CN112011067B - 一种可降解、自修复和自粘附导电水凝胶及制备方法 - Google Patents

一种可降解、自修复和自粘附导电水凝胶及制备方法 Download PDF

Info

Publication number
CN112011067B
CN112011067B CN202010837039.4A CN202010837039A CN112011067B CN 112011067 B CN112011067 B CN 112011067B CN 202010837039 A CN202010837039 A CN 202010837039A CN 112011067 B CN112011067 B CN 112011067B
Authority
CN
China
Prior art keywords
self
nano
natural polysaccharide
hydrogel
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010837039.4A
Other languages
English (en)
Other versions
CN112011067A (zh
Inventor
徐敏
王艳玲
黄海龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202010837039.4A priority Critical patent/CN112011067B/zh
Publication of CN112011067A publication Critical patent/CN112011067A/zh
Application granted granted Critical
Publication of CN112011067B publication Critical patent/CN112011067B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/18Oxidised starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F120/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/04Starch derivatives
    • C08J2303/10Oxidised starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/04Starch derivatives
    • C08J2403/10Oxidised starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • C08J2433/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Abstract

本发明公开了一种可降解、自修复和自粘附导电水凝胶及制备方法,该方法以富含邻苯二酚基团的物质为粘附性单体、以水溶性高分子为交联单体、氧化天然多糖为大分子交联剂、无机纳米材料为机械增强剂,金属盐离子或碳基材料为导电剂,通过原位自由基聚合制备了一种自修复和自粘附导电水凝胶。该水凝胶网络通过席夫碱、静电相互作用、氢键、金属配位作用、π‑π堆积和分子链缠结等形成。另外,该水凝胶在碱性条件(pH≥12)下表现出良好的降解性。本发明制备的导电水凝胶具有良好的力学性能、自修复性、自粘附性、导电性和降解性能,拓宽了水凝胶的应用范围;本发明的制备方法具有简单易行、聚合过程可控、能耗低等优势。

Description

一种可降解、自修复和自粘附导电水凝胶及制备方法
技术领域
本发明涉及水凝胶应用和制备技术领域,特别是一种可降解、自修复和自粘附导电水凝胶及制备方法。
背景技术
近年来,随着人工智能、电子皮肤、人机交互和医疗健康监测等技术的发展,柔性可穿戴产品受到越来越多人的关注和认可。水凝胶具有良好的柔韧性并且能保持一定的形状,这些天然的优势使其非常适合应用于柔性可穿戴电子设备。
传统的导电水凝胶一般是通过导电高分子(如聚吡咯、聚苯胺、聚3,4-乙撑二氧噻吩)聚合而成的或者将金属纳米颗粒或碳基纳米材料(石墨、石墨烯、碳纳米管、乙炔黑)等分散在聚合物网络中。然而,由导电高分子聚合物聚合而成的水凝胶通常较脆,力学性能和柔韧性能较差,限制其在实际生活中的应用;由导电纳米材料填充到聚合物网络中的方法制备的导电水凝胶的力学性能和导电性能很大程度的受其分散程度的影响。水凝胶柔性电子器件在使用时往往需要贴附在物体的表面,大多数水凝胶需要依靠胶带或胶水等固定才能贴附于物体表面。这也降低了使用的便捷性。
此外,通常合成高分子水凝胶不能修复其受损部位且不可降解,那么由其所制备的柔性电子设备的使用寿命将大大缩短,并且报废时将对日益严峻的生存环境造成更大的负担。因此,设计一种可降解、自修复和自粘附导电水凝胶的制备方法仍存在巨大的挑战。
发明内容
本发明的目的是提供一种可降解、自修复和自粘附导电水凝胶及制备方法,该水凝胶通过席夫碱、静电相互作用、氢键、金属配位作用、π-π堆积、分子链缠结和纳米粒子机械增强等作用形成,且具有良好的可调控柔韧性、拉伸性、粘附性、自修复性和导电性。水凝胶中均匀分散的碳基纳米颗粒为电子迁移提供了良好的导电网路;或者水凝胶的三维网状结构为自由状态下的盐离子提供了良好的迁移通道。由于水凝胶中聚丙烯酰胺在碱性条件下水解为带负电荷的分子链,破坏了水凝胶中分子链间的相互作用,从而使得该水凝胶具有降解性。因此具有可拉伸、导电性、自修复性、自粘附性和降解性等特点的水凝胶有效拓宽水凝胶柔性电子设备的应用以及减轻电子垃圾对环境带来的负担。
实现本发明目的的具体技术方案是:
一种可降解、自修复和自粘附导电水凝胶的制备方法,该方法包括以下具体步骤:
(1)通过高碘酸钠氧化天然多糖引入醛基得到氧化天然多糖
将质量分数为1%-45%的天然多糖分散于水中,加入质量分数为2.1%-64%的高碘酸钠水溶液,两者的体积比为2~6:1~10;调节pH为1.8-4.5,在黑暗环境中持续搅拌6 h-24h;加入丙酮终止氧化反应的进行,用水和丙酮的混合液多次洗涤,得到氧化天然多糖,称为组分A;并将其溶解为质量分数为1%-8%的氧化天然多糖水溶液;
(2)制备富含邻苯二酚基团的组分B功能化的纳米材料分散液
将质量分数为0.1%-15%的导电或不导电纳米材料加入到质量分数为0.1%-10%的富含邻苯二酚基团的组分B水溶液中,充分搅拌使得组分B均匀地自聚合在纳米材料表面,得到所述功能化的纳米材料分散液;
(3)将质量分数为12%-60%的水溶性高分子单体加入到步骤(1)所制备的氧化天然多糖水溶液和步骤(2)所制备的功能化的纳米材料分散液的混合液中,搅拌均匀;当加入的纳米材料分散液为不导电纳米材料分散液时,另外加入质量分数为0.2%-16%的金属盐,搅拌均匀;再加入水溶性高分子单体质量的0.2%-1.0%的引发剂,45℃-70℃加热2 h-6 h,通过自由基聚合制得所述可降解、自修复和自粘附导电水凝胶;其中:
步骤(1)所述的天然多糖为淀粉、海藻酸钠、壳聚糖、羧甲基纤维素、纳米纤维素、黄原胶、威兰胶、卡拉胶、普鲁兰多糖、魔芋葡甘聚糖或琼脂糖;
步骤(2)所述的导电纳米材料为石墨烯、碳纳米管或MXene;不导电的纳米材料为纳米二氧化硅、纳米蒙脱土、纳米粘土、纳米高岭土、纳米硅藻土、纳米滑石粉、纳米氧化铝或纳米二氧化钛;所述的富含邻苯二酚基团的组分B为单宁酸、多巴胺、茶多酚或花青素;
步骤(3)所述的氧化天然多糖水溶液与功能化的纳米材料分散液的体积比为25:0.1-6;所述的水溶性高分子单体为丙烯酰胺或N-异丙基丙烯酰胺;所述的引发剂为过硫酸钾或过硫酸铵。
所述金属盐为氯化钠、氯化钾、氯化钙、氯化镁、氯化锌、硫酸钠、硫酸钾、硫酸镁、硫酸锌、硝酸钠、硝酸钾、硝酸钙、硝酸镁或硝酸锌。
一种上述方法制得的可降解、自修复和自粘附导电水凝胶。
本发明的有益效果是:
1)本发明制备的可降解、自修复和自粘附导电水凝胶采用自由基聚合,通过席夫碱、静电相互作用、氢键、金属配位作用、π-π堆积、分子链缠结和纳米粒子机械增强等作用形成,且具有良好的可调控柔韧性、可拉伸和自修复性。从而保证以该水凝胶为主体的可穿戴柔性电子设备所需的机械强度和修复破损部位的性能。
2)本发明制备的可降解、自修复和自粘附导电水凝胶利用富含邻苯二酚基团的物质在纳米材料表面自聚合形成具有粘附性聚合物,既提高了纳米材料在水凝胶中的分散性,又赋予水凝胶自粘附性和较好的力学性能。有利于该水凝胶在实际生活中的应用。
3)本发明制备的可降解、自修复和自粘附导电水凝胶在碱性环境中(pH≥12)水解,最终保证水凝胶的可降解性和环境友好性。
附图说明
图1为本发明导电水凝胶粘附于不同基质表面的示意图;
图2为本发明导电水凝胶降解前后的示意图;
图3为本发明导电水凝胶导电和自修复的示意图。
具体实施方式
实施例1
(1)将10 g淀粉分散于60 mL水中,加入体积为80 mL高碘酸钠水溶液(2 mol/L),调节其pH为2.5,在黑暗环境中持续搅拌12 h。加入500 mL丙酮终止氧化反应的进行,用水和丙酮的混合液洗涤多次得到氧化产物-双醛淀粉。并将其配成3%的双醛淀粉水溶液。
(2)将0.06 g的纳米二氧化硅加入到质量分数为4%的多巴胺水溶液中,充分搅拌使得多巴胺均匀地在纳米颗粒表面自聚合,得到多巴胺修饰的纳米二氧化硅分散液。
(3)将质量分数为20%的丙烯酰胺加入到2 g步骤(1)所制备的双醛淀粉水溶液和300 μL步骤(2)所制备的多巴胺包覆的纳米二氧化硅分散液的混合液中,搅拌均匀。加入0.1 g的氯化钠,搅拌均匀。加入20 mg的过硫酸铵,将温度升高到55 ℃聚合3 h制得可降解、自修复和自粘附导电水凝胶;其自粘附性如图1所示;参阅图2为导电水凝胶降解前后的示意图,由图可看出,该水凝胶在pH=12水溶液中12小时后完全降解;参阅图3为导电水凝胶导电和自修复的示意图,由图可看出,该水凝胶具有导电性和自修复性能。
实施例2
(1)将15 g淀粉分散于50 mL水中,加入体积为100 mL高碘酸钠水溶液(1 mol/L),调节其pH为2.8,在黑暗环境中持续搅拌12 h。加入500 mL丙酮终止氧化反应的进行,用水和丙酮的混合液洗涤多次得到氧化产物-双醛淀粉。 并将其配成5%的双醛淀粉水溶液。
(2)将0.1 g的纳米二氧化硅加入到质量分数为2%的多巴胺水溶液中,充分搅拌使得多巴胺均匀地在纳米颗粒表面自聚合,得到多巴胺修饰的纳米二氧化硅分散液。
(3)将质量分数为18%的丙烯酰胺加入到2.5 g步骤(1)所制备的双醛淀粉水溶液和100 μL步骤(2)所制备的多巴胺包覆的纳米二氧化硅分散液的混合液中,搅拌均匀。加入0.5 g的氯化钾,搅拌均匀。加入15 mg的过硫酸铵,将温度升高到45 ℃聚合6 h制得可降解、自修复和自粘附导电水凝胶。
实施例3
(1)将15 g淀粉分散于50 mL水中,加入体积为100 mL高碘酸钠水溶液(1 mol/L),调节其pH为2.8,在黑暗环境中持续搅拌12 h。加入500 mL丙酮终止氧化反应的进行,用水和丙酮的混合液洗涤多次得到氧化产物-双醛淀粉。并将其配为5%的双醛淀粉水溶液。
(2)将0.1 g的纳米粘土加入到质量分数为4%的单宁酸水溶液中,充分搅拌使得单宁酸均匀地在纳米颗粒表面自聚合,得到单宁酸修饰的纳米粘土分散液。
(3)将质量分数为25%的N-异丙基丙烯酰胺加入到2.5 g步骤(1)所制备的双醛淀粉水溶液和200 μL步骤(2)所制备的单宁酸包覆的纳米粘土分散液的混合液中,搅拌均匀。加入0.3 g的氯化钠,搅拌均匀。加入20 mg的过硫酸铵,将温度升高到50 ℃聚合4 h制得可降解、自修复和自粘附导电水凝胶。
实施例4
(1)将5 g海藻酸钠分散于100 mL水中,加入体积为80 mL高碘酸钠水溶液(0.5mol/L),调节其pH为2.8,在黑暗环境中持续搅拌12 h。加入500 mL丙酮终止氧化反应的进行,用水和丙酮的混合液洗涤多次得到氧化产物-双醛海藻酸钠。并将其配为5%的双醛海藻酸钠水溶液。
(2)将0.08 g的纳米二氧化硅加入到质量分数为4%的多巴胺水溶液中,充分搅拌使得多巴胺均匀地自聚交联在纳米二氧化硅颗粒表面,得到多巴胺修饰的纳米二氧化硅分散液。
(3)将质量分数为30%的丙烯酰胺加入到2.5 g步骤(1)所制备的双醛海藻酸钠水溶液和200 μL步骤(2)所制备的多巴胺包覆的纳米二氧化硅分散液的混合液中,搅拌均匀。加入0.15 g的氯化钾,搅拌均匀。加入15 mg的过硫酸铵,将温度升高到60 ℃聚合3 h制得可降解、自修复和自粘附导电水凝胶。
实施例5
(1)将5 g海藻酸钠分散于100 mL水中,加入体积为80 mL高碘酸钠水溶液(0.5mol/L),调节其pH为2.8,在黑暗环境中持续搅拌12 h。加入500 mL丙酮终止氧化反应的进行,用水和丙酮的混合液洗涤多次得到氧化产物-双醛海藻酸钠。并将其配为4.5%的双醛海藻酸钠水溶液。
(2)将0.05 g的MXene加入到质量分数为3.5%的多巴胺水溶液中,充分搅拌使得多巴胺均匀地在MXene表面自聚合,得到多巴胺修饰的MXene分散液。
(3)将质量分数为28%的丙烯酰胺加入到3 g步骤(1)所制备的双醛海藻酸钠水溶液和300 μL步骤(2)所制备的多巴胺包覆的MXene分散液的混合液中,搅拌均匀。加入15 mg的过硫酸钾,将温度升高到65 ℃聚合4 h制得可降解、自修复和自粘附导电水凝胶。

Claims (3)

1.一种可降解、自修复和自粘附导电水凝胶的制备方法,其特征在于,该方法包括以下具体步骤:
(1)通过高碘酸钠氧化天然多糖引入醛基得到氧化天然多糖
将质量分数为1%-45%的天然多糖分散于水中,加入质量分数为2.1%-64%的高碘酸钠水溶液,两者的体积比为2~6:1~10;调节pH为1.8-4.5,在黑暗环境中持续搅拌6 h-24 h;加入丙酮终止氧化反应的进行,用水和丙酮的混合液多次洗涤,得到氧化天然多糖,称为组分A;并将其溶解为质量分数为1%-8%的氧化天然多糖水溶液;
(2)制备富含邻苯二酚基团的组分B功能化的纳米材料分散液
将质量分数为0.1%-15%的导电或不导电纳米材料加入到质量分数为0.1%-10%的富含邻苯二酚基团的组分B水溶液中,充分搅拌使得组分B均匀地自聚合在纳米材料表面,得到所述功能化的纳米材料分散液;
(3)将质量分数为12%-60%的水溶性高分子单体加入到步骤(1)所制备的氧化天然多糖水溶液和步骤(2)所制备的功能化的纳米材料分散液的混合液中,搅拌均匀;当加入的纳米材料分散液为不导电纳米材料分散液时,另外加入质量分数为0.2%-16%的金属盐,搅拌均匀;再加入水溶性高分子单体质量的0.2%-1.0%的引发剂,45℃-70℃加热2 h-6 h,通过自由基聚合制得所述可降解、自修复和自粘附导电水凝胶;其中:
步骤(1)所述的天然多糖为淀粉、海藻酸钠、壳聚糖、羧甲基纤维素、纳米纤维素、黄原胶、威兰胶、卡拉胶、普鲁兰多糖、魔芋葡甘聚糖或琼脂糖;
步骤(2)所述的导电纳米材料为石墨烯、碳纳米管或MXene;不导电的纳米材料为纳米二氧化硅、纳米粘土、纳米硅藻土、纳米滑石粉、纳米氧化铝或纳米二氧化钛;所述的富含邻苯二酚基团的组分B为单宁酸、多巴胺、茶多酚或花青素;
步骤(3)所述的氧化天然多糖水溶液与功能化的纳米材料分散液的体积比为25:0.1-6;所述的水溶性高分子单体为丙烯酰胺或N-异丙基丙烯酰胺;所述的引发剂为过硫酸钾或过硫酸铵。
2.根据权利要求1所述的可降解、自修复和自粘附导电水凝胶的制备方法,其特征在于,所述金属盐为氯化钠、氯化钾、氯化钙、氯化镁、氯化锌、硫酸钠、硫酸钾、硫酸镁、硫酸锌、硝酸钠、硝酸钾、硝酸钙、硝酸镁或硝酸锌。
3.一种权利要求1所述方法制得的可降解、自修复和自粘附导电水凝胶。
CN202010837039.4A 2020-08-19 2020-08-19 一种可降解、自修复和自粘附导电水凝胶及制备方法 Active CN112011067B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010837039.4A CN112011067B (zh) 2020-08-19 2020-08-19 一种可降解、自修复和自粘附导电水凝胶及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010837039.4A CN112011067B (zh) 2020-08-19 2020-08-19 一种可降解、自修复和自粘附导电水凝胶及制备方法

Publications (2)

Publication Number Publication Date
CN112011067A CN112011067A (zh) 2020-12-01
CN112011067B true CN112011067B (zh) 2022-10-28

Family

ID=73505037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010837039.4A Active CN112011067B (zh) 2020-08-19 2020-08-19 一种可降解、自修复和自粘附导电水凝胶及制备方法

Country Status (1)

Country Link
CN (1) CN112011067B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866597B2 (en) 2020-02-13 2024-01-09 Korea Institute Of Science And Technology 2-dimensional MXene surface-modified with catechol derivative, method for preparing the same, and MXene organic ink including the same
CN112618784A (zh) * 2020-12-11 2021-04-09 北京化工大学常州先进材料研究院 一种运动胶体敷料
CN112724427B (zh) * 2021-01-29 2022-09-13 西北师范大学 一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备及在海水淡化中的应用
EP4047062A1 (en) * 2021-02-19 2022-08-24 Korea Institute of Science and Technology 2-dimensional mxene surface-modified with catechol derivative, method for preparing the same, and mxene organic ink including the same
CN112920749A (zh) * 2021-04-12 2021-06-08 安徽中医药大学 一种热诱导高粘附性导电胶的制备方法
CN113150412A (zh) * 2021-05-17 2021-07-23 中裕软管科技股份有限公司 一种可自修复的柔性吸水管
CN113802364B (zh) * 2021-09-01 2023-03-10 昆明理工大学 一种自修复、耐酸碱、抗菌多层膜涂层的制备方法
CN114426682B (zh) * 2022-02-07 2024-01-19 西北工业大学 一种MXene高强度复合水凝胶及其制备方法和应用
CN114805848A (zh) * 2022-03-25 2022-07-29 太原理工大学 有修复性和抗氧化性MXene基导电水凝胶的制备方法
CN114425103B (zh) * 2022-04-06 2022-06-17 中国科学院苏州纳米技术与纳米仿生研究所 一种仿生生物胶及其制备方法与应用
CN114891159A (zh) * 2022-06-15 2022-08-12 陕西科技大学 一种具有粘附性的高强度pamps-pam-ta水凝胶及其制备方法
CN114957728B (zh) * 2022-06-29 2023-07-04 陕西科技大学 一种双网络胶原蛋白基超分子水凝胶及其制备方法
CN114904050A (zh) * 2022-06-30 2022-08-16 吉林大学 一种模拟脊髓的水凝胶制备方法及其应用
CN115068673B (zh) * 2022-06-30 2023-06-06 吉林大学 一种MXene基自催化导电水凝胶敷料的制备方法及其应用
CN115368638A (zh) * 2022-08-10 2022-11-22 河南师范大学 一种多功能改性淀粉基水凝胶材料的制备方法及其应用
CN115068637B (zh) * 2022-08-23 2022-11-11 中国人民解放军空军特色医学中心 医用导电膏及其制备方法
CN115536919B (zh) * 2022-08-26 2024-01-19 武汉理工大学 一种改性壳聚糖粘附水凝胶及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105153359B (zh) * 2015-08-25 2018-02-23 康柏医疗器械(惠州)有限公司 一种导电水凝胶和导电水凝胶卷材及其制备方法
CN105906821B (zh) * 2016-04-26 2018-08-24 西南交通大学 一种自粘附导电水凝胶的制备方法
CN107602763A (zh) * 2017-09-30 2018-01-19 西南交通大学 一种具有抗冻/抗热性能的导电自粘附水凝胶的制备方法
CN108341913A (zh) * 2018-03-20 2018-07-31 东南大学 天然高分子模板引导聚合制备自修复水凝胶的方法

Also Published As

Publication number Publication date
CN112011067A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN112011067B (zh) 一种可降解、自修复和自粘附导电水凝胶及制备方法
Li et al. Facile preparation of stretchable and self-healable conductive hydrogels based on sodium alginate/polypyrrole nanofibers for use in flexible supercapacitor and strain sensors
CN106008799B (zh) 一种具有高力学性能及自愈合性的水凝胶电极的制备方法
Chen et al. Fabricating robust soft-hard network of self-healable polyvinyl alcohol composite films with functionalized cellulose nanocrystals
CN109893681B (zh) 一种用于软骨修复/电子皮肤的导电水凝胶的制备方法
CN111423600B (zh) 一种可注射的定向导电水凝胶的制备方法
CN111423539B (zh) 一种GO@DA/海藻酸钠/P(AAc-co-AAm)多功能水凝胶及其制备方法
CN113999476B (zh) 一种双重刺激响应性导电复合水凝胶及其制备方法和应用
CN109762210B (zh) 一种作电极用的自粘性导电水凝胶的制备方法
CN110540658B (zh) 一种基于丙烯酰胺/氧化碳纳米管纳米复合水凝胶传感器及其制备方法
Xiong et al. Bioinspired fabrication of self-recovery, adhesive, and flexible conductive hydrogel sensor driven by dynamic borate ester bonds and tannic acid-mediated noncovalent network
CN114149599A (zh) 一种具有粘附性的透明导电水凝胶及其制备方法和应用
Sun et al. Fabrication of Janus-type nanocomposites from cellulose nanocrystals for self-healing hydrogels’ flexible sensors
CN112898601A (zh) 一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法
Zhao et al. CNT-Br/PEDOT: PSS/PAAS three-network composite conductive hydrogel for human motion monitoring
CN113800521A (zh) 一种高稳定的自连结MXene纳米片及其制备方法和应用
CN114940765A (zh) 一种高强、高弹的多网络导电水凝胶及其制备方法与应用
CA2909753C (en) Conductive cellulose nanocrystals, method of producing same and uses thereof
CN114058031B (zh) 一种自黏附木质素基复合水凝胶及其制备方法和应用
CN111848984B (zh) 一种环糊精水凝胶及其制备方法和应用
CN112979997B (zh) 一种各向异性纤维素基水凝胶的制备方法
CN113929995B (zh) 一种导电填充剂及其制备方法、复合型导电材料和复合型导电橡胶的制备方法
CN113929826A (zh) 仿神经元复合导电水凝胶及多功能柔性传感器
CN113072830A (zh) 聚苯胺碳纳米管核壳复合材料的制备方法及其应用
CN111218012A (zh) 一种光热诱导自修复导电水凝胶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant