CN112301803A - 高透明导电纳米纸及其便捷制备方法与应用 - Google Patents

高透明导电纳米纸及其便捷制备方法与应用 Download PDF

Info

Publication number
CN112301803A
CN112301803A CN201910693560.2A CN201910693560A CN112301803A CN 112301803 A CN112301803 A CN 112301803A CN 201910693560 A CN201910693560 A CN 201910693560A CN 112301803 A CN112301803 A CN 112301803A
Authority
CN
China
Prior art keywords
paper
nano
conductive
pulp
conductive ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910693560.2A
Other languages
English (en)
Other versions
CN112301803B (zh
Inventor
何明辉
张凯丽
陈广学
李仁爱
田君飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910693560.2A priority Critical patent/CN112301803B/zh
Publication of CN112301803A publication Critical patent/CN112301803A/zh
Application granted granted Critical
Publication of CN112301803B publication Critical patent/CN112301803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/32Multi-ply with materials applied between the sheets
    • D21H27/34Continuous materials, e.g. filaments, sheets, nets
    • D21H27/36Films made from synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/002Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B29/005Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material next to another layer of paper or cardboard layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J5/00Manufacture of hollow articles by transferring sheets, produced from fibres suspensions or papier-mâché by suction on wire-net moulds, to couch-moulds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/26All layers being made of paper or paperboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明公开了一种高透明导电纳米纸(TCNP)及其便捷制备方法与应用,所述高透明导电纳米纸包括纳米纤维素纸和覆在纳米纤维素纸上的透明导电油墨层,所述透明导电油墨层由可聚合低共熔溶剂与交联剂、引发剂固化制得。本发明通过使用可聚合低共熔溶剂作为导电油墨,纳米纤维素纸张作为透明衬底,结合印刷涂布工艺实现了高透明导电纳米纸的简易高效制备。制备出的高透明导电纳米纸表现出优异的光学、力学和电学性能。本发明制备的TCNP导电纸还具有优异的耐弯折性能和电学稳定性,并成功应用于纸基电致发光器件中,为柔性电子元器件的发展起到了推动作用。

Description

高透明导电纳米纸及其便捷制备方法与应用
技术领域
本发明涉及导电纸技术领域,更具体地,本发明涉及高透明导电纳米纸及其便捷制备方法与应用。
背景技术
作为未来电子工业的重要发展方向,具有柔性和绿色的功能电子元件是发展趋势,而纸张作为一种古老而广泛使用的材料,因其轻质、便携、柔性可弯曲、可折叠、可生物降解、环境友好和价格低等优点而吸引了广大研究人员的目光。此外,成熟的造纸技术也为快速、简单和低成本的纸基电子制造工艺铺平了道路。因此,纸张具备的这些特征赋予其在未来电子领域的无限可能性。然而,传统纸张是由直径在20-50μm的天然纤维素制备而成的,形成的多孔结构及较为粗糙的表面,使其具有较差的光学性能,因其表面粗糙度大,多孔结构和不透明性因而不能直接应用于电子元件中,且作为绝缘材料,纸张的电阻率和方块电阻分别约为108-1012Ω.m、1011-1015Ω.sq-1,这些缺陷限制了传统纸张在柔性电子器件尤其是显示和光学导电器件中的实际应用。目前,解决这一问题最为有效的措施,是使用纳米纤维素来制备导电纳米纸。为了使纸张具备导电性,科研人员已将各类导电填料如金属粉末、导电炭黑、聚吡咯、聚苯胺、石墨烯等加入进纸张网络中来制备纸基导电复合材料。但是,目前生产的导电纸也存在一系列问题,如(1)硬质的导电填料杨氏模量较高,导致在弯折过程中与纸张纤维易发生脱落,且多次弯曲后电阻上升明显;(2)一些金属粉末存在氧化的问题,使纸张的导电性大打折扣;(3)一些碳基的导电材料与纸张复合后使纸张的透明度大大下降或者完全变成黑色。此外,现有高透明导电纸的制备工艺大多是通过物理沉积法,将导电层的厚度控制在50nm以内以获得较高的透明度,但繁复的沉积工艺需要苛刻的高压、真空或高温条件,能量消耗较大产出较低,限制了导电纸的实际应用。这些问题都极大地限制了导电纸应用领域的进一步扩大。
发明内容
本发明旨在克服上述现有技术的至少一种不足,提供一种高透明导电纳米纸,其在550nm处透过率能达到92.5%,且所述高透明导电纳米纸力学性能和电学稳定性均优异。
本发明的另一目的在于一种高透明导电纳米纸的便捷制备方法,所述制备方法简单快速,制备过程中也无需使用任何有机溶剂,不会对环境产生污染,完全绿色环保。
一种高透明导电纳米纸(TCNP),包括纳米纤维素纸和覆在纳米纤维素纸上的透明导电油墨层,所述透明导电油墨层由可聚合低共熔溶剂(PDES)与交联剂、引发剂固化制得。
可聚合低共熔溶剂是离子液体的一种,兼具透明、导电、环境友好等性能,本申请通过实验发现,可聚合低共熔溶剂能够应用于制备高透明度的导电纳米纸,通过在纳米纤维素纸上覆一层主要成分为可聚合低共熔溶剂的导电油墨层,能够得到透过率(550nm)高达92.5%、导电性能好、电学稳定性和力学性能均优异的导电纳米纸。所制备的高透明导电纳米纸还可以解决目前电子产品存在环境污染和资源浪费等问题。
优选地,所述透明导电油墨层由如下方法得到:将氢键受体和氢键供体于60~100℃反应3~5h得到澄清透明的可聚合低共熔溶剂(PDES),向低共熔溶剂中加入交联剂和光引发剂,搅拌混合均匀得到导电油墨,再经紫外光固化即得;其中氢键受体为氯化胆碱、无水甜菜碱、一水甜菜碱、氯化铵、甲基三苯基溴化磷、苄基三苯基氯化磷钟的一种或多种,所述氢键供体为丙烯酸、甲基丙烯酸、巴豆酸、马来酸、衣康酸、柠康酸、乌头酸、山梨酸中的一种或多种,氢键供体与氢键受体的摩尔比不小于1:3,交联剂的用量为可聚合低共熔溶剂总量的0.1%~5%;光引发剂的用量为可聚合低共熔溶剂总量的0.1%~5%。
优选地,所述交联剂为含碳碳双键的丙烯酸酯类活性单体。具体地,所述交联剂为二缩三丙二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、二丙二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、新戊二醇二丙烯酸酯、邻苯二甲酸二乙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、季戊四醇四丙烯酸酯等中的一种或多种。
优选地,所述透明导电油墨层通过丝网印刷、柔板印刷、平版印刷、微凹涂布的方式涂布在纳米纤维素纸上。
优选地,所述高透明导电纳米纸中纳米纤维素纸的克重为20~80g·m-2,透明导电油墨用量为不低于40g/m-2。实验过程中发现,纸张面积大小一定时,纸张克重越大也意味着厚度越大,较厚的CNF纸可以吸收更多的PDES,纸张网络内部可以附着更多的poly(PDES)聚合物,因而更进一步改善了其拉伸性能,在纸张克重为80g·m-2时拉伸应变最大,约为12%。实验过程中还发现,当将导电油墨引入到纸张表面,TCNP纸张的杨氏模量值从约3.3GPa降低至1.3Gpa,原因可能是在光聚合过程中,液体的PDES可以润湿CNF纤维,并削弱它们之间的相互作用;同时低模量的poly(PDES)存在于CNF的表面和孔隙内,因而进一步降低了TCNP纸张的杨氏模量值,使纸张呈现出柔性可拉伸的行为。实验中还研究了纸张克重与电导率的关系,将纸张克重从20g·m-2增加到80g·m-2(即纸张厚度越来越大),同时固定PDESs的涂布量(40g·m-2)大小,由于PDES在较厚的纸张内部渗透的更深,导致在纸张内部poly(PDES)聚合物越来越少,因此导致整体电导率下降。
一种高透明导电纳米纸(TCNP)的便捷制备方法,包括如下步骤:
S1、制备透明导电油墨:将氢键受体和氢键供体于60~100℃反应3~5h得到澄清透明的可聚合低共熔溶剂(PDES),向低共熔溶剂中加入交联剂和光引发剂,搅拌混合均匀得到导电油墨;
S2、制备高透明导电纳米纸:将步骤S1制备的导电油墨转移到印刷涂布设备上,在纳米纤维素纸张上进行涂布导电油墨,将涂布完成的纸张在紫外光辐照下固化得到高透明导电纳米纸。
目前基于CNF型导电纸大都是与纳米金属线如纳米银线(AgNWs)等相复合制备的,而这些纳米金属线制备过程复杂,成本远高于可聚合低共熔溶剂,另外制备纸张的各项性能也会受到纳米金属线添加量的影响。本申请制备透明导电纳米纸的过程中无需额外添加导电填料,能够快速光聚合、易于制备,也无需添加任何有机溶剂,不会对环境产生污染。本申请基于纳米纤维素、低共熔溶剂和印刷涂布工艺制备高透明导电纳米纸(TCNP)的过程非常简易,制得的导电纸具有较高的透明度(在550nm处透过率约为92.5%),较好的拉伸性能(拉伸形变约12%)和电学稳定性(150゜下折叠6000次,电阻仅仅增加约0.4%)。
本发明所述的纳米纤维素纸可以使用市面上销售的现有纳米纤维素纸,也可以采用自制的纳米纤维素纸。优选地,自制纳米纤维素纸的制备过程如下:
(1)制备纳米纤维素浆料:将绝干浆用去离子水浸泡,使其溶胀,然后疏解,使纤维在水中分散均匀得到浆料,加入TEMPO水溶液,搅拌使TEMPO和浆料混合均匀,再加入NaBr,搅拌均匀,再逐滴加入NaClO,开始计算反应时间,用NaOH或者HCl调节体系pH值,保持在pH在10~11,反应2~3h,至pH不再变化时加入乙醇终止反应,得到纳米纤维素水溶液;其中,TEMPO和绝干浆的质量比为(1~2):100,NaBr与绝干浆的质量比为(5~15):100,NaClO与绝干浆的质量比为(500~750):100;
(2)制备凝胶状纳米纤维素分散液:将纳米纤维素浆料进行过滤或抽滤,水洗去除浆料中的化学物质,再加入去离子水稀释浆料,将浆料转移至植物纤维纳米微射流均质机进行均质处理,制得透明凝胶状纳米纤维素;
(3)制备纳米纤维素纸:将凝胶状纳米纤维素分散液倒入布氏漏斗真空抽滤得到纳米纤维素膜,再干燥即得CNF纸张。
所述的高透明导电纳米纸在制备纸基电致发光设备中的应用。
可聚合低共熔溶剂作为导电油墨可在制作可图案化显示的电致发光设备中充分发挥其优势。我们将制得的高透明的导电纳米纸用于柔性纸基电致发光器件中,结合印刷涂布工艺,印制了不同图案的电致发光器件(圆形、五角星和蝴蝶),实现了电致发光器件的精细印花及个性化定制。
一种纸基电致发光设备,所述纸基电致发光设备包括上下两层高透明导电纳米纸和位于两层高透明导电纳米纸之间的发光层。
更优选地,所述发光层为ZnS:Cu/聚二甲基硅氧烷(PDMS)发光层。更优选地,所述发光层的厚度为50μm~200μm。
所述纸基电致发光设备的制备方法如下:将聚二甲基硅氧烷(PDMS)和与引发剂按照质量比(8~12):1混合均匀,然后称一定质量的电致发光粉(ZnS:Cu)加入到PDMS中搅拌均匀制得发光层不透明溶液,电致发光粉与PDMS的质量比为(1~2):(1~2)。利用旋涂仪将不透明溶液旋涂至聚苯乙烯盘上,速度为800~1200r/s,时间为45~80s,完成旋涂过程。将涂布完成的ZnS:Cu/PDMS凝胶放置在烘箱下干燥(75~85℃干燥1.5~2.5h),待完全干燥后,剥离备用。将干燥好的ZnS:Cu/PDMS凝胶和制备好的TCNP组合成“三明治”式的电致发光器件,即上下两层为TCNP导电纸,中间一层为固化后的ZnS:Cu/PDMS发光层,使用铜片与上下两层导电纸连接,铜片与电源连接,由此实现TCNP接到电致发光驱动器上即可完成纸基电致发光设备的组装。
与现有技术相比,本发明的有益效果为:本发明所述的高透明导电纳米纸的制备具有极大的便捷性,且具有优异的光学(可见光透过率达92.5%)、力学(最大拉伸形变达12%)和电学性能(离子电导率约0.13S·m-1),还具有优异的耐弯折性能和电学稳定性,能够成功应用于纸基电致发光设备中,为柔性纸基电子元器件的发展起到了一定的推动作用。
附图说明
图1为实施例1纳米纤维素纸的SEM图。
图2为实施例1纳米纤维素纸的AFM图。
图3为实施例1纳米纤维素纸与TCNP导电纸的光学透过率图。
图4为实施例1纳米纤维素纸和TCNP导电纸的SEM图像。
图5为实施例1和对比例导电纸的物理外观对比图。
图6为实施例1纳米纤维素纸和TCNP导电纸的应变-应力曲线。
图7为实施例1的TCNP导电纸的导电性能试验测试图。
图8为实施例1的TCNP导电纸随不同导电油墨涂布量的交流阻抗曲线。
图9为TCNP导电纸的物理和电学稳定性测试图。
图10为电致发光器件原理图、发光及柔性测试图。
图11为TCNP导电纸的图案化印制和电致发光设备的个性化显示图。
具体实施方式
本发明附图仅用于示例性说明,不能理解为对本发明的限制。为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例1
一种高透明导电纳米纸,包括纳米纤维素纸和覆在纳米纤维素纸上的透明导电油墨层,所述透明导电油墨层由可聚合低共熔溶剂与交联剂固化制得。
所述高透明导电纳米纸的制备过程如下:
(1)制备透明导电油墨:将氯化胆碱和丙烯酸以1:2的摩尔比混合,将混合物在密闭烧瓶中于90℃下加热搅拌约4小时,直至形成均匀的澄清透明溶液PDES,然后将交联剂聚乙二醇二丙烯酸酯和光引发剂2-羟基-4’-(2-羟乙氧基)-2-甲基苯丙酮加入到PDES中,交联剂和光引发剂的加入量均为PDES总质量的1wt.%,超声10分钟后即可制备PDES导电油墨。
(2)TEMPO氧化法制备CNF
1)实验选择桉木浆为制备CNF的原料,并通过水分快速测定仪测定浆板的含水量,并计算绝干浆的加入量。本实验中称取10g绝干浆,撕成片状后用去离子水浸泡过夜,然后使用疏解机充分疏解,使纤维在水中充分分散。
2)称取0.15g的TEMPO,置于50ml蒸馏水中,加热使其完全溶解,然后加入预先分散好的浆料中,继续搅拌30分钟使TEMPO和浆料充分混合均匀。
3)加入1g NaBr,充分搅拌,然后用胶头滴管逐滴加入50~75g NaClO,并开始计算反应时间。反应开始后,用NaOH或HCl调节混合溶液的pH值,使其保持在10.5(10~11)左右。整个反应进行的时间为2~3小时,至pH值不再变化时,加入10ml(1wt.%)乙醇,终止反应。
4)将浆料转移至布氏漏斗中进行抽滤洗涤,期间用去离子水反复清洗至少三次,直至浆料中的化学物质全部移除。清洗后的浆料再加入适量的去离子水,稀释浆料等待高压均质使用。
5)将清洗干净后浆料转移至植物纤维纳米微射流均质机进行均质处理,采用1500Bar压力进行均质3次,最终得到透明凝胶状的CNF。经测定,制得的CNF分散液固含量为0.5wt.%。最后将制得的CNF分散液置于4℃的环境下等待进一步使用。
(3)CNF纳米纸的制备
CNF纸张使用TEMPO氧化的CNF水溶液通过真空过滤制备而成。实验中将一定量的CNF水溶液倒入布氏漏斗中通过真空水泵抽滤4小时,抽滤完成后将CNF膜在60℃下干燥48小时即可制得CNF纸张。CNF纸张的克重通过CNF水溶液加入的量决定。
(4)TCNP型导电纸的制备
将制备的PDES导电油墨转移到丝网版上(200目)并用丝网印刷机在CNF纸张上进行涂布。将涂布完成的纸张在UV源下照射一定时间即可得到TCNP型导电纸。实验过程中光强度为20mW·cm-2
实施例2
一种高透明导电纳米纸,包括纳米纤维素纸和覆在纳米纤维素纸上的透明导电油墨层,所述透明导电油墨层由可聚合低共熔溶剂与交联剂固化制得。
本实施例所述纳米纤维素纸的制备过程与实施例1基本相同,区别在于,本实施例的可聚合低共熔溶剂由氯化胆碱与甲基丙烯酸按照质量比1:1于90℃反应4h得到。
实施例3
一种高透明导电纳米纸,包括纳米纤维素纸和覆在纳米纤维素纸上的透明导电油墨层,所述透明导电油墨层由可聚合低共熔溶剂与交联剂固化制得。
本实施例所述纳米纤维素纸的制备过程与实施例1基本相同,区别在于,本实施例的可聚合低共熔溶剂由无水甜菜碱与巴豆酸按照质量比1:1.5于90℃反应4h得到。
实施例4
一种高透明导电纳米纸,包括纳米纤维素纸和覆在纳米纤维素纸上的透明导电油墨层,所述透明导电油墨层由可聚合低共熔溶剂与交联剂固化制得。
本实施例所述纳米纤维素纸的制备过程与实施例1基本相同,区别在于,本实施例的可聚合低共熔溶剂由一水甜菜碱与衣康酸按照质量比1:1.5于90℃反应4h得到。
实施例5
一种高透明导电纳米纸,包括纳米纤维素纸和覆在纳米纤维素纸上的透明导电油墨层,所述透明导电油墨层由可聚合低共熔溶剂与交联剂固化制得。
本实施例所述纳米纤维素纸的制备过程与实施例1基本相同,区别在于,本实施例的可聚合低共熔溶剂由氯化铵与丙烯酸按照质量比1:2于90℃反应4h得到。
对比例1
一种导电纳米纸,其利用纳米银线(AgNWs)作为导电填料,具体制备过程如下:将纳米纤维素和1%wt的纳米银混合后,超声震荡30min,使二者充分均匀混合,置于布氏漏斗中,真空抽滤4h,80℃干燥3h后即可得到纳米线的导电纸。
对比例2
一种导电纳米纸,其利用石墨烯作为导电填料,具体制备过程如下:将纳米纤维素和0.5%wt的石墨烯混合后,超声震荡30min,使二者充分均匀混合,置于布氏漏斗中,真空抽滤4h,80℃干燥3h后即可得到纳米线的导电纸。
对比例3
一种导电纳米纸,其利用聚(3,4-亚乙基二氧噻吩)-聚(苯乙烯磺酸盐)(PEDOT:PSS)作为导电填料,具体制备过程如下:将纳米纤维素和0.3%的PEDOT:PSS混合后,超声震荡30min,使二者充分均匀混合,置于布氏漏斗中,真空抽滤4h,80℃干燥4h后即可得到纳米线的导电纸。
对比例4
一种导电纳米纸,其利用碳纳米管(CNT)作为导电填料,具体制备过程如下:将纳米纤维素和0.5%的CNT混合后,超声震荡30min,使二者充分均匀混合,置于布氏漏斗中,真空抽滤4h,80℃干燥3h后即可得到纳米线的导电纸。
以上对比例1-4的纳米纤维素均的制备方法与实施例1中“(2)TEMPO氧化法制备CNF”相同。
为考察本发明所述的TCNP导电纸的透明度,对制备的纳米纤维素纸CNF进行了SEM测试和AFM测试,从测试图看出,本发明制备的CNF长度在500nm左右,纤维长径比约为50,其纤维的长度远低于可见光的波长,所以大量的可见光可以轻易穿过CNF纸张,使其展现出高度的透明度。如图1所示为实施例1的纳米纤维素纸的SEM图,图2为纳米纤维素纸的AFM图。澄清透明的导电油墨涂布在纸张表面上不会给纸张透明度造成任何负担,且在纸张表面光聚合后依然保持高度的透明。由于纳米纤维的长度远低于可见光的波长,加之PDES高度透明,从而可以使TCNP导电纸具有优异的光学性能。本发明实施例1至实施例5制备得到的导电纸均高度透明。实施例1的CNF(Nanopaper)与TCNP导电纸的光学透过率见图3,导电油墨涂布之前和之后的SEM图像见图4。由图3可知,单纯CNF制备的纸张具有约88%可见光透过率,TCNP导电纸的可见光透射率进一步提升至约92.5%。对比图4导电油墨涂布前后的SEM图像可知,TCNP导电纸比原始CNF纳米纸表面更为光滑,粗糙度更小,这是因为聚合后的poly(PDES)包裹在CNF纤维上并填充在孔中。当光线通过TCNP时,散射光部分减少,因而进一步提高了TCNP的透明度。图5从左至右分别为为
实施例1、对比例3、对比例1、对比例4、对比例2的各种导电纸的物理外观对比图,从图5也可看出,本发明所述的高透明导电纳米纸的具有较高的透明度。此外,无论PDES用量多少,都不会降低纸张本身的透明度。
除了高度透明外,PDES还赋予TCNP优异的机械和电学性能。实验中使用拉伸试验对比了CNF原纸与TCNP在涂布PDES前后的机械性能变化。图6为纳米纸和TCNP导电纸的应变-应力曲线。由图可知,未经涂布的CNF原纸仅有约0.5%的应变,这与天然纤维素纳米纤维刚性且易碎的特性相一致。而相比之下,涂布PDES后TCNP纸张的拉伸应变大幅地增加,约为7%,增加了14倍。机械性能的增加可归因于纤维素纤维表面和孔隙之间填充的柔性可拉伸的导电油墨。
本发明所述的TCNP还具有导电性。实验中分别将实施例1至实施例5所述的TCNP导电纸与LED小灯泡一起串联进电路中,能够观察到当导线与TCNP导电纸接触时,LED小灯泡被点亮,证明了电路的连通性和制备的TCNP纸张的导电性,如图7为实施例1TCNP导电纸的导电性能试验测试图。图8为不同导电油墨涂布量TCNP纸张的交流阻抗曲线。由于CNF原纸的电导率太小,导致无法测量。当涂布少量PDES(40g·m-2)到CNF纸上时,即可测量得到TCNP纸的交流阻抗曲线。但从图8中可以看出,此时电导率较小,约为0.02S·m-1。随着导电油墨的涂布量增加至70g·m-2时,制备纸张的电导率增加至0.13S·m-1
由于敏锐的形变检测能力,所以纸张由变形引起的电阻变化可以被轻易检测到。如图9,a为相对电阻变化随导电纸弯折角度的变化,b为纸张在150°下循环弯折6000次的相对电阻变化,c为弯曲前后纸张透明度变化,d为弯曲前后纸张方块电阻变化。
如图9(a)所示,TCNP导电纸的相对电阻变化随着弯曲角度从30°到150°增加而不断增加。而且导电纸在每个角度重复过程中,如在30、60、90、120、150度下各重复弯折三次,纸张的电阻变化均一致,表明了TCNP导电纸优异的电学稳定性,内嵌插图说明了TCNP纸张的导电性和可弯折性。
电学循环稳定性和抗弯折能力对于导电纸来说是一项非常重要的参数,该性能代表着导电纸的耐久性和使用寿命。如图9(b)所示,实验中采取在150°大的弯曲角度下循环测试TCNP导电纸的耐弯折性能,并使用数字源表实时监测其在弯折过程中的电阻变化。研究发现,在3000次的大角度弯曲之后,TCNP导电纸的最终电阻与初始时相比仅略微增加,此外,如图9(c)所示,在弯折6000次后,导电纸的透明度几乎没有变化,且导电纸的表面方块电阻仅增加了约0.4%左右(图9(d))。以上测试结果表明TCNP导电纸具有长的使用寿命和电学稳定性。
本发明所述的TCNP还可以用于制备电致发光设备,其制备过程如下:将PDMS与引发剂按照质量比10:1混合均匀,然后称一定质量的电致发光粉(ZnS:Cu)加入到PDMS中搅拌均匀制得发光层不透明溶液,电致发光粉与PDMS的质量比为1:1。利用旋涂仪将不透明溶液旋涂至聚苯乙烯盘上,速度为1000r/s,时间为60s,完成旋涂过程。将涂布完成的ZnS:Cu/PDMS凝胶放置在烘箱下干燥(80℃干燥2h)待完全干燥后,剥离备用。将干燥好的ZnS:Cu/PDMS凝胶和制备好的TCNP组合成“三明治”式的电致发光器件,即上下两层为TCNP导电纸,中间一层为固化后的ZnS:Cu/PDMS发光层,使用铜片与上下两层导电纸连接,铜片与电源连接,由此实现TCNP接到电致发光驱动器上即可完成纸基电致发光设备的组装。
如图10为柔性纸基电致发光设备在不同状态下((b)水平、(c)弯曲、(d)“Z字形”)的外观图,从图10可知,本发明利用TCNP制备的电致发光设备具有高的发光亮度和柔性特点。
TCNP纸张具备的高透明度、导电、耐弯折性和长时间工作的电学稳定性使其能轻易地满足纸基电子产品中的柔性导电基材的需求。虽然制备TCNP纸张的电导率高于传统金属涂层纸的电导率,但在低压工作需求的电致发光设备应用中不需要高导电性。图10(a)展示了通过使用TCNP纸张作为制备柔性电致发光设备的关键组件,构建电致发光设备的原理演示。纸基电致发光设备的上部和下部由TCNP纸张组成,中间夹着一层约100μm厚的ZnS:Cu/PDMS发光层。当施加高频交流电压时,中间发光层部分的电子被激发跃迁,并发射出蓝色光。由图10(b-d)可以看出,由TCNP纸张制备的电致发光设备可以发出高亮度的蓝光,除去自身电学性能的影响之外,TCNP纸张的高透明度也促进了电致发光设备能够显示出高亮度的蓝光。
值得一提的是,PDES作为导电油墨可在制作可图案化显示的电致发光设备中充分发挥其优势。如图11(a-c)所示,实验中可以通过印刷印制如圆形、五角星和蝴蝶图案的PDES导电层,然后组装成相应地电致发光设备(图11(d-f)),因而可以轻松实现电致发光设备的个性化显示。
综上知,本申请通过实验得到:使用PDES作为导电油墨,CNF纸张作为透明衬底,两者相复合制备了TCNP导电纸。导电纸表现出优异的光学(可见光透过率高达92.5%)、力学(最大拉伸形变约12%)和电学性能(离子电导率约为0.13S·m-1)。特别地,本发明便捷制备的TCNP导电纸还具有优异的耐弯折性能和电学稳定性,并成功应用于纸基电致发光设备中,为柔性纸基电子元器件的发展起到了一定的推动作用。
本发明所述的技术方案具有如下优点:
(1)利用PDES作为导电油墨,结合印刷涂布的方式在CNF纸张表面涂布一层均匀的PDES,经原位光聚合后制得TCNP导电纸,制备方法便捷。PDES在制造过程中具有显著的优点,如赋予TCNP纸张导电性,提升透明度和柔韧性。TCNP纸制备工艺简单,无VOC排放且绿色环保,PDES的使用不会降低纳米纸的透明度,且无需额外添加导电物质即可完成导电纸的制备。
(2)由于聚合后的导电油墨包裹在CNF纤维上并填充在纤维之间的孔隙中,大大减少了光线通过TCNP导电纸时的散射光,因此实验中制备的TCNP导电纸与目前主流导电纸相比在光学性能方面具有明显优势。
(3)制备的TCNP导电纸还可以轻易检测到纸张由变形引起的电阻变化。同时,TCNP导电纸还具有循环稳定性和耐弯折能力。从实验结果可知,在150°大的弯曲角度下循环6000次后发现TCNP导电纸的透明度几乎没有发生任何变化,且最终方块电阻与初始时相比仅增加了约0.4%左右。
(4)由于TCNP导电纸优异的综合性能,可直接应用于纸基电致发光设备中。导电纸高的透明度有助于纸基电致发光设备显示出更高亮度的蓝光。特别地,PDES作为导电油墨在制备个性化显示的电致发光设备中发挥关键作用。
显然,本发明的上述实施例仅仅是为清楚地说明本发明技术方案所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (9)

1.一种高透明导电纳米纸,其特征在于,包括纳米纤维素纸和覆在纳米纤维素纸上的透明导电油墨层,所述透明导电油墨层由可聚合低共熔溶剂与交联剂固化制得。
2.根据权利要求1所述的高透明导电纳米纸,其特征在于,所述透明导电油墨层由如下方法得到:将氢键受体和氢键供体于60~100℃反应3~5h得到澄清透明的可聚合低共熔溶剂,向低共熔溶剂中加入交联剂和光引发剂,搅拌混合均匀得到导电油墨,再经紫外光固化即得;其中氢键受体为氯化胆碱、无水甜菜碱、一水甜菜碱、氯化铵、甲基三苯基溴化磷、苄基三苯基氯化磷钟的一种或多种,所述氢键供体为丙烯酸、甲基丙烯酸、巴豆酸、马来酸、衣康酸、柠康酸、乌头酸、山梨酸中的一种或多种,氢键供体与氢键受体的摩尔比不小于1:3,交联剂的用量为可聚合低共熔溶剂总量的0.1%~5%;光引发剂的用量为可聚合低共熔溶剂总量的0.1%~5%。
3.根据权利要求1所述的高透明导电纳米纸,其特征在于,所述交联剂为含碳碳双键的丙烯酸酯类活性单体。
4.根据权利要求1所述的高透明导电纳米纸,其特征在于,所述透明导电油墨层通过丝网印刷、柔板印刷、平版印刷、微凹涂布的方式涂布在纳米纤维素纸上。
5.一种高透明导电纳米纸的便捷制备方法,其特征在于,包括如下步骤:
S1、制备透明导电油墨:将氢键受体和氢键供体于60~100℃反应3~5h得到澄清透明的可聚合低共熔溶剂,向低共熔溶剂中加入交联剂和光引发剂,搅拌混合均匀得到导电油墨;
S2、制备高透明导电纳米纸:将步骤S1制备的导电油墨转移到印刷涂布设备上,在纳米纤维素纸张上进行涂布导电油墨,将涂布完成的纸张在紫外光辐照下固化得到高透明导电纳米纸。
6.根据权利要求5所述的制备方法,其特征在于,所述纳米纤维素纸的制备过程如下:
(1)制备纳米纤维素浆料:将绝干浆用去离子水浸泡,使其溶胀,然后疏解,使纤维在水中分散均匀得到浆料,加入TEMPO水溶液,搅拌使TEMPO和浆料混合均匀,再加入NaBr,搅拌均匀,再逐滴加入NaClO,开始计算反应时间,用NaOH或者HCl调节体系pH值,保持在pH在10~11,反应2~3h,至pH不再变化时加入乙醇终止反应,得到纳米纤维素水溶液;其中,TEMPO和绝干浆的质量比为(1~2):100,NaBr与绝干浆的质量比为(5~15):100,NaClO与绝干浆的质量比为(500~750):100;
(2)制备凝胶状纳米纤维素分散液:将纳米纤维素浆料进行过滤或抽滤,水洗去除浆料中的化学物质,再加入去离子水稀释浆料,将浆料转移至植物纤维纳米微射流均质机进行均质处理,制得透明凝胶状纳米纤维素;
(3)制备纳米纤维素纸:将凝胶状纳米纤维素分散液倒入布氏漏斗真空抽滤得到纳米纤维素膜,再干燥即得CNF纸张。
7.权利要求1至4任一权利要求所述的高透明导电纳米纸在制备纸基电致发光设备中的应用。
8.一种纸基电致发光设备,其特征在于,包括上下两层权利要求1至4任一权利要求所述的高透明导电纳米纸和位于两层高透明导电纳米纸之间的发光层。
9.根据权利要求8所述的纸基电致发光设备,其特征在于,所述发光层为ZnS:Cu/聚二甲基硅氧烷发光层。
CN201910693560.2A 2019-07-30 2019-07-30 高透明导电纳米纸及其便捷制备方法与应用 Active CN112301803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910693560.2A CN112301803B (zh) 2019-07-30 2019-07-30 高透明导电纳米纸及其便捷制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910693560.2A CN112301803B (zh) 2019-07-30 2019-07-30 高透明导电纳米纸及其便捷制备方法与应用

Publications (2)

Publication Number Publication Date
CN112301803A true CN112301803A (zh) 2021-02-02
CN112301803B CN112301803B (zh) 2024-01-12

Family

ID=74330237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910693560.2A Active CN112301803B (zh) 2019-07-30 2019-07-30 高透明导电纳米纸及其便捷制备方法与应用

Country Status (1)

Country Link
CN (1) CN112301803B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106782A (zh) * 2021-03-26 2021-07-13 华南理工大学 一种负载银纳米线的柔性导电纸及其制备方法与应用
CN113433173A (zh) * 2021-06-28 2021-09-24 陕西科技大学 具有电致发热、湿度与voc传感特性的柔性材料及制备方法
CN114752958A (zh) * 2022-04-12 2022-07-15 西交利物浦大学 一种纸基纳米金属材料及其制备方法与用途
CN116856193A (zh) * 2023-06-17 2023-10-10 烟台先进材料与绿色制造山东省实验室 一种木质纳米纤维素基涂层及其制备方法
CN117801358A (zh) * 2024-03-01 2024-04-02 华东理工大学 一种基于可聚合低共熔溶剂的多孔聚合物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264420A (ja) * 2004-02-19 2005-09-29 Toray Ind Inc ナノファイバー合成紙およびその製造方法
US20180194913A1 (en) * 2015-06-23 2018-07-12 Island Polymer Industries Gmbh Highly transparent coated cellulose triacetate film and dissolver medium
CN108931565A (zh) * 2018-08-13 2018-12-04 山东农业大学 纳米纤维素纸基生物传感器的构建方法
CN109734842A (zh) * 2018-12-04 2019-05-10 华南理工大学 一种透明导电柔性细菌纤维素复合材料及其制备方法
CN109992169A (zh) * 2019-03-27 2019-07-09 华南理工大学 一种纳米纤维素纸基触控传感器及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264420A (ja) * 2004-02-19 2005-09-29 Toray Ind Inc ナノファイバー合成紙およびその製造方法
US20180194913A1 (en) * 2015-06-23 2018-07-12 Island Polymer Industries Gmbh Highly transparent coated cellulose triacetate film and dissolver medium
CN108931565A (zh) * 2018-08-13 2018-12-04 山东农业大学 纳米纤维素纸基生物传感器的构建方法
CN109734842A (zh) * 2018-12-04 2019-05-10 华南理工大学 一种透明导电柔性细菌纤维素复合材料及其制备方法
CN109992169A (zh) * 2019-03-27 2019-07-09 华南理工大学 一种纳米纤维素纸基触控传感器及其制备方法与应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106782A (zh) * 2021-03-26 2021-07-13 华南理工大学 一种负载银纳米线的柔性导电纸及其制备方法与应用
CN113106782B (zh) * 2021-03-26 2022-05-24 华南理工大学 一种负载银纳米线的柔性导电纸及其制备方法与应用
CN113433173A (zh) * 2021-06-28 2021-09-24 陕西科技大学 具有电致发热、湿度与voc传感特性的柔性材料及制备方法
CN114752958A (zh) * 2022-04-12 2022-07-15 西交利物浦大学 一种纸基纳米金属材料及其制备方法与用途
CN116856193A (zh) * 2023-06-17 2023-10-10 烟台先进材料与绿色制造山东省实验室 一种木质纳米纤维素基涂层及其制备方法
CN117801358A (zh) * 2024-03-01 2024-04-02 华东理工大学 一种基于可聚合低共熔溶剂的多孔聚合物及其制备方法
CN117801358B (zh) * 2024-03-01 2024-05-17 华东理工大学 一种基于可聚合低共熔溶剂的多孔聚合物及其制备方法

Also Published As

Publication number Publication date
CN112301803B (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
CN112301803B (zh) 高透明导电纳米纸及其便捷制备方法与应用
CN211446394U (zh) 高透明导电纳米纸及纸基电致发光设备
Zheng et al. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion
Jiao et al. Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel
Hou et al. Approaching theoretical haze of highly transparent all-cellulose composite films
Ding et al. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications
Zhu et al. Extreme light management in mesoporous wood cellulose paper for optoelectronics
Wan et al. Rapidly responsive and flexible chiral nematic cellulose nanocrystal composites as multifunctional rewritable photonic papers with eco-friendly inks
Kwon et al. Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites
Xu et al. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics
Wang et al. Visible-light-assisted multimechanism design for one-step engineering tough hydrogels in seconds
Zhu et al. Transparent paper: fabrications, properties, and device applications
Li et al. Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor
Chen et al. Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers
Ko et al. Vacuum-assisted bilayer PEDOT: PSS/cellulose nanofiber composite film for self-standing, flexible, conductive electrodes
Tang et al. A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing
CN106057279B (zh) 一种新型聚合物/石墨烯柔性导电复合膜及其制备方法
CN109385928B (zh) 一种纳米纤维素/芳纶纳米纤维膜复合纳米纸及其制备方法
CN103700430B (zh) 一种有序分布的导电薄膜及其制造方法
Zhu et al. Porous and conductive cellulose nanofiber/carbon nanotube foam as a humidity sensor with high sensitivity
Li et al. Highly aligned cellulose/polypyrrole composite nanofibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor
KR20160009544A (ko) 투명 탄소나노튜브 폴리머 복합 전도성 잉크 및 그 제조방법
CN107507676A (zh) 一种基于银纳米线和pedot的纸基柔性透明电极的快速制备方法
Zhang et al. Facile preparation of highly transparent conducting nanopaper with electrical robustness
JP5970915B2 (ja) 導電性複合体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant