CN112038408A - 基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管及制备方法 - Google Patents

基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管及制备方法 Download PDF

Info

Publication number
CN112038408A
CN112038408A CN202010922629.7A CN202010922629A CN112038408A CN 112038408 A CN112038408 A CN 112038408A CN 202010922629 A CN202010922629 A CN 202010922629A CN 112038408 A CN112038408 A CN 112038408A
Authority
CN
China
Prior art keywords
layer
metal
source region
source
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010922629.7A
Other languages
English (en)
Other versions
CN112038408B (zh
Inventor
周弘
王捷英
曾诗凡
张进成
许晟瑞
刘志宏
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202010922629.7A priority Critical patent/CN112038408B/zh
Publication of CN112038408A publication Critical patent/CN112038408A/zh
Application granted granted Critical
Publication of CN112038408B publication Critical patent/CN112038408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管,主要解决现有技术器件击穿电压较低的问题。其结构为:衬底(2)下方为漏极(1),上方依次为n漂移层(3)、p型外延层(4)和n+源区层(5);该n漂移层、p型外延层和n+源区层的中间贯穿有栅极凹槽(10),两侧贯穿有平台隔离沟槽(11);该n+源区层和p型外延层的中间贯穿有源极凹槽(12);该n+源区层、栅极凹槽和平台隔离沟槽上方为栅介质层(6);该栅介质层的中间为栅极(9);该源极凹槽自下而上依次为体接触金属(7)和源极(8)。本发明由于采用氮化铝作外延层,提高了器件的击穿电压,可用作高频、高功率、高压的电力电子器件。

Description

基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体 管及制备方法
技术领域
本发明属于半导体器件技术领域,特别涉及一种垂直结构的氮化铝金属氧化物半导体场效应晶体管MOSFET,可用作高频、高功率、高压的电力电子器件。
背景技术
电力电子器件主要作为电力设备中的大功率电子器件的功率转换和控制,目前已经广泛应用于机械行业、冶金业、电力系统中,并扩展到汽车、家用电器、医疗设备和照明这一系列领域中。MOSFET作为电力电子器件的核心之一,其基本特点就是具有高击穿电压、低导通电阻和较高的开关速度。属于超宽禁带半导体材料的氮化镓凭借其3.4eV的禁带宽度、较高的电子迁移率、4MV/cm的临界电场强度、小的介电常数和2.3W/(cmK)的热导率优良特性,成为制备高频、高功率、耐高压的MOSFET器件的热点之一。现有的氮化镓基的MOSFET,为提高性能对其结构进行了一系列优化,包括:对其进行表面钝化、设计缓冲层和器件终端结构以抑制电流崩塌;将器件设计成垂直结构,使峰值电场和高电场区从表面转移到器件内部,以进一步提高击穿电压;将器件的栅极设计成凹槽结构,以降低栅泄漏电流,提高击穿电压。但是这些对氮化镓基的MOSFET优化,其击穿电压依然不能满足超高耐压的需求。
发明内容
本发明的目的在于针对上述现有技术的不足,提出一种基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管及制备方法,以提高金属氧化物半导体场效应晶体管的额定功率和击穿电压,满足电力电子器件的实际需求。
本发明的技术方案是这样实现的:
1.一种基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管,自下而上包括:漏极、衬底、n-漂移层、p型外延层、n+源区层;n-漂移层、p型外延层和n+源区层的中间贯穿有栅极凹槽,两侧贯穿有平台隔离沟槽;n+源区层和p型外延层的两侧贯穿有源极凹槽;n+源区层、栅极凹槽和平台隔离沟槽上设有栅介质层;栅极凹槽的栅介质层上设有栅极;源极凹槽的底部设有体接触金属,该体接触金属上设有源极,其特征在于:
所述衬底采用n型高掺碳化硅,其掺杂浓度为1017-1020cm-3,以提高外延层的质量;
所述n-漂移层、p型外延层和n+源区层均采用氮化铝材料,且n-漂移层的掺杂浓度为1015-1018cm-3,p型外延层的掺杂浓度为1013-1016cm-3,n+源区层的掺杂浓度为1017-1018cm-3,以提高击穿电压。
进一步,所述栅极和源极均采用凹槽结构。
进一步,所述体接触金属位于p型外延层和n+源区层之间,避免产生寄生双极晶体管,减小器件的内部电阻。
进一步,所述栅介质层为绝缘材料Al2O3、SiO2、SiNx、HfO2中的任意一种或两种及以上的组合。
进一步,所述衬底的厚度为100-5000μm;所述n-漂移层的厚度、p型外延层和n+源区层的厚度均不超过20μm。
2.一种基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管的制备方法,其特征在于,包括如下:
1)选用自下而上包括n型高掺杂碳化硅衬底、n-漂移层、p型外延层和n+源区层的外延片,该n型高掺杂碳化硅衬底为掺杂浓度1017-1020cm-3,厚度为100-5000μm;该n-漂移层为掺杂浓度1015-1018cm-3,厚度不超过20μm的n-漂移层;该p型外延层为掺杂浓度1013-1016cm-3,厚度不超过20μm;该n+源区层为掺杂浓度1017-1018cm-3,厚度不超过20μm;
2)对所选外延片进行清洗,再在清洗后的外延片上制作掩膜并采用刻蚀工艺,刻蚀出平台隔离与栅极沟槽,刻蚀深度从n+型源区层的表面延伸至n-漂移层的内部;
3)将完成刻蚀的外延片进行清洗并采用等离子体增强原子层沉积技术或等离子体增强化学的气相沉积法在氮化铝外延层的一侧生长栅极介质;
4)在生长完栅极介质的外延片上制作掩膜并采用刻蚀工艺,刻蚀出源极窗口,刻蚀深度从栅极介质的表面延伸至p型氮化铝外延层的内部;对刻蚀后的外延片进行清洗,去除掩膜,并把清洗后的片子放入快速退火炉中,在200-800℃下进行1-60min的退火修复刻蚀损伤;;
5)在高掺杂n型碳化硅衬底背侧采用蒸发工艺淀积漏极金属,并根据漏极金属的材料,在400-1200℃条件下进行退火30s-10min处理,形成欧姆接触,获得漏极;
6)在完成上述步骤的外延片上制作掩膜,光刻出体接触图形,并采用磁控溅射工艺在源极窗口淀积位于p型外延层和n+源区层之间的体接触金属;
7)将完成淀积体接触金属的外延片进行清洗,再制作掩膜并光刻出源极和栅极图形,利用磁控溅射工艺在源极窗口和栅极沟槽上淀积源极和栅极金属,完成器件制作。
本发明与现有技术相比,具有如下优点:
1.本发明的n-漂移层、p型外延层和n+源区层由于均采用氮化铝材料,因而提高了器件的击穿电压。
2.本发明的衬底由于采用n型高掺杂碳化硅衬底,可利用氮化铝与碳化硅晶格匹配的特性,提高外延层的质量,使器件能够充分发挥氮化铝材料具有的超高临界电场强度的优势。
附图说明
图1是本发明的结构图;
图2是本发明制作图1器件的实现流程图。
具体实施方式
以下结合附图和实施例对本发明作进一步的详细描述。
参照图1,本发明基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管,包括:漏极1、衬底2、n-漂移层3、p型外延层4、n+源区层5、栅介质层6、体接触金属7、源极8和栅极9,其中漏极1位于衬底2的下方,衬底2上方依次为n-漂移层3、p型外延层4和n+源区层5;n-漂移层3、p型外延层4和n+源区层5的中间贯穿有栅极凹槽10,两侧贯穿有平台隔离沟槽11;n+源区层5和p型外延层4的中间贯穿有源极凹槽12;栅介质层6位于n+源区层5、栅极凹槽10和平台隔离沟槽11之上;栅极9位于栅极凹槽10的栅介质层6之上;体接触金属7位于源极凹槽12底部;源极8位于体接触金属7之上。
所述衬底2采用n型高掺碳化硅,其厚度为100-5000μm,掺杂浓度为1017-1020cm-3
所述n-漂移层3、p型外延层4、n+源区层5均采用氮化铝材料,且厚度均不超过20μm,其中n-漂移层3掺杂浓度为1015-1018cm-3,p型外延层4掺杂浓度为1013-1016cm-3,n+源区层5掺杂浓度为1017-1018cm-3
所述栅介质层6为绝缘材料Al2O3、SiO2、SiNx、HfO2中的任意一种或两种及以上的组合;
所述体接触金属7位于p型外延层和n+源区层之间;
所述源极8和栅极9均为凹槽结构。
参照图2,本发明制作基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管,给出如下三个实施例:
实施例1,制作漏极金属为镍,体接触金属为镍/金,源极金属为钛/金,栅极金属为钛/金,栅介质层为氮化硅的垂直氮化铝金属氧化物半导体场效应晶体管。
步骤1:选用外延片,并进行清洗。
1.1)本实施例选用的外延片,其自下而上包括高掺杂n型碳化硅衬底、n-氮化铝外延层、p型氮化铝外延层、n+氮化铝源区层,其中碳化硅衬底的厚度是400μm,掺杂浓度为5×1018cm-3,n-氮化铝外延层的厚度是3μm,掺杂浓度是5×1015cm-3,p型氮化铝外延层的厚度是400nm,掺杂浓度为8×1015cm-3,n+氮化铝源区层的厚度是200nm,掺杂浓度为1×1018cm-3
1.2)将上述外延片依次放入丙酮、异丙醇、去离子水中各超声清洗5min,然后用去离子水清洗外延片并用氮气吹干。
步骤2:制作平台隔离与栅极沟槽。
在清洗后的外延片上制作掩膜并光刻出平台隔离与栅极沟槽图形,再将其放入反应离子刻蚀机,在Cl2/BCl3气体与30W的功率下同时刻蚀出深度为680nm的平台隔离与栅极沟槽;
步骤3:生长栅介质。
3.1)将刻蚀后的片子依次放入丙酮、异丙醇、去离子水中分别超声清洗5min,再将外延片在10%的HF溶液中浸泡5min;
3.2)将完成刻蚀的外延片放入等离子体增强化学的气相沉积法设备中,设置反应气压为1700mtorr、温度为350℃、射频功率为67W、低频功率为53W的条件;
3.3)向反应室同时通入流量为13.5sccm的SiH4、10sccm的NH3和流量为1000sccm的N2在氮化铝外延层的一侧生长800nm的氮化硅作为栅介质。
步骤4:刻蚀源极窗口。
4.1)在生长完栅极介质的外延片上制作掩膜,并将外延片放入反应离子刻蚀机,用Cl2/BCl3气体在30W的功率下依次刻蚀氮化硅、n+源区层和p型外延层,形成源极窗口,源极窗口深度为250nm;
4.2)将刻蚀后的外延片依次放入丙酮、异丙醇、去离子水中分别超声清洗5min去除掩膜,再把清洗后的外延片放入快速退火炉中,在700℃下进行15min的退火修复刻蚀损伤。
步骤5:制作漏极。
5.1)将刻蚀完源极窗口的外延片放入电子束蒸发台,在高掺杂n型碳化硅衬底上淀积180nm的金属镍作为漏极金属;
5.2)将外延片放入快速热退火炉中,在950℃的温度的氩气氛围中退火5min,形成欧姆接触。
步骤6:淀积体接触金属。
6.1)对制作完漏极的外延片材料进行光刻,获得体接触图形;
6.2)将完成上述6.1)工艺的外延片放置在磁控溅射反应室中,控制反应室压强为8.8×10-2Pa,采用纯度为99.999%的镍和金靶材,在体接触图形区域淀积60/60nm的镍/金作为体接触金属。
步骤7:制作源极和栅极。
7.1)将完成上述步骤6的外延片进行清洗,然后进行光刻,获得源极以及栅极图形;
7.2)将完成上述7.1)工艺的外延片放置在磁控溅射反应室中,控制反应室压强为8.8×10-2Pa,采用纯度为99.999%的钛和金靶材,在源极窗口和栅极沟槽上淀积60/120nm的钛/金作为源极和栅极的金属电极,完成器件制作。
实施例2:制作漏极金属为Ti,体接触金属为Pt/Au,源极金属为Ti/Pt/Au,栅极金属为Ni/Au/Ni,栅介质层为HfO2的垂直氮化铝金属氧化物半导体场效应晶体管。
步骤A:选用外延片,并进行预处理。
A1)选取外延片:
本实施例使用的外延片,其自下而上包括高掺杂n型碳化硅衬底、n-型氮化铝外延层、p型氮化铝外延层和n+氮化铝源区层的外延片材料,其中碳化硅衬底的厚度是100μm,掺杂浓度为5×1017cm-3,n-型氮化铝外延层的厚度是15μm,掺杂浓度是1×1015cm-3,p型氮化铝外延层的厚度是8μm,掺杂浓度为3×1013cm-3,n+氮化铝源区层的厚度是3μm,掺杂浓度为2×1017cm-3
A2)对外延片进行预处理:
将上述外延片依次放入丙酮、异丙醇、去离子水中各超声清洗5min,然后用去离子水清洗外延片并用氮气吹干。
步骤B:制作平台隔离与栅极沟槽。
在预处理后的外延片上制作掩膜并光刻出平台隔离与栅极沟槽图形,再将外延片放入反应离子刻蚀机,在Cl2/BCl3气体与200W的功率下同时刻蚀出平台隔离与栅极沟槽,刻蚀深度为13μm。
步骤C:生长栅介质。
C1)将刻蚀后的片子依次放入丙酮、异丙醇、去离子水中分别超声清洗5min,再将外延片在10%的HF溶液中浸泡5min。
C2)将完成刻蚀的外延片放入等离子增强原子层淀积设备中,选取四(甲乙胺)铪和氧等离子体为前驱体,高纯氩气为载气,再预抽本底真空至1×10-4torr,在160℃下开始淀积工艺循环,即依次通入四(甲乙胺)铪1s、氩气3s、氧等离子体3s和氩气3s,通过控制循环次数,在氮化铝外延层的一侧生长800nm的HfO2作为栅介质。
步骤D:刻蚀源极窗口。
D1)在生长完栅极介质的外延片上制作掩膜,并将外延片放入反应离子刻蚀机,用Cl2/BCl3气体在200W的功率下依次刻蚀HfO2、n+源区层和p型外延层,形成深度为4μm的源极窗口;
D2)将刻蚀后的外延片依次放入丙酮、异丙醇、去离子水中分别超声清洗5min去除掩膜,再把清洗后的外延片放入快速退火炉中,在200℃下进行60min的退火修复刻蚀损伤。
步骤E:制作漏极。
E1)将刻蚀完源极窗口的外延片放入电子束蒸发台,在高掺杂n型碳化硅衬底上淀积100nm的金属Ti作为漏极金属;
E2)将制作有背电极的外延片放入快速热退火炉中,在900℃的温度下退火3min形成欧姆接触。
步骤F:淀积体接触金属。
对制作完漏极的外延片材料进行光刻,获得体接触图形,再将该外延片放置在磁控溅射反应室中,控制反应室压强为9×10-2Pa,利用纯度为99.999%的铂和金靶材,在体接触图形区域淀积120/200nm的Pt/Au作为体接触金属。
步骤G:制作源极和栅极。
G1)将完成上述步骤F的外延片进行清洗,然后进行光刻,获得源极图形,再将该外延片放置在磁控溅射反应室中,控制反应室压强为9×10-2Pa,利用纯度为99.999%的钛、铂和金靶材,在源极窗口淀积30/60/100nmTi/Pt/Au作为源极金属;
G2)将制作有源极金属的外延片进行清洗,并进行光刻,获得栅极图形;再将该外延片放置在磁控溅射反应室中,控制反应室压强为9×10-2Pa,采用纯度为99.999%的镍和金靶材,在栅极沟槽淀积80/100/120nmNi/Au/Ni作为栅极金属,完成器件制作。
实施例3:制作漏极金属为Ti/Al,体接触金属为Pd/Au,源极金属为Ni/Au/Ni,栅极金属为Ti/Pt/Au,栅介质层为SiO2的垂直氮化铝金属氧化物半导体场效应晶体管。
步骤一:选用对外延片并进行预处理。
本实施例使用的外延片,其自下而上包括高掺杂n型碳化硅衬底、n-型氮化铝外延层、p型氮化铝外延层和n+氮化铝源区层的外延片材料,其中碳化硅衬底的厚度是5000μm,掺杂浓度为6×1019cm-3,n-型氮化铝外延层的厚度是7μm,掺杂浓度是1×1018cm-3,p型氮化铝外延层的厚度是2μm,掺杂浓度为5×1016cm-3,n+氮化铝源区层的厚度是1μm,掺杂浓度为8×1017cm-3
将上述外延片依次放入丙酮、异丙醇、去离子水中各超声清洗5min,然后将外延片放入10%的HF溶液中浸泡2min,最后用去离子水清洗外延片并用氮气吹干。
步骤二:制作平台隔离与栅极沟槽
在预处理后的外延片上制作掩膜并光刻出平台隔离与栅极沟槽图形,再将外延片放入反应离子刻蚀机,在Cl2/BCl3气体与300W的功率下同时刻蚀出深度为4μm的平台隔离与栅极沟槽。
步骤三:生长栅介质。
将刻蚀后的外延片依次放入丙酮、异丙醇、去离子水中分别超声清洗5min,再将外延片在10%的HF溶液中浸泡5min;再将完成刻蚀的外延片放入等离子体增强化学的气相沉积法设备中,在反应气压为2000mtorr、温度为350℃、射频功率为20W的条件下,向反应室同时通入流量为4sccm的SiH4、710sccm的N2O和流量为180sccm的N2,以在氮化铝外延层的一侧生长500nm的二氧化硅作为栅介质。
步骤四:刻蚀源极窗口。
在生长完栅极介质的外延片上制作掩膜,并将外延片放入反应离子刻蚀机,用Cl2/BCl3气体在300W的功率下依次刻蚀SiO2、n+源区层和p型外延层,形成深度为1.7μm的源极窗口;再将刻蚀后的外延片依次放入丙酮、异丙醇、去离子水中分别超声清洗5min去除掩膜;再把清洗后的外延片放入快速退火炉中,在800℃下进行5min的退火修复刻蚀损伤。
步骤五:制作漏极。
将刻蚀完源极窗口的外延片放入电子束蒸发台,在高掺杂n型碳化硅衬底上淀积60/120nm的金属Ti/Al作为漏极金属;将制作有漏极的外延片放入快速热退火炉中,在1000℃的温度下退火5min形成欧姆接触。
步骤六:淀积体接触金属。
对制作完漏极的外延片进行光刻,获得体接触图形,再将该外延片放置在磁控溅射反应室中,控制反应室压强为9.4×10-2Pa,利用纯度为99.999%的钯和金靶材,在体接触图形区域淀积80/150nm的Pd/Au作为体接触金属。
步骤七:制作源极和栅极。
对完成上述步骤六的外延片依次进行清洗和光刻,获得栅极图形;再将该外延片放置在磁控溅射反应室中,控制反应室压强为9.4×10-2Pa,利用纯度99.999%的钛、铂和金靶材,在源极窗口淀积30/60/100nmTi/Pt/Au作为栅极金属;
将制作有源极金属的外延片再次进行清洗和光刻,获得栅极图形;再将该外延片放置在磁控溅射反应室中,控制反应室压强为9.4×10-2Pa,采用纯度99.999%的镍和金靶材,在源极窗口淀积80/100/120nmNi/Au/Ni作为源极金属,完成器件制作。
以上描述仅为本发明的三个具体实例,并未构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明的原理、结构的情况下,进行形式和细节上的各种修正和改变,例如漏极除以上使用的金属外,还可使用Ni、Ti、Al、W、Cr、Ta、Mo、TiC、TiN、TiW中的任意一种或任意几种的组合;磁控溅射工艺淀积体接触金属中,除以上使用的工艺参数外,还可使用钨为靶材,反应室压强还可保持在8.5~9.5×10-2Pa;体接触金属除以上使用的金属外,还可使用采用Ni、Pt、Pd、W、Au中的任意一种金属或任意几种金属组合;磁控溅射工艺淀积源极和栅极金属中,除以上使用的工艺参数外,还可使用铝和钛为靶材,反应室压强还可保持在8.5~9.5×10-2Pa;源极和栅极金属除以上使用的金属外,还可使用采用Al、Ni、Pt、Ti、Au中的任意一种金属或任意几种金属组合;栅介质层除以上使用的材料外,还可使用Al2O3、SiO2、SiNx、HfO2中的任意一种或两种及以上的组合;刻蚀工艺参数除以上使用以外,刻蚀功率还可为30-300W。但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

Claims (10)

1.一种基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管,自下而上包括:漏极(1)、衬底(2)、n-漂移层(3)、p型外延层(4)、n+源区层(5);n-漂移层(3)、p型外延层(4)和n+源区层(5)的中间贯穿有栅极凹槽(6),两侧贯穿有平台隔离沟槽(7);n+源区层(5)和p型外延层(4)的中间贯穿有源极凹槽(8);n+源区层(5)、栅极凹槽(6)和平台隔离沟槽(7)上设有栅介质层(9);栅极凹槽(6)的栅介质层(9)上设有栅极(10);源极凹槽(8)的底部设有体接触金属(11),该体接触金属上设有源极(12),其特征在于:
所述衬底(2)采用n型高掺碳化硅,其掺杂浓度为1017-1020cm-3,以提高外延层的质量;
所述n-漂移层(3)、p型外延层(4)和n+源区层(5)均采用氮化铝材料,且n-漂移层(3)的掺杂浓度为1015-1018cm-3,p型外延层(4)的掺杂浓度为1013-1016cm-3,n+源区层(5)的掺杂浓度为1017-1018cm-3,以提高击穿电压。
2.根据权利要求1所述的器件,其特征在于:栅极(10)和源极(12)均采用凹槽结构。
3.根据权利要求1所述的器件,其特征在于:体接触金属(11)位于p型外延层和n+源区层之间,以避免产生寄生双极晶体管,减小器件的内部电阻。
4.根据权利要求1所述的器件,其特征在于:栅介质层(9)为绝缘材料Al2O3、SiO2、SiNx、HfO2中的任意一种或两种及以上的组合。
5.根据权利要求1所述的器件,其特征在于:
衬底(2)的厚度为100-5000μm;
n-漂移层(3)的厚度、p型外延层(4)和n+源区层(5)的厚度均不超过20μm。
6.一种基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管的制备方法,其特征在于,包括如下步骤:
1)选用自下而上包括n型高掺杂碳化硅衬底、n-漂移层、p型外延层和n+源区层的外延片,该n型高掺杂碳化硅衬底为掺杂浓度1017-1020cm-3,厚度为100-5000μm;该n-漂移层为掺杂浓度1015-1018cm-3,厚度不超过20μm的n-漂移层;该p型外延层为掺杂浓度1013-1016cm-3,厚度不超过20μm;该n+源区层为掺杂浓度1017-1018cm-3,厚度不超过20μm;
2)对所选外延片进行清洗,再在清洗后的外延片上制作掩膜并采用刻蚀工艺,刻蚀出平台隔离与栅极沟槽,刻蚀深度从n+型源区层的表面延伸至n-漂移层的内部;
3)将完成刻蚀的外延片进行清洗并采用等离子体增强原子层沉积技术或等离子体增强化学的气相沉积法在氮化铝外延层的一侧生长栅极介质;
4)在生长完栅极介质的外延片上制作掩膜并采用刻蚀工艺,刻蚀出源极窗口,刻蚀深度从栅极介质的表面延伸至p型氮化铝外延层的内部;对刻蚀后的外延片进行清洗,去除掩膜,并把清洗后的片子放入快速退火炉中,在200-800℃下进行1-60min的退火修复刻蚀损伤;
5)在n型高掺杂碳化硅衬底背侧采用蒸发工艺淀积漏极金属,并根据漏极金属的材料,在400-1200℃条件下进行退火30s-10min处理,形成欧姆接触,获得漏极;
6)在完成上述步骤的外延片上制作掩膜,光刻出体接触图形,并采用磁控溅射工艺在源极窗口淀积位于p型外延层和n+源区层之间的体接触金属;
7)将完成淀积体接触金属的外延片进行清洗,再制作掩膜并光刻出源极和栅极图形,利用磁控溅射工艺在源极窗口和栅极沟槽上淀积源极和栅极金属,完成器件制作。
7.根据权利要求6所述的方法,其特征在于:所述2)和4)中的刻蚀工艺是:使用Cl2与BCl3两种气体,刻蚀功率为30-300W。
8.根据权利要求6所述的方法,其特征在于:所述5)中在碳化硅衬底淀积的漏极金属,采用Ni、Ti、Al、W、Cr、Ta、Mo、TiC、TiN、TiW中的任意一种金属或任意几种的金属组合。
9.根据权利要求6所述的方法,其特征在于:所述6)中采用磁控溅射工艺淀积体接触金属,是采用纯度均为99.999%的镍、铂、钨、钯和金为靶材,并将反应室压强保持在8.5~9.5×10-2Pa,在源极窗口沉积体接触金属,该体接触金属采用Ni、Pt、Pd、W、Au中的任意一种金属或任意几种金属组合。
10.根据权利要求6所述的方法,其特征在于:所述7)中采用磁控溅射工艺淀积源极和栅极金属,是采用纯度均为99.999%的铝、镍、铂、钛和金为靶材,并将反应室压强保持在8.5~9.5×10-2Pa,依次在源极窗口上沉积源极金属、在栅极沟槽上淀积栅极金属,淀积的源极和栅极金属均可采用Al、Ni、Pt、Ti、Au中的任意一种金属或任意几种金属组合。
CN202010922629.7A 2020-09-04 2020-09-04 基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管及制备方法 Active CN112038408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010922629.7A CN112038408B (zh) 2020-09-04 2020-09-04 基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010922629.7A CN112038408B (zh) 2020-09-04 2020-09-04 基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管及制备方法

Publications (2)

Publication Number Publication Date
CN112038408A true CN112038408A (zh) 2020-12-04
CN112038408B CN112038408B (zh) 2021-11-23

Family

ID=73590984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010922629.7A Active CN112038408B (zh) 2020-09-04 2020-09-04 基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管及制备方法

Country Status (1)

Country Link
CN (1) CN112038408B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614890A (zh) * 2020-12-16 2021-04-06 西安电子科技大学 基于横向肖特基源隧穿结的全垂直场效应晶体管及方法
CN112614884A (zh) * 2020-12-16 2021-04-06 西安电子科技大学 基于纵向肖特基隧穿发射结的半导体垂直igbt及制备方法
CN112614889A (zh) * 2020-12-16 2021-04-06 西安电子科技大学 基于纵向肖特基源隧穿结的全垂直场效应晶体管及方法
CN112614883A (zh) * 2020-12-16 2021-04-06 西安电子科技大学 基于横向肖特基隧穿发射结的半导体垂直igbt及制备方法
CN113206146A (zh) * 2021-05-26 2021-08-03 吉林华微电子股份有限公司 半导体器件终端结构、制造方法及半导体器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164325A (en) * 1987-10-08 1992-11-17 Siliconix Incorporated Method of making a vertical current flow field effect transistor
CN1137331A (zh) * 1993-12-13 1996-12-04 克里研究公司 碳化硅与氮化镓间的缓冲结构及由此得到的半导体器件
JP2006278570A (ja) * 2005-03-28 2006-10-12 Nippon Telegr & Teleph Corp <Ntt> ショットキーダイオード、電界効果トランジスタおよびその製造方法
US20060226475A1 (en) * 2005-04-11 2006-10-12 Nec Electronics Corporation Vertical field effect transistor
US20060273390A1 (en) * 2005-06-06 2006-12-07 M-Mos Sdn. Bhd. Gate contact and runners for high density trench MOSFET
CN110648977A (zh) * 2018-05-31 2020-01-03 罗姆股份有限公司 半导体基板结构体和功率半导体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164325A (en) * 1987-10-08 1992-11-17 Siliconix Incorporated Method of making a vertical current flow field effect transistor
CN1137331A (zh) * 1993-12-13 1996-12-04 克里研究公司 碳化硅与氮化镓间的缓冲结构及由此得到的半导体器件
JP2006278570A (ja) * 2005-03-28 2006-10-12 Nippon Telegr & Teleph Corp <Ntt> ショットキーダイオード、電界効果トランジスタおよびその製造方法
US20060226475A1 (en) * 2005-04-11 2006-10-12 Nec Electronics Corporation Vertical field effect transistor
US20060273390A1 (en) * 2005-06-06 2006-12-07 M-Mos Sdn. Bhd. Gate contact and runners for high density trench MOSFET
CN110648977A (zh) * 2018-05-31 2020-01-03 罗姆股份有限公司 半导体基板结构体和功率半导体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. MELNIK ET AL.: "Heteroepitaxial growth of GaN, AlN, and AlGaN layers on SiC substrates by HVPE", 《 INTERNATIONAL SEMICONDUCTOR DEVICE RESEARCH SYMPOSIUM》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614890A (zh) * 2020-12-16 2021-04-06 西安电子科技大学 基于横向肖特基源隧穿结的全垂直场效应晶体管及方法
CN112614884A (zh) * 2020-12-16 2021-04-06 西安电子科技大学 基于纵向肖特基隧穿发射结的半导体垂直igbt及制备方法
CN112614889A (zh) * 2020-12-16 2021-04-06 西安电子科技大学 基于纵向肖特基源隧穿结的全垂直场效应晶体管及方法
CN112614883A (zh) * 2020-12-16 2021-04-06 西安电子科技大学 基于横向肖特基隧穿发射结的半导体垂直igbt及制备方法
CN113206146A (zh) * 2021-05-26 2021-08-03 吉林华微电子股份有限公司 半导体器件终端结构、制造方法及半导体器件

Also Published As

Publication number Publication date
CN112038408B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN112038408B (zh) 基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管及制备方法
CN111916351A (zh) 半导体器件及其制备方法
CN102227000A (zh) 基于超级结的碳化硅mosfet器件及制备方法
CN110581068A (zh) 一种使用栅介质去实现低导通电阻的增强型氮化镓晶体管的方法
US8524585B2 (en) Method of manufacturing semiconductor device
CN110164976B (zh) 应变型氧化镓mosfet器件结构及制备方法
JP2019534553A (ja) 炭化珪素上に絶縁層を製造する方法及び半導体装置
CN107785435A (zh) 一种低导通电阻MIS凹槽栅GaN基晶体管及制备方法
CN111785776B (zh) 垂直结构Ga2O3金属氧化物半导体场效应晶体管的制备方法
CN109686667A (zh) 一种SiC基MOS器件及其制备方法和应用
CN103681256A (zh) 一种新型碳化硅mosfet器件及其制作方法
CN112599603A (zh) 基于纵向肖特基源隧穿结的准垂直场效应晶体管及方法
CN111063739A (zh) 基于SiO2电流阻挡层的氮化铝CAVET器件及制作方法
CN116387361A (zh) SiO2阻挡层Ga2O3垂直UMOS晶体管及其制备方法
CN116013989A (zh) 具有SiO2阻挡层的垂直结构Ga2O3晶体管及制备方法
CN105280503A (zh) 提高横向导电结构SiC MOSFET沟道迁移率的方法
CN116093143A (zh) 一种集成misfet栅控功能和场板功能的氮化镓肖特基二极管及其制作方法
CN114171584A (zh) 基于Ga2O3的异质结场效应晶体管及制备方法
CN113871454A (zh) 基于二氧化硅边缘终端的氧化镓肖特基势垒二极管及其制备方法
CN113809154A (zh) 一种氮化物势垒应力调制器件及其制备方法
CN113871477A (zh) 基于栅极场板和源极场板的双异质结hemt器件及其制备方法
CN112614889A (zh) 基于纵向肖特基源隧穿结的全垂直场效应晶体管及方法
CN105161526A (zh) 提高垂直导电结构 SiC MOSFET沟道迁移率的方法
CN112736130A (zh) 氮化镓基高电子迁移率晶体管及其制作方法
CN114300538A (zh) 基于带源场板结构的pn结栅控氧化镓场效应晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant