CN112044455A - 磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法 - Google Patents

磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法 Download PDF

Info

Publication number
CN112044455A
CN112044455A CN201910491341.6A CN201910491341A CN112044455A CN 112044455 A CN112044455 A CN 112044455A CN 201910491341 A CN201910491341 A CN 201910491341A CN 112044455 A CN112044455 A CN 112044455A
Authority
CN
China
Prior art keywords
phosphorus
doped
cerium
titanium
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910491341.6A
Other languages
English (en)
Inventor
钟秦
曾毅清
张舒乐
王亚男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201910491341.6A priority Critical patent/CN112044455A/zh
Publication of CN112044455A publication Critical patent/CN112044455A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1804Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • B01J35/61

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明公开了一种磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法。所述方法先将磷前驱体与二氧化钛前驱体充分搅拌反应后、干燥并煅烧,得到磷掺杂的TiO2载体,然后将二氧化铈前驱体与磷掺杂TiO2载体溶于水中并搅拌,充分反应或用氨水调节pH至6~12后干燥并煅烧,得到磷掺杂铈钛催化剂。本发明的磷掺杂铈钛催化剂具有典型的介孔结构,能够有效地提高NH3在载体上面的吸附与活化,同时抑制了NH3在CeO2的过氧化,表现出良好的催化还原脱硝能力、高N2选择性及稳定性。

Description

磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法
技术领域
本发明属于选择性催化还原脱硝催化剂技术领域,涉及一种磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法。
背景技术
以氨为还原剂的氮氧化物(NOx)的选择性催化还原(SCR)是减少固定源烟气中NOx的有效技术之一。目前,V2O5-WO3/TiO2和V2O5-MoO3/TiO2等V基催化剂已被广泛应用于商用SCR作为工业催化剂。然而,这些V基催化剂有一些不可避免的缺点,如钒物种的毒性,对SO2的强氧化性和过窄的活性温度窗。因此,需开发具有宽活性温度窗的环境友好的NH3-SCR催化剂以去除NOx
Ce/Ti催化剂被认为是V基催化剂的良好的替代品。但普通的Ce/Ti催化剂的活性温度仅介于300~400℃之间,属于中温型脱硝催化剂,而对于燃煤火电机组低工况条件下的300℃以下的烟气,Ce/Ti催化剂脱硝效果会受到很大的限制。因此,如何提高SCR催化剂300℃以下的脱硝活性,是目前铈钛催化剂面临的最主要问题。
研究表明,金属元素(如Mn,Cu,Mo和Co)掺杂可以提高铈钛催化剂的电子转移能力,可以显著提高其在低温下的催化性能(R.Jin,et al.,Applied Catalysis BEnvironmental 148-149(2014)582-588;H.Li,et al.,Environmental Science&Technology49(2015)7373;Z.Liu,et al.,Catalysis Communications 46(2014)90-93;B.Thirupathi,P.G.Smirniotis,Applied Catalysis B Environmental 110(2011)195-206.)。同时,非金属元素(B和Si)掺杂改善了其比表面积和NH3吸附能力,这也增加了其催化活性(R.Li,et al.,New Journal of Chemistry 39(2015)6854-6863;W.Zhao,et al.,Journal of Hazardous Materials278(2014)350-359)。此外,F掺杂可以促进氧空位的形成,从而明显改善铈钛催化剂的低温性能(S.Zhang,et al.,Applied Catalysis AGeneral 435-436(2012)156-162)。然而,这些改进方法都建立在活性组分CeO2含量较低的基础上。在实际铈钛催化剂的生产中,为促进传质作用和提高催化剂的使用寿命,活性组分CeO2的含量一般比较高。众所周知,当铈钛催化剂出现CeO2晶型时,其活性及选择性会大大的降低。因此,寻找一种能有效提高高CeO2负载量铈钛催化剂的活性的方法势在必行。
CN108671946A发明公开了一种磷掺杂铈钛催化剂、制备及其在选择性催还原脱硝中的应用。所述的方法先将硫酸钛和磷酸根前驱体溶于水中,加入碱性沉淀剂,调节pH≥10,充分反应后离心洗涤、干燥并煅烧,得到磷掺杂的TiO2载体,然后将硝酸铈与磷掺杂的TiO2载体溶于水中并搅拌,反应后干燥并煅烧,得到高含量磷掺杂铈钛催化剂。但是,上述磷掺杂铈钛催化剂所使用的磷掺杂TiO2载体制备过程繁杂。一方面需要用大量的水洗涤,易产生大量的废水,二者在洗涤过程中磷易流失,导致其量不易控制。此外,制备的磷掺杂铈钛催化剂性能仍相对较低。
发明内容
针对现有的磷掺杂铈钛催化剂载体制备过程繁杂、负载CeO2过程易结块和活性仍较低等问题,本发明提供一种简便的能够精确控制磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法。
本发明的技术方案如下:
磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法,具体步骤如下:
步骤1,向磷前驱体溶液中滴加TiO2前驱体,搅拌24~72h后得到均匀的悬浊液,洗涤干燥,400~700℃煅烧2~6h,得到磷掺杂TiO2载体,其中,磷与钛的摩尔比为1~20:100;
步骤2,将磷掺杂TiO2载体和CeO2前驱体加入水中,充分反应后干燥,400~700℃煅烧2~6h,得到磷掺杂铈钛催化剂。
步骤1中,所述的磷前驱体选自磷酸、磷酸铵、磷酸氢铵或磷酸二氢铵,TiO2前驱体选自钛酸四丁酯、钛酸四乙酯或钛酸异丙酯。
步骤1中,所述的搅拌时间为24~72h,干燥温度为120~200℃。
优选地,步骤1中,所述的磷与钛的摩尔比为1~10:100。
步骤2中,所述的CeO2前驱体选自硝酸铈、乙酸铈、碳酸铈和硝酸铈铵。
步骤2中,所述的磷掺杂铈钛催化剂的CeO2负载量为3~30wt.%。
步骤2中,所述的干燥温度为80~150℃。
优选地,步骤2中,将磷掺杂TiO2载体和CeO2前驱体加入水中,用氨水调节pH为6~12,反应充分后干燥。
与现有技术相比,本发明具有以下优点:
(1)本发明通过易于操作的直接水解法,制备的磷掺杂TiO2具有高比表面积,高热稳定性、高酸性位点的特性,在选择性催化还原NOx过程中增加了NH3吸附位点,同时促进了NH3在载体上面的活化,表现出了良好的低温选择性催化还原NOx能力;
(2)本发明制备的磷掺杂TiO2载体能够更加精准的控制掺杂磷的量,从而调控活性组分CeO2的氧化性能,降低了NH3在催化剂表面的非选择性氧化几率,提高铈钛氧化物催化剂在催化还原脱硝的N2选择性;
(3)本发明制备的磷掺杂铈钛催化剂较CN108671946A发明制备的磷掺杂铈钛催化剂具有更好的活性。
附图说明
图1为实施例1、2和3制备的磷掺杂二氧化钛和磷掺杂的铈钛催化剂的催化效率对比图。
图2为实施例1、2和3制备的磷掺杂的铈钛催化剂的N2选择性(以N2O生成量表示)对比图。
图3为实施例2制备的10CeTi-P0.05催化剂的稳定性测试。
图4为实施例2制备的磷掺杂二氧化钛和磷掺杂的铈钛催化剂的XRD图。
图5为实施例2制备的磷掺杂二氧化钛和磷掺杂的铈钛催化剂的孔径分布图。
图6为实施例3制备的20CeTi-P0.05和20CeTi-P0.1与CN108671946A发明制备的20CeTi-P0.05-CN和20CeTi-P0.1-CN的性能比较。
图7为实施例4中制备的10CeTi-P0.05DP与施例3制备的10CeTi-P0.05催化剂性能比较图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细阐述。
实施例1
磷掺杂TiO2采用直接水解法制备。磷酸(H3PO4,85wt.%)和钛酸四丁酯(C16H36O4Ti)分别是P和Ti的前体。不同摩尔比(P与TiO2的摩尔比为x=0.01,0.3,0.05,0.07,0.1)的磷酸和钛酸四丁酯在搅拌下均匀地混合在去离子水中,搅拌24h后,160℃下干燥,然后在500℃下煅烧3h,得到磷掺杂TiO2(下文中简写成Ti-Px,x为P/Ti的原子摩尔比)载体。纯TiO2通过上述方法在没有加入磷酸条件下制备。
5wt%CeO2/TiO2和5wt%CeO2/Ti-Px(mCeO2/(mCeO2+mTiO2)=5%)催化剂通过浸渍法制备。Ce(NO3)3·6H2O和载体在去离子水中均匀混合,加热搅拌。搅拌2h后,混合物在80℃下干燥,然后在450℃下煅烧4h,制备得CeO2/TiO2和CeO2/Ti-Px(下文中简写成5CeTi和5CeTi-Px)催化剂。
实施例2
如实施例1中所述的Ti-Px、CeTi和CeTi-Px的制备方法,不同之处在于mCeO2/(mCeO2+mTiO2)=10%(下文中简写成10CeTi和10CeTi-Px)。
实施例3
如实施例1中所述的Ti-Px、CeTi和CeTi-Px的制备方法,不同之处在于mCeO2/(mCeO2+mTiO2)=20%(下文中简写成20CeTi和20CeTi-Px)。
实施例4
如实施例1中所述方法制备Ti-P0.05载体。
10wt%CeO2/Ti-P0.05催化剂通过沉积-浸渍法制备。Ce(NO3)3·6H2O和载体在去离子水中均匀混合,用氨水(NH3·H2O 25wt%)调节pH至7。搅拌2h后,加热蒸发干水并在80℃下干燥,然后在450℃下煅烧4h,制备CeO2/Ti-P0.05(下文中简写成10CeTi-P0.05DP)催化剂。
实施例5
将实施例1、2和3中制备的催化剂进行催化性能测试,并进行了XRD,BET分析。
催化性能测试条件为:活性测量在固定床石英反应器中使用40-80目的0.2g催化剂进行,固定床的内径为5mm。进料气体混合物含有500ppm NO,500ppm NH 3,5%O2和N2作为平衡气体。原料气总流量为200cm3·min-1,相当于60000h-1的GHSV。结果如图1。N2O生成量结果如图2。为了研究SO 2对催化剂活性的影响,将100ppm SO2引入到反应气体混合物中。反应温度从150℃升高到450℃。结果如图3。当催化反应在各个温度下实际达到稳态时,收集活性数据。使用红外线烟气分析仪(Sensonic IR-1)连续监测入口和出口气体的组成。NOx(x=1和2)转化的值可以通过以下方式计算:
NOx转换(%)=([NOx]-[NOx]out)/NOxin×100%。
表1磷掺杂二氧化钛和磷掺杂的铈钛催化剂的比表面积
Figure BDA0002087127800000041
Figure BDA0002087127800000051
催化剂的催化性能如图1、2和3所示,从图1可知,磷掺杂有效的提高了CeTi催化剂低温选择性催化还原NOx的性能,其中CeO2负载量分别为5%、10%和20%,优选的P/Ti比例分别为0.01、0.05和0.07。从图2可知,磷掺杂有效的降低了CeTi催化剂上N2O的生成量,即提高了催化剂的N2选择性。如图3所示,催化剂在200h运行中仍没有任何活性降低,说明催化剂具有很高的稳定性。从图4可知,磷已经掺杂进了TiO2的晶格。从图5和表1可知,磷掺杂后,催化剂的孔径主要分布在10nm以下,说明是典型的介孔结构,因此较未掺杂的催化剂有更大的比表面积。综上所述,本发明的磷掺杂的铈钛催化剂具有良好的低温选择性催化还原NOx能力、N2选择性和稳定性。另外,我们将本发明制备的催化剂与CN108671946A制备的20CeTi-P0.05-CN和20CeTi-P0.1-CN催化剂进行了比较。由图6可知,本发明制备的催化剂性能远高于CN108671946A发明制备的催化剂。因此,本发明较CN108671946A发明具有明显的优势。
实施例6
如实施例1中所述的Ti-Px、CeTi和CeTi-Px的制备方法,不同之处在于mCeO2/(mCeO2+mTiO2)=30%。按实施例5中方法测试相关催化剂,得到与实施例5类似结果。
实施例7
将实施例4中制备的10CeTi-P0.05DP催化剂按实施例5中方法进行催化性能测试,并与实施例3制备的10CeTi-P0.05催化剂进行性能比较。由图7可知,实例4方法制备的10CeTi-P0.05DP催化剂与实施例3制备的10CeTi-P0.05相比,它们的低温(<240℃)活性相差不大,但10CeTi-P0.05DP在高温表现出更好的性能。

Claims (10)

1.磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法,其特征在于,具体步骤如下:
步骤1,向磷前驱体溶液中滴加TiO2前驱体,搅拌24~72h后得到均匀的悬浊液,洗涤干燥,400~700℃煅烧2~6h,得到磷掺杂TiO2载体,其中,磷与钛的摩尔比为1~20:100;
步骤2,将磷掺杂TiO2载体和CeO2前驱体加入水中,充分反应后干燥,400~700℃煅烧2~6h,得到磷掺杂铈钛催化剂。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的磷前驱体选自磷酸、磷酸铵、磷酸氢铵或磷酸二氢铵。
3.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的TiO2前驱体选自钛酸四丁酯、钛酸四乙酯或钛酸异丙酯。
4.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的搅拌时间为24~72h。
5.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的干燥温度为120~200℃。
6.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的磷与钛的摩尔比为1~10:100。
7.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的CeO2前驱体选自硝酸铈、乙酸铈、碳酸铈和硝酸铈铵。
8.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的磷掺杂铈钛催化剂的CeO2负载量为3~30wt.%。
9.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的干燥温度为80~150℃。
10.根据权利要求1所述的制备方法,其特征在于,步骤2中,将磷掺杂TiO2载体和CeO2前驱体加入水中,用氨水调节pH为6~12,反应充分后干燥。
CN201910491341.6A 2019-06-06 2019-06-06 磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法 Pending CN112044455A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910491341.6A CN112044455A (zh) 2019-06-06 2019-06-06 磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910491341.6A CN112044455A (zh) 2019-06-06 2019-06-06 磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN112044455A true CN112044455A (zh) 2020-12-08

Family

ID=73609347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910491341.6A Pending CN112044455A (zh) 2019-06-06 2019-06-06 磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN112044455A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713251A (zh) * 2022-03-18 2022-07-08 四川大学 一种磷酸根改性铈基脱硝催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101011655A (zh) * 2007-01-26 2007-08-08 南开大学 氮磷共掺杂氧化钛多级孔光催化材料及其制备方法
CN104148048A (zh) * 2013-05-16 2014-11-19 中国石油化工股份有限公司 湿式氧化催化剂载体的制备方法及用途
CN105664910A (zh) * 2016-03-02 2016-06-15 南京理工大学 掺杂型铈钛催化剂的制备方法
CN108671946A (zh) * 2018-05-11 2018-10-19 南京理工大学 磷掺杂铈钛催化剂、制备及其在选择性催化还原脱硝中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101011655A (zh) * 2007-01-26 2007-08-08 南开大学 氮磷共掺杂氧化钛多级孔光催化材料及其制备方法
CN104148048A (zh) * 2013-05-16 2014-11-19 中国石油化工股份有限公司 湿式氧化催化剂载体的制备方法及用途
CN105664910A (zh) * 2016-03-02 2016-06-15 南京理工大学 掺杂型铈钛催化剂的制备方法
CN108671946A (zh) * 2018-05-11 2018-10-19 南京理工大学 磷掺杂铈钛催化剂、制备及其在选择性催化还原脱硝中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713251A (zh) * 2022-03-18 2022-07-08 四川大学 一种磷酸根改性铈基脱硝催化剂及其制备方法和应用
CN114713251B (zh) * 2022-03-18 2023-09-05 四川大学 一种磷酸根改性铈基脱硝催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN108367275B (zh) 脱硝催化剂及其制造方法
CN113413904B (zh) 一种g-C3N4负载型锰铈复合氧化物低温NH3-SCR催化剂及其制备方法与应用
KR101121184B1 (ko) 배기 가스 촉매
CN104014331A (zh) 介孔二氧化钛球负载的Mn-Ce-W复合氧化物脱硝催化剂的制备方法
KR20090082186A (ko) 지르코늄 산화물 및 규소 산화물, 및 티타늄, 알루미늄, 텅스텐, 몰리브덴, 세륨, 철, 주석, 아연 및 망간으로부터 선택된 1종 이상의 원소의 산화물을 함유하는 산성이 높은 조성물
CN111097442B (zh) 一种烟气协同脱硝脱汞催化剂及其制备方法
CN111889101A (zh) 用于VOCs和NO协同净化的改性复合氧化物催化剂及其制备方法
CN112657552B (zh) 一种钒磷氧低温脱硝催化剂及其成型制备方法
CN107126959A (zh) 一种凹凸棒石负载CoTiO3‑CeO2‑异质结SCR低温脱硝催化剂及其制备方法
CN105233814A (zh) 一种核壳结构的铈基氧化物催化剂、制备方法及其用途
CN108671946A (zh) 磷掺杂铈钛催化剂、制备及其在选择性催化还原脱硝中的应用
CN109745995B (zh) 宽温度窗口scr烟气脱硝催化剂及其制备方法和应用
CN112044455A (zh) 磷掺杂铈钛选择性催化还原脱硝催化剂的制备方法
JP5715450B2 (ja) 窒素酸化物選択還元触媒とその製造方法
CN113877618B (zh) 氧掺杂石墨相氮化碳负载锰基低温脱硝催化剂的制备方法、制得的脱硝催化剂
CN110833827B (zh) 高氮气选择性钒基氧化物催化剂及其制备方法
CN114904540A (zh) 一种低温锰基催化剂及其制备方法和应用
CN110961094B (zh) 一种促进硫酸氢铵分解的低温scr催化剂及其制备方法
JP2002173370A (ja) チタニア系多孔体及び触媒
CN112337475A (zh) 用于高砷条件下的稀土基scr脱硝催化剂的制备方法
KR20220089322A (ko) 우레아 가수분해 촉매 및 이의 제조방법과, 이를 포함하는 선택적 촉매 환원 시스템
CN112473688A (zh) 一种稀土螯合钒低成本、宽温窗口脱硝催化剂的制备方法
CN115178254B (zh) 一种无毒性、高活性、高稳定性的稀土基nh3-scr催化剂及其制备技术
JP7278555B1 (ja) 排ガスの脱硝方法
CN115779887B (zh) 一种基于快速scr反应的钒基脱硝催化剂及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201208

RJ01 Rejection of invention patent application after publication