明导电纳米纸及纸基电致发光设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200717

RJ01 Rejection of invention patent application after publication