CN112724427B - 一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备及在海水淡化中的应用 - Google Patents
一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备及在海水淡化中的应用 Download PDFInfo
- Publication number
- CN112724427B CN112724427B CN202110126848.9A CN202110126848A CN112724427B CN 112724427 B CN112724427 B CN 112724427B CN 202110126848 A CN202110126848 A CN 202110126848A CN 112724427 B CN112724427 B CN 112724427B
- Authority
- CN
- China
- Prior art keywords
- corn starch
- mxene
- sodium alginate
- composite hydrogel
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/246—Intercrosslinking of at least two polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0052—Preparation of gels
- B01J13/0065—Preparation of gels containing an organic phase
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/243—Two or more independent types of crosslinking for one or more polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2303/00—Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
- C08J2303/02—Starch; Degradation products thereof, e.g. dextrin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2305/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
- C08J2305/04—Alginic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2403/00—Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
- C08J2403/02—Starch; Degradation products thereof, e.g. dextrin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2405/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
- C08J2405/04—Alginic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/16—Halogen-containing compounds
- C08K2003/162—Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
- C08K3/14—Carbides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
本发明提供了一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备方法,是将玉米淀粉、海藻酸钠、MXene溶于去离子水中,得到混合溶液,搅拌混合溶液使玉米淀粉糊化,然后加入交联剂进行交联,得到玉米淀粉/海藻酸钠/MXene复合水凝胶。本发明以生物质材料海藻酸钠,玉米淀粉与吸光材料MXene为原料,以氯化钙为交联剂得到通过氢键和静电作用交联的具有光热性能的三维网状结构复合水凝胶,制备方法简单,原料海藻酸钠和玉米淀粉来源广泛,可生物降解,绿色无污染且成本低廉,有利于大规模生产。该复合水凝胶具有多孔性,亲水性和吸光性,有很好的蒸发性能,且蒸发后海水中盐离子的浓度得到有效降低,对海水有很好的淡化性能。
Description
技术领域
本发明涉及一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备方法,本发明同时涉及该复合水凝胶在海水淡化中的应用,属于高分子材料及海水淡化技术领域。
背景技术
太阳能作为自然界取之不尽用之不竭且绿色无污染的能源之一,在实际生活中有很广泛的应用,如太阳能电池,太阳能热水器,太阳能发电等方面。近几年,随着工业化水平的提高,环境污染和人口增长等原因,水资源短缺成为了人类面临的一大难题。在地球上,淡水资源仅占总水量近3%,而海洋约占地球总水量的96.53%。因此,迫切需要开发高效、经济和可持续的技术来净化大量的海水或废水来解决水资源匮乏问题。
传统的海水淡化技术有膜过滤,反渗透,多级闪蒸和多效蒸馏等,但是蒸发效率低,能耗高。因此,利用太阳能进行海水淡化受到人们的关注。但是早期直接利用太阳能进行海水淡化效率低,热损失严重,因此,后来人们利用吸光材料作为光热转换介质置于海水表面提高其水蒸发效率。要增强海水淡化的性能,光热转换装置应满足以下条件:(1)在太阳全光谱范围内有较宽的吸收。常用的物质有碳基材料、等离子体纳米颗粒、半导体、有机聚合物等。(2)有多孔网状结构的输水通道,有利于水分的蒸发。如人们利用植物蒸腾作用进行水分运输的原理制备了木材基光热转换材料。(3)具有较强的吸水性,能够将海水中的水分吸收从而输送到水蒸发表面,为整个水蒸发过程提供源源不断的水分。由于以往报道的关于太阳能蒸汽效率高的太阳能光热装置原材料昂贵,制备繁琐,表面易沉积盐,制约了它的广泛应用。
发明内容
本发明的目的是提供一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备方法;
本发明的另一个目的是提供该复合水凝胶在海水淡化中的应用。
一、玉米淀粉/海藻酸钠/MXene复合水凝胶的制备
本发明玉米淀粉/海藻酸钠/MXene复合水凝胶的制备方法,是将玉米淀粉、海藻酸钠、MXene溶于去离子水中,得到混合溶液,搅拌混合溶液使玉米淀粉糊化,然后加入交联剂进行交联,得到玉米淀粉/海藻酸钠/MXene复合水凝胶。
所述MXene、玉米淀粉的质量比为1:1~1:8;所述玉米淀粉和海藻酸钠的质量比为1:1 ~1:2。
所述混合溶液中,MXene的浓度为1.25~10mg/mL。
所述交联剂为氯化钙溶液,氯化钙溶液的浓度为0.45mol/L,MXene与氯化钙溶液的质量体积比为6~50mg/mL。
所述搅拌是在60~80℃搅拌0.5~1h。
所述交联温度为10~25℃,时间为1~5min。
所述MXene的制备方法,是将LiF溶于HCl溶液中,加入Ti3AlC2粉末,将混合溶液在30~50℃下搅拌反应36~48h,离心,洗涤,冷冻干燥得到MXene粉末;HCl溶液浓度为9mol/L,LiF与HCl溶液质量体积比为40~60mg/mL;LiF与Ti3AlC2质量比为1:1~1:2。
图1为玉米淀粉/海藻酸钠/MXene复合水凝胶的扫描电镜图,从图中可以看出该复合凝胶具有一定的多孔结构,有利于水分从水凝胶底部向上输送。
二、玉米淀粉/海藻酸钠/MXene复合水凝胶在海水淡化中的应用
1、不同MXene浓度下复合水凝胶在模拟海水中的水蒸发性能研究
为了测定水凝胶的水蒸发性能,首先根据国家海洋局第三海洋研究所提供的中国东南沿海海水的主要成分制备了人工模拟海水(NaCl 26.518g L-1、MgSO4 3.305 g L-1、MgCl2 2.447 g L-1、CaCl2 1.141g L-1、KCl 0.725 g L-1、NaHCO30.202 g L-1、NaBr0.083 gL-1)。然后用泡沫作为支撑和隔热元件将不同MXene浓度下制备的复合水凝胶置于泡沫上,再将此泡沫置于装有模拟海水的烧杯表面。最后将整个装置置于连接电脑的分析天平上照射1h记录其质量变化。整个实验以带有AM=1.5滤光片的氙灯(CEL-S500/350)作为光源模拟太阳光。其光照强度为1KW/m2。
图2为不同MXene浓度下复合水凝胶在模拟海水中的水蒸发速率。从图中可以发现,水凝胶水蒸发速率随着MXene浓度的增大,先增大后减小,这主要是由于开始时随着MXene含量的增多,凝胶吸光性能增强,因此,水蒸发速率增大。但是,当MXene浓度增大到10mg/mL时,由于MXene与玉米淀粉,海藻酸钠的物理交联形成了更加致密的网络影响水分的输送和蒸发,所以水蒸发速率减小。从图2可以看出当MXene的浓度为5mg/mL时水蒸发速率最好,但是与2.5mg/mL相比相差较小,所以从经济方面考虑当MXene的浓度为2.5mg/mL时为最佳条件,其蒸发速率为1.60kg m-2 h-1。
2、含MXene和不含MXene的水凝胶在模拟海水中的水蒸发速率比较
图3为不含MXene和MXene的浓度为2.5mg/mL制备的水凝胶在模拟海水中的水蒸发速率比较。从图3可以看出,MXene浓度在2.5mg/mL下制备的水凝胶与不含MXene的水凝胶相比,水蒸发速率增大了2倍,表明加入MXene之后水凝胶的吸光性能增强,通过光热转换可以增大水凝胶的水蒸发速率。
3、玉米淀粉/海藻酸钠/MXene复合水凝胶的脱盐性能
为了研究水凝胶的海水淡化性能,配置了含有K+,Ca2+,Na+,Mg2+四种主要离子的人工模拟海水对其脱盐性能进行探究。将2.5mg/mLMXene复合水凝胶置于模拟海水中,在1KW/m2的光照下进行水蒸发,收集蒸发出来的水分,然后用ICP-OES测定蒸发前后K+,Ca2+,Na+,Mg2+四种离子的浓度变化,观察复合水凝胶的脱盐性能。其蒸发前后水中离子浓度如图4所示,从图中可以看出,蒸发前后水中的K+,Ca2+,Na+,Mg2+浓度降低了3~4个数量级。通过与世界卫生组织给出的人类饮用水标准中离子浓度相比较,淡化后水中离子浓度远低于该标准。进一步证明该复合水凝胶具有较好的海水淡化性能。
本发明相对现有技术具有以下优点:
1、本发明以生物质材料海藻酸钠,玉米淀粉与吸光材料MXene为原料,以氯化钙为交联剂得到通过氢键和静电作用交联的具有光热性能的三维网状结构复合水凝胶,制备方法简单,成本较低,有利于大规模生产。
2、本发明由于海藻酸钠和玉米淀粉含有很多亲水官能团可以与水分子通过氢键结合,从而降低水的蒸发焓,加速水蒸发,具有很好的蒸发性能,且蒸发后海水中盐离子的浓度得到有效降低,对海水有很好的淡化性能。
3、本发明制备的水凝胶具有多孔性,亲水性和吸光性,因此可以在水蒸发的同时能源源不断补充水分,保证蒸发过程持续进行。
4、本发明所用原料海藻酸钠和玉米淀粉来源广泛,可生物降解,绿色无污染且成本低廉,可广泛使用。
附图说明
图1为玉米淀粉/海藻酸钠/MXene复合水凝胶的扫描电镜图;
图2为不同MXene浓度下复合水凝胶在模拟海水中的水蒸发速率;
图3为不含MXene和MXene的浓度为2.5mg/mL制备的水凝胶在模拟海水中的水蒸发速率比较;
图4为模拟海水中加入复合水凝胶蒸发前后的盐离子浓度。
具体实施方式
下面结合具体实例对本发明玉米淀粉/海藻酸钠/MXene复合水凝胶的制备及应用
做进一步说明。
实施例1
(1)MXene的制备方法:将1gLiF溶解到20mL 9mol/LHCl溶液中磁力搅拌5min ,然后将1gTi3AlC2粉末缓慢加入上述溶液,将混合溶液在40℃下磁力搅拌反应48h,得到稳定悬浮液,在3500rpm转速下离心5分钟,用去离子水反复洗涤至PH=6~7,将沉积物溶于200mL去离子水,在冰浴条件下超声2h,然后将溶液在冰箱中预冷冻12h,再冷冻干燥得到MXene粉末,冷藏备用。
(2)玉米淀粉/海藻酸钠/MXene复合水凝胶的制备:称取0.1g的海藻酸钠,0.1g玉米淀粉,12.5mgMXene溶于10mL去离子水中得到混合溶液,在80℃下搅拌1h,使玉米淀粉糊化,最后在快速搅拌的条件下加入2mL0.45mol/L氯化钙溶液,在25℃下交联5min,玉米淀粉/海藻酸钠/MXene复合水凝胶。该复合水凝胶水蒸发速率为1.45kg m-2 h-1,海水淡化前后离子浓度如下表:
实施例2
(1)MXene的制备方法:同实施例1;
(2)玉米淀粉/海藻酸钠/MXene复合水凝胶的制备:称取0.1g的海藻酸钠,0.1g玉米淀粉,25mg MXene溶于10mL去离子水中得到混合溶液,在80℃下搅拌1h,使玉米淀粉糊化,最后在快速搅拌的条件下加入2mL0.45mol/L氯化钙溶液,在25℃下交联5min,玉米淀粉/海藻酸钠/MXene复合水凝胶。该复合水凝胶水蒸发速率为1.60kg m-2 h-1,海水淡化前后离子浓度如下表:
实施例3
(1)MXene的制备方法:同实施例1;
(2)玉米淀粉/海藻酸钠/MXene复合水凝胶的制备:称取0.1g的海藻酸钠,0.1g玉米淀粉,50mg MXene溶于10mL去离子水中得到混合溶液,在80℃下搅拌1h,使玉米淀粉糊化,最后在快速搅拌的条件下加入2mL0.45mol/L氯化钙溶液,在25℃下交联5min,玉米淀粉/海藻酸钠/MXene复合水凝胶。该复合水凝胶水蒸发速率为1.61kg m-2 h-1,海水淡化前后离子浓度如下表:
实施例4
(1)MXene的制备方法:同实施例1;
(2)玉米淀粉/海藻酸钠/MXene复合水凝胶的制备:称取0.1g的海藻酸钠,0.1g玉米淀粉,100mgMXene溶于10mL去离子水中得到混合溶液,在80℃下搅拌1h,使玉米淀粉糊化,最后在快速搅拌的条件下加入2mL0.45mol/L氯化钙溶液,在25℃下交联5min,玉米淀粉/海藻酸钠/MXene复合水凝胶。该复合水凝胶水蒸发速率为1.54kg m-2 h-1,海水淡化前后离子浓度如下表:
Claims (8)
1.一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备方法,是将玉米淀粉、海藻酸钠、MXene溶于去离子水中,得到混合溶液,搅拌混合溶液使玉米淀粉糊化,然后加入交联剂进行交联,得到玉米淀粉/海藻酸钠/MXene复合水凝胶。
2.根据权利要求1所述一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备方法,其特征在于:所述MXene、玉米淀粉的质量比为1:1~1:8;所述玉米淀粉和海藻酸钠的质量比为1:1~1:2。
3.根据权利要求1所述一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备方法,其特征在于:所述混合溶液中,MXene的浓度为1.25~10mg/mL。
4.根据权利要求1所述一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备方法,其特征在于:所述交联剂为氯化钙溶液,氯化钙溶液的浓度为0.45mol/L,MXene与氯化钙溶液的质量体积比为6~50mg/mL。
5.根据权利要求1所述一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备方法,其特征在于:所述搅拌是在60~80℃搅拌0.5~1h。
6.根据权利要求1所述一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备方法,其特征在于:所述交联温度为10~25℃,时间为1~5min。
7.根据权利要求1所述一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备方法,其特征在于:所述MXene的制备方法,是将LiF溶于HCl溶液中,加入Ti3AlC2粉末,将混合溶液在30~50℃下搅拌反应36~48h,离心,洗涤,冷冻干燥得到MXene粉末;HCl溶液浓度为9mol/L,LiF与HCl溶液质量体积比为40~60mg/mL;LiF与Ti3AlC2质量比为1:1~1:2。
8.根据权利要求1-7任一所述方法制备的玉米淀粉/海藻酸钠/MXene复合水凝胶在海水淡化中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110126848.9A CN112724427B (zh) | 2021-01-29 | 2021-01-29 | 一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备及在海水淡化中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110126848.9A CN112724427B (zh) | 2021-01-29 | 2021-01-29 | 一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备及在海水淡化中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112724427A CN112724427A (zh) | 2021-04-30 |
CN112724427B true CN112724427B (zh) | 2022-09-13 |
Family
ID=75594799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110126848.9A Active CN112724427B (zh) | 2021-01-29 | 2021-01-29 | 一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备及在海水淡化中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112724427B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113368792A (zh) * | 2021-06-21 | 2021-09-10 | 中国石油大学(华东) | 一种高强度多糖-MXene复合微球及其制备方法 |
CN113426428B (zh) * | 2021-06-28 | 2022-04-29 | 武汉大学 | 一种聚苯胺-硫氮MXene/海藻酸钠复合凝胶吸附剂及其制备方法与应用 |
CN114804272B (zh) * | 2022-04-27 | 2023-07-14 | 中国科学技术大学 | 一种仿木黑体材料及其制备方法和应用 |
CN115893556B (zh) * | 2022-09-09 | 2024-06-14 | 中国海洋大学 | 具有双层结构的光热海水淡化复合薄膜及制备方法和应用 |
CN115651274B (zh) * | 2022-10-31 | 2024-03-26 | 淮阴工学院 | 一种用于太阳能海水淡化的黏土基复合水凝胶的制备方法 |
CN117772081B (zh) * | 2024-02-23 | 2024-06-04 | 青岛明月海藻集团有限公司 | 一种包埋光合细菌的水质净化剂的制备方法及其用途 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108384448A (zh) * | 2017-05-17 | 2018-08-10 | 东华大学 | 一种仿贝壳结构的复合纳米防腐涂层及其制备方法 |
CN109012220A (zh) * | 2018-10-15 | 2018-12-18 | 北京林业大学 | 一种新型二维材料/海藻酸钠渗透汽化膜的制备 |
CN109179693A (zh) * | 2018-10-31 | 2019-01-11 | 德保县广鑫贸易有限公司 | 一种污水处理剂及其制备方法 |
CN110090603A (zh) * | 2019-04-12 | 2019-08-06 | 湖北大学 | 一种MXene与氧化石墨烯复合气凝胶及其制备方法和应用 |
CN110449032A (zh) * | 2019-07-08 | 2019-11-15 | 西安建筑科技大学 | 一种耐溶胀二维SA-MXene层状纳滤膜、制备及应用 |
CN111348708A (zh) * | 2020-02-10 | 2020-06-30 | 东华大学 | 向光型太阳能光热海水蒸发方法及其装置 |
CN111422873A (zh) * | 2020-03-23 | 2020-07-17 | 北京化工大学 | 一种MXene/海藻酸钠衍生碳三维气凝胶及其制备方法和应用 |
CN111440349A (zh) * | 2020-06-01 | 2020-07-24 | 中国石油大学(华东) | 一种海藻酸钠抗菌敷料的制备方法 |
CN112011067A (zh) * | 2020-08-19 | 2020-12-01 | 华东师范大学 | 一种可降解、自修复和自粘附导电水凝胶及制备方法 |
CN112169816A (zh) * | 2020-09-21 | 2021-01-05 | 东莞理工学院 | 一种三维多孔MXene组装体及其制备方法和应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200399771A1 (en) * | 2019-06-24 | 2020-12-24 | The Hong Kong Polytechnic University | Method for hf-free facile and rapid synthesis of mxenes related compounds |
-
2021
- 2021-01-29 CN CN202110126848.9A patent/CN112724427B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108384448A (zh) * | 2017-05-17 | 2018-08-10 | 东华大学 | 一种仿贝壳结构的复合纳米防腐涂层及其制备方法 |
CN109012220A (zh) * | 2018-10-15 | 2018-12-18 | 北京林业大学 | 一种新型二维材料/海藻酸钠渗透汽化膜的制备 |
CN109179693A (zh) * | 2018-10-31 | 2019-01-11 | 德保县广鑫贸易有限公司 | 一种污水处理剂及其制备方法 |
CN110090603A (zh) * | 2019-04-12 | 2019-08-06 | 湖北大学 | 一种MXene与氧化石墨烯复合气凝胶及其制备方法和应用 |
CN110449032A (zh) * | 2019-07-08 | 2019-11-15 | 西安建筑科技大学 | 一种耐溶胀二维SA-MXene层状纳滤膜、制备及应用 |
CN111348708A (zh) * | 2020-02-10 | 2020-06-30 | 东华大学 | 向光型太阳能光热海水蒸发方法及其装置 |
CN111422873A (zh) * | 2020-03-23 | 2020-07-17 | 北京化工大学 | 一种MXene/海藻酸钠衍生碳三维气凝胶及其制备方法和应用 |
CN111440349A (zh) * | 2020-06-01 | 2020-07-24 | 中国石油大学(华东) | 一种海藻酸钠抗菌敷料的制备方法 |
CN112011067A (zh) * | 2020-08-19 | 2020-12-01 | 华东师范大学 | 一种可降解、自修复和自粘附导电水凝胶及制备方法 |
CN112169816A (zh) * | 2020-09-21 | 2021-01-05 | 东莞理工学院 | 一种三维多孔MXene组装体及其制备方法和应用 |
Non-Patent Citations (8)
Title |
---|
Effect of synthesis temperature on the phase structure, morphology and electrochemical performance of Ti3C2 as an anode material for Li-ion batteries;Nan Sun,等;《Ceramics International》;20180601;第44卷;第16214-16218页 * |
MXene/sodium alginate gel beads for adsorption of methylene blue;Zhi-Hao Zhang,等;《Materials Chemistry and Physics》;20201204;第260卷;第1-11页 * |
NaCl和CaCl_2对海藻酸钠-普通玉米淀粉复合体系理化性质的影响;王雨生等;《青岛农业大学学报(自然科学版)》;20170315(第01期);第34-39,46页 * |
光热水明胶的制备及其在太阳能海水淡化方面的应用;芦雄;《中国优秀硕士学位论文全文数据库 基础科学辑》;20211215(第12期);第A010-29页 * |
复合型保水剂的制备与性能研究;石燕军等;《南京林业大学学报(自然科学版)》;20170915(第05期);第114-120页 * |
气凝胶材料的研究进展;吴晓栋等;《南京工业大学学报(自然科学版)》;20201231(第04期);第405-451页 * |
海藻酸钠/多孔淀粉牛至精油微胶囊的制备;王楠等;《食品工业科技》;20161231(第09期);第224-227,234页 * |
而为复合材料的制备及其对重金属铅和铜吸附性能的研究;桑大申;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20201215(第12期);第B014-278页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112724427A (zh) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112724427B (zh) | 一种玉米淀粉/海藻酸钠/MXene复合水凝胶的制备及在海水淡化中的应用 | |
CN110090603B (zh) | 一种MXene与氧化石墨烯复合气凝胶及其制备方法和应用 | |
Hao et al. | High-performance solar-driven interfacial evaporation through molecular design of antibacterial, biomass-derived hydrogels | |
Yang et al. | Marine biomass-derived composite aerogels for efficient and durable solar-driven interfacial evaporation and desalination | |
CN110510689A (zh) | 一种多级结构的光热海水淡化材料及其制备方法和用途 | |
CN110746657A (zh) | 一种复合生物质气凝胶光热转换材料的制备方法及其应用 | |
Chu et al. | Sustainable self-cleaning evaporators for highly efficient solar desalination using a highly elastic sponge-like hydrogel | |
Wu et al. | Full biomass-derived multifunctional aerogel for solar-driven interfacial evaporation | |
CN108715471B (zh) | 一种基于铜纳米颗粒光热效应的海水淡化方法 | |
Chen et al. | All-natural, eco-friendly composite foam for highly efficient atmospheric water harvesting | |
He et al. | Hygroscopic photothermal beads from marine polysaccharides: demonstration of efficient atmospheric water production, indoor humidity control and photovoltaic panel cooling | |
Li et al. | Photothermal aerogel beads based on polysaccharides: controlled fabrication and hybrid applications in solar-powered interfacial evaporation, water remediation, and soil enrichment | |
Wang et al. | Preparation of carbon nanotube/cellulose hydrogel composites and their uses in interfacial solar-powered water evaporation | |
Wen et al. | Fully superhydrophilic, self-floatable, and multi-contamination-resistant solar steam generator inspired by seaweed | |
Li et al. | Aerogel-based solar interface evaporation: Current research progress and future challenges | |
CN114230849A (zh) | 一种具有高效光热转换的多孔气凝胶制备方法 | |
CN112707391A (zh) | 一种复合水凝胶基的自供水型光热水蒸发装置 | |
CN112898627A (zh) | 一种聚多巴胺/茶多酚/纤维素复合光热凝胶及其制备方法 | |
CN111635604B (zh) | 一种天然胶体复合的水凝胶及其制备方法、应用 | |
Li et al. | Guar Gum-Based Macroporous Hygroscopic Polymer for Efficient Atmospheric Water Harvesting | |
CN116712939A (zh) | 用于高效太阳能界面蒸发的多孔碳水凝胶 | |
CN112794307A (zh) | 一种双层整体式光热转化材料的制备方法 | |
Song et al. | Nature-inspired sustainable solar evaporators for seawater desalination | |
CN116479656A (zh) | 一种高效光热转换的光热层及其制备方法、蒸发器 | |
Zhang et al. | Fresh water collection strategy: Invasive plant-based cellulose aerogels for highly efficient interfacial solar evaporation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |